1
|
Osorio-Rodriguez D, Metcalfe KS, McGlynn SE, Yu H, Dekas AE, Ellisman M, Deerinck T, Aristilde L, Grotzinger JP, Orphan VJ. Microbially induced precipitation of silica by anaerobic methane-oxidizing consortia and implications for microbial fossil preservation. Proc Natl Acad Sci U S A 2023; 120:e2302156120. [PMID: 38079551 PMCID: PMC10743459 DOI: 10.1073/pnas.2302156120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 11/06/2023] [Indexed: 12/18/2023] Open
Abstract
Authigenic carbonate minerals can preserve biosignatures of microbial anaerobic oxidation of methane (AOM) in the rock record. It is not currently known whether the microorganisms that mediate sulfate-coupled AOM-often occurring as multicelled consortia of anaerobic methanotrophic archaea (ANME) and sulfate-reducing bacteria (SRB)-are preserved as microfossils. Electron microscopy of ANME-SRB consortia in methane seep sediments has shown that these microorganisms can be associated with silicate minerals such as clays [Chen et al., Sci. Rep. 4, 1-9 (2014)], but the biogenicity of these phases, their geochemical composition, and their potential preservation in the rock record is poorly constrained. Long-term laboratory AOM enrichment cultures in sediment-free artificial seawater [Yu et al., Appl. Environ. Microbiol. 88, e02109-21 (2022)] resulted in precipitation of amorphous silicate particles (~200 nm) within clusters of exopolymer-rich AOM consortia from media undersaturated with respect to silica, suggestive of a microbially mediated process. The use of techniques like correlative fluorescence in situ hybridization (FISH), scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDS), and nanoscale secondary ion mass spectrometry (nanoSIMS) on AOM consortia from methane seep authigenic carbonates and sediments further revealed that they are enveloped in a silica-rich phase similar to the mineral phase on ANME-SRB consortia in enrichment cultures. Like in cyanobacteria [Moore et al., Geology 48, 862-866 (2020)], the Si-rich phases on ANME-SRB consortia identified here may enhance their preservation as microfossils. The morphology of these silica-rich precipitates, consistent with amorphous-type clay-like spheroids formed within organic assemblages, provides an additional mineralogical signature that may assist in the search for structural remnants of microbial consortia in rocks which formed in methane-rich environments from Earth and other planetary bodies.
Collapse
Affiliation(s)
- Daniela Osorio-Rodriguez
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA91125
| | - Kyle S. Metcalfe
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA91125
| | - Shawn E. McGlynn
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA91125
- Earth-Life Science Institute, Tokyo Institute of Technology, Meguro, Tokyo152-8550, Japan
| | - Hang Yu
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA91125
- College of Urban and Environmental Sciences, Peking University, Beijing100871, China
| | - Anne E. Dekas
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA91125
- Department of Earth System Science, Stanford University, Stanford, CA94305
| | - Mark Ellisman
- National Center for Microscopy and Imaging Research, Center for Research in Biological Systems, University of California, San Diego, School of Medicine, La Jolla, CA92093
| | - Tom Deerinck
- National Center for Microscopy and Imaging Research, Center for Research in Biological Systems, University of California, San Diego, School of Medicine, La Jolla, CA92093
| | - Ludmilla Aristilde
- Department of Civil and Environmental Engineering, McCormick School of Engineering and Applied Science, Northwestern University, Evanston, IL60208
| | - John P. Grotzinger
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA91125
| | - Victoria J. Orphan
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA91125
| |
Collapse
|
2
|
Parada AE, Mayali X, Weber PK, Wollard J, Santoro AE, Fuhrman JA, Pett-Ridge J, Dekas AE. Constraining the composition and quantity of organic matter used by abundant marine Thaumarchaeota. Environ Microbiol 2023; 25:689-704. [PMID: 36478085 DOI: 10.1111/1462-2920.16299] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/27/2022] [Indexed: 12/12/2022]
Abstract
Marine Group I (MGI) Thaumarchaeota were originally described as chemoautotrophic nitrifiers, but molecular and isotopic evidence suggests heterotrophic and/or mixotrophic capabilities. Here, we investigated the quantity and composition of organic matter assimilated by individual, uncultured MGI cells from the Pacific Ocean to constrain their potential for mixotrophy and heterotrophy. We observed that most MGI cells did not assimilate carbon from any organic substrate provided (glucose, pyruvate, oxaloacetate, protein, urea, and amino acids). The minority of MGI cells that did assimilate it did so exclusively from nitrogenous substrates (urea, 15% of MGI and amino acids, 36% of MGI), and only as an auxiliary carbon source (<20% of that subset's total cellular carbon was derived from those substrates). At the population level, MGI assimilation of organic carbon comprised just 0.5%-11% of total biomass carbon. We observed extensive assimilation of inorganic carbon and urea- and amino acid-derived nitrogen (equal to that from ammonium), consistent with metagenomic and metatranscriptomic analyses performed here and previously showing a widespread potential for MGI to perform autotrophy and transport and degrade organic nitrogen. Our results constrain the quantity and composition of organic matter used by MGI and suggest they use it primarily to meet nitrogen demands for anabolism and nitrification.
Collapse
Affiliation(s)
- Alma E Parada
- Department of Earth System Science, Stanford University, Stanford, California, USA
| | - Xavier Mayali
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California, USA
| | - Peter K Weber
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California, USA
| | - Jessica Wollard
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California, USA
| | - Alyson E Santoro
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, California, USA
| | - Jed A Fuhrman
- Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| | - Jennifer Pett-Ridge
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California, USA
| | - Anne E Dekas
- Department of Earth System Science, Stanford University, Stanford, California, USA
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California, USA
| |
Collapse
|
3
|
Liao X, Zhao P, Hou L, Adyari B, Xu EG, Huang Q, Hu A. Network analysis reveals significant joint effects of microplastics and tetracycline on the gut than the gill microbiome of marine medaka. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:129996. [PMID: 36152547 DOI: 10.1016/j.jhazmat.2022.129996] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/22/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Microplastics could accumulate and enrich antibiotics in the aquatic environment. Despite this, the joint effects of microplastics and antibiotics on aquatic organisms are not clear. Here, we investigated the changes of microbial interactions in both gill and gut of marine medaka exposed to polystyrene microbeads (PS) and/or tetracycline for 30 days by using co-occurrence network analysis based on 16S rRNA gene amplicon sequences. We found that the single and combined effects of PS and tetracycline were more profound on the gut than on the gill microbiome. SourceTracker analysis showed that the relative contributions from the gill microbiome to the gut microbiome increased under combined exposure. Moreover, the combined exposure reduced the complexity and stability of the gut microbial network more than those induced by any single exposure, suggesting the synergistic effects of PS and tetracycline on the gut microbiome. The PS and tetracycline combined exposure also caused a shift in the keystone taxa of the gut microbial network. However, no similar pattern was found for gill microbial networks. Furthermore, single and combined exposure to PS and/or tetracycline altered the associations between the gut network taxa and indicator liver metabolites. Altogether, these findings enhanced our understanding of the hazards of the co-occurring environmental microplastics and antibiotics to the fish commensal microbiome.
Collapse
Affiliation(s)
- Xin Liao
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peiqiang Zhao
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, Fujian 361021, China; School of Public Utilities, Jiangsu Urban and Rural Construction College, Changzhou 213147, China
| | - Liyuan Hou
- Department of Civil and Environmental Engineering, Utah state university, Utah UT 84322, USA
| | - Bob Adyari
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China; Department of Environmental Engineering, Universitas Pertamina, Jakarta 12220, Indonesia
| | - Elvis Genbo Xu
- Department of Biology, University of Southern Denmark, Odense 5230, Denmark
| | - Qiansheng Huang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, Fujian 361021, China; National Basic Science Data Center, Beijing 100190, China.
| | - Anyi Hu
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
4
|
Benito Merino D, Zehnle H, Teske A, Wegener G. Deep-branching ANME-1c archaea grow at the upper temperature limit of anaerobic oxidation of methane. Front Microbiol 2022; 13:988871. [PMID: 36212815 PMCID: PMC9539880 DOI: 10.3389/fmicb.2022.988871] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/15/2022] [Indexed: 01/03/2023] Open
Abstract
In seafloor sediments, the anaerobic oxidation of methane (AOM) consumes most of the methane formed in anoxic layers, preventing this greenhouse gas from reaching the water column and finally the atmosphere. AOM is performed by syntrophic consortia of specific anaerobic methane-oxidizing archaea (ANME) and sulfate-reducing bacteria (SRB). Cultures with diverse AOM partners exist at temperatures between 12°C and 60°C. Here, from hydrothermally heated sediments of the Guaymas Basin, we cultured deep-branching ANME-1c that grow in syntrophic consortia with Thermodesulfobacteria at 70°C. Like all ANME, ANME-1c oxidize methane using the methanogenesis pathway in reverse. As an uncommon feature, ANME-1c encode a nickel-iron hydrogenase. This hydrogenase has low expression during AOM and the partner Thermodesulfobacteria lack hydrogen-consuming hydrogenases. Therefore, it is unlikely that the partners exchange hydrogen during AOM. ANME-1c also does not consume hydrogen for methane formation, disputing a recent hypothesis on facultative methanogenesis. We hypothesize that the ANME-1c hydrogenase might have been present in the common ancestor of ANME-1 but lost its central metabolic function in ANME-1c archaea. For potential direct interspecies electron transfer (DIET), both partners encode and express genes coding for extracellular appendages and multiheme cytochromes. Thermodesulfobacteria encode and express an extracellular pentaheme cytochrome with high similarity to cytochromes of other syntrophic sulfate-reducing partner bacteria. ANME-1c might associate specifically to Thermodesulfobacteria, but their co-occurrence is so far only documented for heated sediments of the Gulf of California. However, in the deep seafloor, sulfate-methane interphases appear at temperatures up to 80°C, suggesting these as potential habitats for the partnership of ANME-1c and Thermodesulfobacteria.
Collapse
Affiliation(s)
- David Benito Merino
- Max Planck Institute for Marine Microbiology, Bremen, Germany
- Faculty of Geosciences, University of Bremen, Bremen, Germany
| | - Hanna Zehnle
- Max Planck Institute for Marine Microbiology, Bremen, Germany
- Faculty of Geosciences, University of Bremen, Bremen, Germany
- MARUM, Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | - Andreas Teske
- Department of Earth, Marine and Environmental Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Gunter Wegener
- Max Planck Institute for Marine Microbiology, Bremen, Germany
- MARUM, Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| |
Collapse
|
5
|
Meyer NR, Parada AE, Kapili BJ, Fortney JL, Dekas AE. Rates and physicochemical drivers of microbial anabolic activity in deep‐sea sediments and implications for deep time. Environ Microbiol 2022; 24:5188-5201. [DOI: 10.1111/1462-2920.16183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 08/25/2022] [Indexed: 11/26/2022]
Affiliation(s)
| | - Alma E. Parada
- Department of Earth System Science Stanford University Stanford CA
| | | | | | - Anne E. Dekas
- Department of Earth System Science Stanford University Stanford CA
| |
Collapse
|
6
|
Community Structure and Microbial Associations in Sediment-Free Methanotrophic Enrichment Cultures from a Marine Methane Seep. Appl Environ Microbiol 2022; 88:e0210921. [PMID: 35604226 DOI: 10.1128/aem.02109-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Syntrophic consortia of anaerobic methanotrophic archaea (ANME) and sulfate-reducing bacteria (SRB) consume large amounts of methane and serve as the foundational microorganisms in marine methane seeps. Despite their importance in the carbon cycle, research on the physiology of ANME-SRB consortia has been hampered by the slow growth and complex physicochemical environment the consortia inhabit. Here, we report successful sediment-free enrichment of ANME-SRB consortia from deep-sea methane seep sediments in the Santa Monica Basin, California. Anoxic Percoll density gradients and size-selective filtration were used to separate ANME-SRB consortia from sediment particles and single cells to accelerate the cultivation process. Over a 3-year period, a subset of the sediment-associated ANME and SRB lineages, predominantly comprised of ANME-2a/2b ("Candidatus Methanocomedenaceae") and their syntrophic bacterial partners, SEEP-SRB1/2, adapted and grew under defined laboratory conditions. Metagenome-assembled genomes from several enrichments revealed that ANME-2a, SEEP-SRB1, and Methanococcoides in different enrichments from the same inoculum represented distinct species, whereas other coenriched microorganisms were closely related at the species level. This suggests that ANME, SRB, and Methanococcoides are more genetically diverse than other members in methane seeps. Flow cytometry sorting and sequencing of cell aggregates revealed that Methanococcoides, Anaerolineales, and SEEP-SRB1 were overrepresented in multiple ANME-2a cell aggregates relative to the bulk metagenomes, suggesting they were physically associated and possibly interacting. Overall, this study represents a successful case of selective cultivation of anaerobic slow-growing microorganisms from sediments based on their physical characteristics, introducing new opportunities for detailed genomic, physiological, biochemical, and ecological analyses. IMPORTANCE Biological anaerobic oxidation of methane (AOM) coupled with sulfate reduction represents a large methane sink in global ocean sediments. Methane consumption is carried out by syntrophic archaeal-bacterial consortia and fuels a unique ecosystem, yet the interactions in these slow-growing syntrophic consortia and with other associated community members remain poorly understood. The significance of this study is the establishment of sediment-free enrichment cultures of anaerobic methanotrophic archaea and sulfate-reducing bacteria performing AOM with sulfate using selective cultivation approaches based on size, density, and metabolism. By reconstructing microbial genomes and analyzing community composition of the enrichment cultures and cell aggregates, we shed light on the diversity of microorganisms physically associated with AOM consortia beyond the core syntrophic partners. These enrichment cultures offer simplified model systems to extend our understanding of the diversity of microbial interactions within marine methane seeps.
Collapse
|
7
|
Vavilin VA, Lokshina LY, Rytov SV. Anaerobic oxidation of methane coupled with sulphate reduction: high concentration of methanotrophic archaea might be responsible for low stable isotope fractionation factors in methane. ISOTOPES IN ENVIRONMENTAL AND HEALTH STUDIES 2022; 58:44-59. [PMID: 34846953 DOI: 10.1080/10256016.2021.2000405] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 10/05/2021] [Indexed: 06/13/2023]
Abstract
The changes in δ13CH4 and δ12C1H32H during sulphate-dependent anaerobic oxidation of methane (AOM) were described using dynamic modelling. The batch sulphate-dependent AOM at the nearly linear dynamics of methane oxidation with different enriched cultures originating from three marine sediments was simulated. The traditional Rayleigh equation for carbon and hydrogen stable isotopes in methane was derived from the basic dynamic isotope equation. The general and reduced models, taking into account the reaction stoichiometry and based on balances of chemical elements and their isotopes, describes a redistribution of stable isotope values in the sulphate-dependent AOM process. It was shown that AOM is the first and rate-limiting step in the whole AOM + SR (sulphate reduction) process. The different fractionation factors of carbon and hydrogen isotopes in methane were obtained for three marine sediments. It was concluded that during incubation the highest concentration of methanotrophic archaea might be responsible for the lowest fractionation factors of stable isotopes of carbon and hydrogen in methane. The interpretation of this phenomenon was suggested. Different concentrations of methanotrophic archaea can lead to variations of isotope fractionation factors.
Collapse
Affiliation(s)
- Vasily A Vavilin
- Water Problems Institute, Russian Academy of Sciences, Moscow, Russian Federation
| | - Lyudmila Y Lokshina
- Water Problems Institute, Russian Academy of Sciences, Moscow, Russian Federation
| | - Sergey V Rytov
- Water Problems Institute, Russian Academy of Sciences, Moscow, Russian Federation
| |
Collapse
|
8
|
Sulfate differentially stimulates but is not respired by diverse anaerobic methanotrophic archaea. THE ISME JOURNAL 2022; 16:168-177. [PMID: 34285362 PMCID: PMC8692474 DOI: 10.1038/s41396-021-01047-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 02/07/2023]
Abstract
Sulfate-coupled anaerobic oxidation of methane (AOM) is a major methane sink in marine sediments. Multiple lineages of anaerobic methanotrophic archaea (ANME) often coexist in sediments and catalyze this process syntrophically with sulfate-reducing bacteria (SRB), but the potential differences in ANME ecophysiology and mechanisms of syntrophy remain unresolved. A humic acid analog, anthraquinone 2,6-disulfonate (AQDS), could decouple archaeal methanotrophy from bacterial sulfate reduction and serve as the terminal electron acceptor for AOM (AQDS-coupled AOM). Here in sediment microcosm experiments, we examined variations in physiological response between two co-occurring ANME-2 families (ANME-2a and ANME-2c) and tested the hypothesis of sulfate respiration by ANME-2. Sulfate concentrations as low as 100 µM increased AQDS-coupled AOM nearly 2-fold matching the rates of sulfate-coupled AOM. However, the SRB partners remained inactive in microcosms with sulfate and AQDS and neither ANME-2 families respired sulfate, as shown by their cellular sulfur contents and anabolic activities measured using nanoscale secondary ion mass spectrometry. ANME-2a anabolic activity was significantly higher than ANME-2c, suggesting that ANME-2a was primarily responsible for the observed sulfate stimulation of AQDS-coupled AOM. Comparative transcriptomics showed significant upregulation of ANME-2a transcripts linked to multiple ABC transporters and downregulation of central carbon metabolism during AQDS-coupled AOM compared to sulfate-coupled AOM. Surprisingly, genes involved in sulfur anabolism were not differentially expressed during AQDS-coupled AOM with and without sulfate amendment. Collectively, this data indicates that ANME-2 archaea are incapable of respiring sulfate, but sulfate availability differentially stimulates the growth and AOM activity of different ANME lineages.
Collapse
|
9
|
Jia Z, Dong Y, Xu H, Wang F. Optimizing the hybridization chain reaction-fluorescence in situ hybridization (HCR-FISH) protocol for detection of microbes in sediments. MARINE LIFE SCIENCE & TECHNOLOGY 2021; 3:529-541. [PMID: 37073263 PMCID: PMC10077247 DOI: 10.1007/s42995-021-00098-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 02/17/2021] [Indexed: 05/03/2023]
Abstract
Fluorescence in situ hybridization (FISH) is a canonical tool commonly used in environmental microbiology research to visualize targeted cells. However, the problems of low signal intensity and false-positive signals impede its widespread application. Alternatively, the signal intensity can be amplified by incorporating Hybridization Chain Reaction (HCR) with FISH, while the specificity can be improved through protocol modification and proper counterstaining. Here we optimized the HCR-FISH protocol for studying microbes in environmental samples, particularly marine sediments. Firstly, five sets of HCR initiator/amplifier pairs were tested on the laboratory-cultured bacterium Escherichia coli and the archaeon Methanococcoides methylutens, and two sets displayed high hybridization efficiency and specificity. Secondly, we tried to find the best combination of sample pretreatment methods and HCR-FISH protocol for environmental sample analysis with the aim of producing less false positive signals. Various detachment methods, extraction methods and formulas of hybridization buffer were tested using sediment samples. Thirdly, an image processing method was developed to enhance the DAPI signal of microbial cells against that of abiotic particles, providing a reliable reference for FISH imaging. In summary, our optimized HCR-FISH protocol showed promise to serve as an addendum to traditional FISH for research on environmental microbes. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-021-00098-8.
Collapse
Affiliation(s)
- Zeyu Jia
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Yijing Dong
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Heng Xu
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240 China
- Institute of Natural Science, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Fengping Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240 China
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, 200240 China
| |
Collapse
|
10
|
Calabrese F, Stryhanyuk H, Moraru C, Schlömann M, Wick LY, Richnow HH, Musat F, Musat N. Metabolic history and metabolic fitness as drivers of anabolic heterogeneity in isogenic microbial populations. Environ Microbiol 2021; 23:6764-6776. [PMID: 34472201 DOI: 10.1111/1462-2920.15756] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 08/30/2021] [Accepted: 08/30/2021] [Indexed: 11/26/2022]
Abstract
Microbial populations often display different degrees of heterogeneity in their substrate assimilation, that is, anabolic heterogeneity. It has been shown that nutrient limitations are a relevant trigger for this behaviour. Here we explore the dynamics of anabolic heterogeneity under nutrient replete conditions. We applied time-resolved stable isotope probing and nanoscale secondary ion mass spectrometry to quantify substrate assimilation by individual cells of Pseudomonas putida, P. stutzeri and Thauera aromatica. Acetate and benzoate at different concentrations were used as substrates. Anabolic heterogeneity was quantified by the cumulative differentiation tendency index. We observed two major, opposing trends of anabolic heterogeneity over time. Most often, microbial populations started as highly heterogeneous, with heterogeneity decreasing by various degrees over time. The second, less frequently observed trend, saw microbial populations starting at low or very low heterogeneity, and remaining largely stable over time. We explain these trends as an interplay of metabolic history (e.g. former growth substrate or other nutrient limitations) and metabolic fitness (i.e. the fine-tuning of metabolic pathways to process a defined growth substrate). Our results offer a new viewpoint on the intra-population functional diversification often encountered in the environment, and suggests that some microbial populations may be intrinsically heterogeneous.
Collapse
Affiliation(s)
- Federica Calabrese
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Hryhoriy Stryhanyuk
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Cristina Moraru
- Institute for Chemistry and Biology of Marine Environment, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Michael Schlömann
- Department of Environmental Microbiology, Institute of Biosciences, TU-Bergakademie Freiberg, Germany
| | - Lukas Y Wick
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Hans H Richnow
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Florin Musat
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Niculina Musat
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| |
Collapse
|
11
|
Schwendner P, Nguyen AN, Schuerger AC. Use of NanoSIMS to Identify the Lower Limits of Metabolic Activity and Growth by Serratia liquefaciens Exposed to Sub-Zero Temperatures. Life (Basel) 2021; 11:life11050459. [PMID: 34065549 PMCID: PMC8161314 DOI: 10.3390/life11050459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/12/2021] [Accepted: 05/19/2021] [Indexed: 11/16/2022] Open
Abstract
Serratia liquefaciens is a cold-adapted facultative anaerobic astrobiology model organism with the ability to grow at a Martian atmospheric pressure of 7 hPa. Currently there is a lack of data on its limits of growth and metabolic activity at sub-zero temperatures found in potential habitable regions on Mars. Growth curves and nano-scale secondary ion mass spectrometry (NanoSIMS) were used to characterize the growth and metabolic threshold for S. liquefaciens ATCC 27,592 grown at and below 0 °C. Cells were incubated in Spizizen medium containing three stable isotopes substituting their unlabeled counterparts; i.e., 13C-glucose, (15NH4)2SO4, and H218O; at 0, −1.5, −3, −5, −10, or −15 °C. The isotopic ratios of 13C/12C, 15N/14N, and 18O/16O and their corresponding fractions were determined for 240 cells. NanoSIMS results revealed that with decreasing temperature the cellular amounts of labeled ions decreased indicating slower metabolic rates for isotope uptake and incorporation. Metabolism was significantly reduced at −1.5 and −3 °C, almost halted at −5 °C, and shut-down completely at or below −10 °C. While growth was observed at 0 °C after 5 days, samples incubated at −1.5 and −3 °C exhibited significantly slower growth rates until growth was detected at 70 days. In contrast, cell densities decreased by at least half an order of magnitude over 70 days in cultures incubated at ≤ −5 °C. Results suggest that S. liquefaciens, if transported to Mars, might be able to metabolize and grow in shallow sub-surface niches at temperatures above −5 °C and might survive—but not grow—at temperatures below −5 °C.
Collapse
Affiliation(s)
- Petra Schwendner
- Space Life Sciences Lab, Department of Plant Pathology, University of Florida, 505 Odyssey Way, Exploration Park, Merritt Island, FL 32953, USA;
- Correspondence:
| | - Ann N. Nguyen
- Jacobs, NASA Johnson Space Center, Houston, TX 77058, USA;
| | - Andrew C. Schuerger
- Space Life Sciences Lab, Department of Plant Pathology, University of Florida, 505 Odyssey Way, Exploration Park, Merritt Island, FL 32953, USA;
| |
Collapse
|
12
|
Metcalfe KS, Murali R, Mullin SW, Connon SA, Orphan VJ. Experimentally-validated correlation analysis reveals new anaerobic methane oxidation partnerships with consortium-level heterogeneity in diazotrophy. THE ISME JOURNAL 2021; 15:377-396. [PMID: 33060828 PMCID: PMC8027057 DOI: 10.1038/s41396-020-00757-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 07/28/2020] [Accepted: 08/21/2020] [Indexed: 02/08/2023]
Abstract
Archaeal anaerobic methanotrophs ("ANME") and sulfate-reducing Deltaproteobacteria ("SRB") form symbiotic multicellular consortia capable of anaerobic methane oxidation (AOM), and in so doing modulate methane flux from marine sediments. The specificity with which ANME associate with particular SRB partners in situ, however, is poorly understood. To characterize partnership specificity in ANME-SRB consortia, we applied the correlation inference technique SparCC to 310 16S rRNA amplicon libraries prepared from Costa Rica seep sediment samples, uncovering a strong positive correlation between ANME-2b and members of a clade of Deltaproteobacteria we termed SEEP-SRB1g. We confirmed this association by examining 16S rRNA diversity in individual ANME-SRB consortia sorted using flow cytometry and by imaging ANME-SRB consortia with fluorescence in situ hybridization (FISH) microscopy using newly-designed probes targeting the SEEP-SRB1g clade. Analysis of genome bins belonging to SEEP-SRB1g revealed the presence of a complete nifHDK operon required for diazotrophy, unusual in published genomes of ANME-associated SRB. Active expression of nifH in SEEP-SRB1g within ANME-2b-SEEP-SRB1g consortia was then demonstrated by microscopy using hybridization chain reaction (HCR-) FISH targeting nifH transcripts and diazotrophic activity was documented by FISH-nanoSIMS experiments. NanoSIMS analysis of ANME-2b-SEEP-SRB1g consortia incubated with a headspace containing CH4 and 15N2 revealed differences in cellular 15N-enrichment between the two partners that varied between individual consortia, with SEEP-SRB1g cells enriched in 15N relative to ANME-2b in one consortium and the opposite pattern observed in others, indicating both ANME-2b and SEEP-SRB1g are capable of nitrogen fixation, but with consortium-specific variation in whether the archaea or bacterial partner is the dominant diazotroph.
Collapse
Affiliation(s)
- Kyle S Metcalfe
- Division of Geological and Planetary Sciences, California Institute of Technology, 1200 E California Blvd, Mail Code 170-25, Pasadena, CA, 91125, USA.
| | - Ranjani Murali
- Division of Geological and Planetary Sciences, California Institute of Technology, 1200 E California Blvd, Mail Code 170-25, Pasadena, CA, 91125, USA
| | - Sean W Mullin
- Division of Geological and Planetary Sciences, California Institute of Technology, 1200 E California Blvd, Mail Code 170-25, Pasadena, CA, 91125, USA
| | - Stephanie A Connon
- Division of Geological and Planetary Sciences, California Institute of Technology, 1200 E California Blvd, Mail Code 170-25, Pasadena, CA, 91125, USA
| | - Victoria J Orphan
- Division of Geological and Planetary Sciences, California Institute of Technology, 1200 E California Blvd, Mail Code 170-25, Pasadena, CA, 91125, USA.
| |
Collapse
|
13
|
Seyler L, Kujawinski EB, Azua-Bustos A, Lee MD, Marlow J, Perl SM, Cleaves II HJ. Metabolomics as an Emerging Tool in the Search for Astrobiologically Relevant Biomarkers. ASTROBIOLOGY 2020; 20:1251-1261. [PMID: 32551936 PMCID: PMC7116171 DOI: 10.1089/ast.2019.2135] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
It is now routinely possible to sequence and recover microbial genomes from environmental samples. To the degree it is feasible to assign transcriptional and translational functions to these genomes, it should be possible, in principle, to largely understand the complete molecular inputs and outputs of a microbial community. However, gene-based tools alone are presently insufficient to describe the full suite of chemical reactions and small molecules that compose a living cell. Metabolomic tools have developed quickly and now enable rapid detection and identification of small molecules within biological and environmental samples. The convergence of these technologies will soon facilitate the detection of novel enzymatic activities, novel organisms, and potentially extraterrestrial life-forms on solar system bodies. This review explores the methodological problems and scientific opportunities facing researchers who hope to apply metabolomic methods in astrobiology-related fields, and how present challenges might be overcome.
Collapse
Affiliation(s)
- Lauren Seyler
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
- Blue Marble Space Institute of Science, Seattle, Washington, USA
- Address correspondence to: Lauren Seyler, Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, 86 Water Street, Woods Hole, MA 02543, USA
| | - Elizabeth B. Kujawinski
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
| | - Armando Azua-Bustos
- Department of Planetology and Habitability, Centro de Astrobiología (CSIC-INTA), Madrid, Spain
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Michael D. Lee
- Blue Marble Space Institute of Science, Seattle, Washington, USA
- Exobiology Branch, NASA Ames Research Center, Moffett Field, California, USA
| | - Jeffrey Marlow
- Blue Marble Space Institute of Science, Seattle, Washington, USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
- Department of Biology, Boston University, Boston, Massachusetts, USA
| | - Scott M. Perl
- Geological and Planetary Sciences, California Institute of Technology/NASA Jet Propulsion Laboratory, Pasadena, California, USA
- Mineral Sciences, Los Angeles Natural History Museum, Los Angeles, California, USA
| | - Henderson James Cleaves II
- Blue Marble Space Institute of Science, Seattle, Washington, USA
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan
- School of Natural Sciences, Institute for Advanced Study, Princeton, New Jersey, USA
- Geographical Research Laboratory, Carnegie Institution of Washington
| |
Collapse
|
14
|
van Grinsven S, Sinninghe Damsté JS, Villanueva L. Assessing the Effect of Humic Substances and Fe(III) as Potential Electron Acceptors for Anaerobic Methane Oxidation in a Marine Anoxic System. Microorganisms 2020; 8:E1288. [PMID: 32846903 PMCID: PMC7564286 DOI: 10.3390/microorganisms8091288] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/06/2020] [Accepted: 08/17/2020] [Indexed: 12/13/2022] Open
Abstract
Marine anaerobic methane oxidation (AOM) is generally assumed to be coupled to sulfate reduction, via a consortium of anaerobic methane-oxidizing archaea (ANME) and sulfate-reducing bacteria (SRB). ANME-1 are, however, often found as single cells, or only loosely aggregated with SRB, suggesting they perform a form of AOM independent of sulfate reduction. Oxidized metals and humic substances have been suggested as potential electron acceptors for ANME, but up to now, AOM linked to reduction of these compounds has only been shown for the ANME-2 and ANME-3 clades. Here, the effect of the electron acceptors anthraquinone-disulfonate (AQDS), a humic acids analog, and Fe3+ on anaerobic methane oxidation were assessed by incubation experiments with anoxic Black Sea water containing ANME-1b. Incubation experiments with 13C-methane and AQDS showed a stimulating effect of AQDS on methane oxidation. Fe3+ enhanced the ANME-1b abundance but did not substantially increase methane oxidation. Sodium molybdate, which was added as an inhibitor of sulfate reduction, surprisingly enhanced methane oxidation, possibly related to the dominant abundance of Sulfurospirillum in those incubations. The presented data suggest the potential involvement of ANME-1b in AQDS-enhanced anaerobic methane oxidation, possibly via electron shuttling to AQDS or via interaction with other members of the microbial community.
Collapse
Affiliation(s)
- Sigrid van Grinsven
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, Utrecht University, 1797 SZ ’t Horntje, Texel, The Netherlands; (J.S.S.D.); (L.V.)
| | - Jaap S. Sinninghe Damsté
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, Utrecht University, 1797 SZ ’t Horntje, Texel, The Netherlands; (J.S.S.D.); (L.V.)
- Department of Earth Sciences, Faculty of Geosciences, Utrecht University, 3584 CB Utrecht, The Netherlands
| | - Laura Villanueva
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, Utrecht University, 1797 SZ ’t Horntje, Texel, The Netherlands; (J.S.S.D.); (L.V.)
| |
Collapse
|
15
|
Finn DR, Ziv-El M, van Haren J, Park JG, Del Aguila-Pasquel J, Urquiza-Muñoz JD, Cadillo-Quiroz H. Methanogens and Methanotrophs Show Nutrient-Dependent Community Assemblage Patterns Across Tropical Peatlands of the Pastaza-Marañón Basin, Peruvian Amazonia. Front Microbiol 2020; 11:746. [PMID: 32390985 PMCID: PMC7193774 DOI: 10.3389/fmicb.2020.00746] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 03/30/2020] [Indexed: 11/17/2022] Open
Abstract
Tropical peatlands are globally important carbon reservoirs that play a crucial role in fluxes of atmospheric greenhouse gases. Amazon peatlands are expected to be large source of atmospheric methane (CH4) emissions, however little is understood about the rates of CH4 flux or the microorganisms that mediate it in these environments. Here we studied a mineral nutrient gradient across peatlands in the Pastaza-Marañón Basin, the largest tropical peatland in South America, to describe CH4 fluxes and environmental factors that regulate species assemblages of methanogenic and methanotrophic microorganisms. Peatlands were grouped as minerotrophic, mixed and ombrotrophic categories by their general water source leading to different mineral nutrient content (rich, mixed and poor) quantified by trace elements abundance. Microbial communities clustered dependent on nutrient content (ANOSIM p < 0.001). Higher CH4 flux was associated with minerotrophic communities compared to the other categories. The most dominant methanogens and methanotrophs were represented by Methanobacteriaceae, and Methylocystaceae, respectively. Weighted network analysis demonstrated tight clustering of most methanogen families with minerotrophic-associated microbial families. Populations of Methylocystaceae were present across all peatlands. Null model testing for species assemblage patterns and species rank distributions confirmed non-random aggregations of Methylococcacae methanotroph and methanogen families (p < 0.05). We conclude that in studied amazon peatlands increasing mineral nutrient content provides favorable habitats for Methanobacteriaceae, while Methylocystaceae populations seem to broadly distribute independent of nutrient content.
Collapse
Affiliation(s)
- Damien Robert Finn
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Michal Ziv-El
- School of Life Sciences, Arizona State University, Tempe, AZ, United States.,Swette Center for Environmental Biotechnology, Biodesign Institute, Arizona State University, Tempe, AZ, United States
| | - Joost van Haren
- Biosphere 2, University of Arizona, Tucson, AZ, United States
| | - Jin Gyoon Park
- Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, United States
| | | | - Jose David Urquiza-Muñoz
- Laboratorio de Suelos del Centro de Investigaciones de Recursos Naturales de la Amazonia Peruana, and Facultad de Ciencias Forestales, Universidad de la Amazonia Peruana, Iquitos, Peru
| | - Hinsby Cadillo-Quiroz
- School of Life Sciences, Arizona State University, Tempe, AZ, United States.,Swette Center for Environmental Biotechnology, Biodesign Institute, Arizona State University, Tempe, AZ, United States.,Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
16
|
Dekas AE, Parada AE, Mayali X, Fuhrman JA, Wollard J, Weber PK, Pett-Ridge J. Characterizing Chemoautotrophy and Heterotrophy in Marine Archaea and Bacteria With Single-Cell Multi-isotope NanoSIP. Front Microbiol 2019; 10:2682. [PMID: 31920997 PMCID: PMC6927911 DOI: 10.3389/fmicb.2019.02682] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 11/05/2019] [Indexed: 11/28/2022] Open
Abstract
Characterizing and quantifying in situ metabolisms remains both a central goal and challenge for environmental microbiology. Here, we used a single-cell, multi-isotope approach to investigate the anabolic activity of marine microorganisms, with an emphasis on natural populations of Thaumarchaeota. After incubating coastal Pacific Ocean water with 13C-bicarbonate and 15N-amino acids, we used nanoscale secondary ion mass spectrometry (nanoSIMS) to isotopically screen 1,501 individual cells, and 16S rRNA amplicon sequencing to assess community composition. We established isotopic enrichment thresholds for activity and metabolic classification, and with these determined the percentage of anabolically active cells, the distribution of activity across the whole community, and the metabolic lifestyle—chemoautotrophic or heterotrophic—of each cell. Most cells (>90%) were anabolically active during the incubation, and 4–17% were chemoautotrophic. When we inhibited bacteria with antibiotics, the fraction of chemoautotrophic cells detected via nanoSIMS increased, suggesting archaea dominated chemoautotrophy. With fluorescence in situ hybridization coupled to nanoSIMS (FISH-nanoSIMS), we confirmed that most Thaumarchaeota were living chemoautotrophically, while bacteria were not. FISH-nanoSIMS analysis of cells incubated with dual-labeled (13C,15N-) amino acids revealed that most Thaumarchaeota cells assimilated amino-acid-derived nitrogen but not carbon, while bacteria assimilated both. This indicates that some Thaumarchaeota do not assimilate intact amino acids, suggesting intra-phylum heterogeneity in organic carbon utilization, and potentially their use of amino acids for nitrification. Together, our results demonstrate the utility of multi-isotope nanoSIMS analysis for high-throughput metabolic screening, and shed light on the activity and metabolism of uncultured marine archaea and bacteria.
Collapse
Affiliation(s)
- Anne E Dekas
- Department of Earth System Science, Stanford University, Stanford, CA, United States.,Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Alma E Parada
- Department of Earth System Science, Stanford University, Stanford, CA, United States.,Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States
| | - Xavier Mayali
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Jed A Fuhrman
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States
| | - Jessica Wollard
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Peter K Weber
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Jennifer Pett-Ridge
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, United States
| |
Collapse
|
17
|
Use and abuse of correlation analyses in microbial ecology. ISME JOURNAL 2019; 13:2647-2655. [PMID: 31253856 DOI: 10.1038/s41396-019-0459-z] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/25/2019] [Accepted: 06/03/2019] [Indexed: 12/14/2022]
Abstract
Correlation analyses are often included in bioinformatic pipelines as methods for inferring taxon-taxon interactions. In this perspective, we highlight the pitfalls of inferring interactions from covariance and suggest methods, study design considerations, and additional data types for improving high-throughput interaction inferences. We conclude that correlation, even when augmented by other data types, almost never provides reliable information on direct biotic interactions in real-world ecosystems. These bioinformatically inferred associations are useful for reducing the number of potential hypotheses that we might test, but will never preclude the necessity for experimental validation.
Collapse
|
18
|
Vavilin V, Lokshina L, Rytov S. Using kinetic isotope effect to evaluate the significance of the sequential and parallel steps: formation of microbial consortium during reversible anaerobic methane oxidation coupled with sulfate reduction. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2019; 79:2056-2067. [PMID: 31318343 DOI: 10.2166/wst.2019.201] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The purpose of this study was to describe the dynamics of anaerobic oxidation of methane (AOM) coupled with sulfate reduction (SR) using experimental data from a continuous incubation experiments published earlier in order to show that formation of consortia of anaerobic archaea (ANME) and Desulfosarcina-like bacteria (DSS) may have a significant effect on sulfur isotope fractionation. The dynamic simulation of reversible AOM by ANME coupled with SR by DSS was performed. This simulation took into account biomass growth and fractionation of stable isotopes of sulfur. Two kinetic schemes with and without ANME + DSS consortium formation were tested. The respective models were applied at five influent methane concentrations. A good fit to experimental data was obtained only when assuming active ANME and DSS biomass accumulation. The assumption about incorporation of reversibility of anaerobic methane oxidation and sulfate reduction did not improve the model's fit to experimental data. In accordance with both the models, sulfur isotope fractionation was smallest for the highest influent methane concentration. The model considering the formation of consortia of ANME + DSS is proved to be more appropriate.
Collapse
Affiliation(s)
- Vasily Vavilin
- Water Problems Institute, Russian Academy of Sciences, 3 Gubkina str., Moscow 119333, Russian Federation E-mail:
| | - Lyudmila Lokshina
- Water Problems Institute, Russian Academy of Sciences, 3 Gubkina str., Moscow 119333, Russian Federation E-mail:
| | - Sergey Rytov
- Water Problems Institute, Russian Academy of Sciences, 3 Gubkina str., Moscow 119333, Russian Federation E-mail:
| |
Collapse
|
19
|
He X, Chadwick G, Kempes C, Shi Y, McGlynn S, Orphan V, Meile C. Microbial interactions in the anaerobic oxidation of methane: model simulations constrained by process rates and activity patterns. Environ Microbiol 2019; 21:631-647. [DOI: 10.1111/1462-2920.14507] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 12/04/2018] [Accepted: 12/04/2018] [Indexed: 12/01/2022]
Affiliation(s)
- Xiaojia He
- Department of Marine Sciences University of Georgia Athens GA USA
| | - Grayson Chadwick
- Division of Geological and Planetary Sciences California Institute of Technology Pasadena CA USA
| | | | - Yimeng Shi
- Department of Marine Sciences University of Georgia Athens GA USA
| | - Shawn McGlynn
- Division of Geological and Planetary Sciences California Institute of Technology Pasadena CA USA
- Earth‐Life Science Institute Tokyo Institute of Technology Ookayama, Meguro‐ku Tokyo Japan
| | - Victoria Orphan
- Division of Geological and Planetary Sciences California Institute of Technology Pasadena CA USA
| | - Christof Meile
- Department of Marine Sciences University of Georgia Athens GA USA
| |
Collapse
|
20
|
Deng X, Okamoto A. Electrode Potential Dependency of Single-Cell Activity Identifies the Energetics of Slow Microbial Electron Uptake Process. Front Microbiol 2018; 9:2744. [PMID: 30483241 PMCID: PMC6243204 DOI: 10.3389/fmicb.2018.02744] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 10/26/2018] [Indexed: 12/22/2022] Open
Abstract
Electrochemical measurements have been widely applied to study microbial extracellular electron transport processes. However, because electrochemistry detects not only microbial electron transport but also other reactions, background signals comparable to or larger than microbial ones hamper the identification of microbial electrochemical properties. This problem is crucial especially for the detection of electron uptake processes by slow-growing microbes in low-energy subsurface sediments, as the environmental samples contain electrochemically active humus and mineral particles. In this study, we report a cell-specific stable isotope analysis to quantify the electrode potential dependency of anabolic activity in individual cells for identifying the electron uptake energetics of slow-growing bacteria. Followed by the incubation of Desulfovibrio ferrophilus IS5 cells with isotopic 15N-ammonium as the sole N source on electrodes poised at potentials of -0.2, -0.3, -0.4, and -0.5 V [vs. standard hydrogen electrode (SHE)], we conducted nanoscale secondary ion mass spectroscopy (NanoSIMS) to quantify 15N assimilation in more than 100 individual cells on the electrodes. We observed significant 15N assimilation at potentials of -0.4 and more 15N assimilation at -0.5 V, which is consistent with the onset potential for electron uptake via outer-membrane cytochromes (OMCs). The activation of cell energy metabolism was further examined by transcriptome analysis. Our results showed a novel methodology to study microbial electron uptake energetics. The results also serve as the first direct evidence that energy acquisition is coupled to the electron uptake process in sulfate-reducing bacteria that are ubiquitous in the subsurface environments, with implications on the electron-fueled subsurface biosphere hypothesis and other microbial processes, such as anaerobic iron corrosion and anaerobic methane oxidation.
Collapse
Affiliation(s)
- Xiao Deng
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Tokyo, Japan.,International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Japan
| | - Akihiro Okamoto
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Japan.,Center for Functional Sensor and Actuator, National Institute for Materials Science, Tsukuba, Japan
| |
Collapse
|
21
|
Lai CY, Dong QY, Rittmann BE, Zhao HP. Bioreduction of Antimonate by Anaerobic Methane Oxidation in a Membrane Biofilm Batch Reactor. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:8693-8700. [PMID: 30001126 DOI: 10.1021/acs.est.8b02035] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Employing a special anaerobic membrane biofilm batch reactor (MBBR), we demonstrated antimonate (Sb(V)) reduction using methane (CH4) as the sole electron donor. Scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and Raman and photoluminescence (PL) spectra identified that Sb2O3 microcrystals were the main reduced products. The Sb(V) reduction rate increased continually over the 111-day experiment, which supports the enrichment of the microorganisms responsible for Sb(V) reduction to Sb(III). Copy numbers of the mcrA gene and archaeal and bacterial 16 S rRNA genes increased in parallel. Clone library and Illumina sequencing of 16S rRNA gene demonstrated that Methanosarcina became the dominant archaea in the biofilm, suggesting that Methanosarcina might play an important role in Sb(V) reduction in the CH4-based MBBR.
Collapse
Affiliation(s)
- Chun-Yu Lai
- College of Environmental and Resource Science , Zhejiang University , Hangzhou , Zhejiang 310058 , China
- Advanced Water Management Centre , The University of Queensland , St Lucia , Queensland 4072 , Australia
| | - Qiu-Yi Dong
- College of Environmental and Resource Science , Zhejiang University , Hangzhou , Zhejiang 310058 , China
| | - Bruce E Rittmann
- Biodesign Swette Center for Environmental Biotechnology , Arizona State University , P.O. Box 875701, Tempe , Arizona 85287-5701 , United States
| | - He-Ping Zhao
- College of Environmental and Resource Science , Zhejiang University , Hangzhou , Zhejiang 310058 , China
- Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety , Zhejiang University , Hangzhou , Zhejiang 310058 , China
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Science , Zhejiang University , Hangzhou , Zhejiang 310058 , China
| |
Collapse
|
22
|
Subgroup Characteristics of Marine Methane-Oxidizing ANME-2 Archaea and Their Syntrophic Partners as Revealed by Integrated Multimodal Analytical Microscopy. Appl Environ Microbiol 2018; 84:AEM.00399-18. [PMID: 29625978 DOI: 10.1128/aem.00399-18] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 03/31/2018] [Indexed: 02/06/2023] Open
Abstract
Phylogenetically diverse environmental ANME archaea and sulfate-reducing bacteria cooperatively catalyze the anaerobic oxidation of methane oxidation (AOM) in multicelled consortia within methane seep environments. To better understand these cells and their symbiotic associations, we applied a suite of electron microscopy approaches, including correlative fluorescence in situ hybridization-electron microscopy (FISH-EM), transmission electron microscopy (TEM), and serial block face scanning electron microscopy (SBEM) three-dimensional (3D) reconstructions. FISH-EM of methane seep-derived consortia revealed phylogenetic variability in terms of cell morphology, ultrastructure, and storage granules. Representatives of the ANME-2b clade, but not other ANME-2 groups, contained polyphosphate-like granules, while some bacteria associated with ANME-2a/2c contained two distinct phases of iron mineral chains resembling magnetosomes. 3D segmentation of two ANME-2 consortium types revealed cellular volumes of ANME and their symbiotic partners that were larger than previous estimates based on light microscopy. Polyphosphate-like granule-containing ANME (tentatively termed ANME-2b) were larger than both ANME with no granules and partner bacteria. This cell type was observed with up to 4 granules per cell, and the volume of the cell was larger in proportion to the number of granules inside it, but the percentage of the cell occupied by these granules did not vary with granule number. These results illuminate distinctions between ANME-2 archaeal lineages and partnering bacterial populations that are apparently unified in their ability to perform anaerobic methane oxidation.IMPORTANCE Methane oxidation in anaerobic environments can be accomplished by a number of archaeal groups, some of which live in syntrophic relationships with bacteria in structured consortia. Little is known of the distinguishing characteristics of these groups. Here, we applied imaging approaches to better understand the properties of these cells. We found unexpected morphological, structural, and volume variability of these uncultured groups by correlating fluorescence labeling of cells with electron microscopy observables.
Collapse
|
23
|
He Z, Zhang Q, Feng Y, Luo H, Pan X, Gadd GM. Microbiological and environmental significance of metal-dependent anaerobic oxidation of methane. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 610-611:759-768. [PMID: 28830047 DOI: 10.1016/j.scitotenv.2017.08.140] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 07/22/2017] [Accepted: 08/14/2017] [Indexed: 06/07/2023]
Abstract
Anaerobic oxidation of methane (AOM) can be coupled to the reduction of sulfate, nitrate and nitrite, which effectively reduces methane emission into the atmosphere. Recently, metal-dependent AOM (metal-AOM, AOM coupled to metal reduction) was demonstrated to occur in both environmental samples and enrichment cultures. Anaerobic methanotrophs are capable of respiration using Fe(III) or Mn(IV), whether they are in the form of soluble metal species or insoluble minerals. Given the wide distribution of Fe(III)/Mn(IV)-bearing minerals in aquatic methane-rich environments, metal-AOM is considered to be globally important, although it has generally been overlooked in previous studies. In this article, we discuss the discovery of this process, the microorganisms and mechanisms involved, environmental significance and factors influencing metal-AOM. Since metal-AOM is poorly studied to date, some discussion is included on the present understanding of sulfate- and nitrate-AOM and traditional metal reduction processes using organic substrates or hydrogen as electron donors. Metal-AOM is a relatively new research field, and therefore more studies are needed to fully characterize the process. This review summarizes current studies and discusses the many unanswered questions, which should be useful for future research in this field.
Collapse
Affiliation(s)
- Zhanfei He
- College of Environment, Zhejiang University of Technology, Hangzhou, China; Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, Zhejiang University of Technology, Hangzhou, China
| | - Qingying Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Yudong Feng
- College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Hongwei Luo
- College of Environment, Zhejiang University of Technology, Hangzhou, China; Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, Zhejiang University of Technology, Hangzhou, China
| | - Xiangliang Pan
- College of Environment, Zhejiang University of Technology, Hangzhou, China; Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, Zhejiang University of Technology, Hangzhou, China.
| | - Geoffrey Michael Gadd
- Geomicrobiology Group, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| |
Collapse
|
24
|
Pasulka AL, Thamatrakoln K, Kopf SH, Guan Y, Poulos B, Moradian A, Sweredoski MJ, Hess S, Sullivan MB, Bidle KD, Orphan VJ. Interrogating marine virus-host interactions and elemental transfer with BONCAT and nanoSIMS-based methods. Environ Microbiol 2017; 20:671-692. [DOI: 10.1111/1462-2920.13996] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 11/10/2017] [Accepted: 11/12/2017] [Indexed: 11/29/2022]
Affiliation(s)
- Alexis L. Pasulka
- Division of Geological and Planetary Sciences; California Institute of Technology; CA USA
| | | | - Sebastian H. Kopf
- Department of Geological Sciences, University of Colorado Boulder; CO USA
| | - Yunbin Guan
- Division of Geological and Planetary Sciences; California Institute of Technology; CA USA
| | - Bonnie Poulos
- Department of Ecology and Evolutionary Biology, University of Arizona; AZ USA
| | - Annie Moradian
- Proteome Exploration Laboratory, California Institute of Technology; CA USA
| | | | - Sonja Hess
- Proteome Exploration Laboratory, California Institute of Technology; CA USA
| | | | - Kay D. Bidle
- Department of Marine and Coastal Studies; Rutgers University; NJ USA
| | - Victoria J. Orphan
- Division of Geological and Planetary Sciences; California Institute of Technology; CA USA
| |
Collapse
|
25
|
Taylor GT, Suter EA, Li ZQ, Chow S, Stinton D, Zaliznyak T, Beaupré SR. Single-Cell Growth Rates in Photoautotrophic Populations Measured by Stable Isotope Probing and Resonance Raman Microspectrometry. Front Microbiol 2017; 8:1449. [PMID: 28824580 PMCID: PMC5541042 DOI: 10.3389/fmicb.2017.01449] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 07/17/2017] [Indexed: 12/17/2022] Open
Abstract
A new method to measure growth rates of individual photoautotrophic cells by combining stable isotope probing (SIP) and single-cell resonance Raman microspectrometry is introduced. This report explores optimal experimental design and the theoretical underpinnings for quantitative responses of Raman spectra to cellular isotopic composition. Resonance Raman spectra of isogenic cultures of the cyanobacterium, Synechococcus sp., grown in 13C-bicarbonate revealed linear covariance between wavenumber (cm−1) shifts in dominant carotenoid Raman peaks and a broad range of cellular 13C fractional isotopic abundance. Single-cell growth rates were calculated from spectra-derived isotopic content and empirical relationships. Growth rates among any 25 cells in a sample varied considerably; mean coefficient of variation, CV, was 29 ± 3% (σ/x¯), of which only ~2% was propagated analytical error. Instantaneous population growth rates measured independently by in vivo fluorescence also varied daily (CV ≈ 53%) and were statistically indistinguishable from single-cell growth rates at all but the lowest levels of cell labeling. SCRR censuses of mixtures prepared from Synechococcus sp. and T. pseudonana (a diatom) populations with varying 13C-content and growth rates closely approximated predicted spectral responses and fractional labeling of cells added to the sample. This approach enables direct microspectrometric interrogation of isotopically- and phylogenetically-labeled cells and detects as little as 3% changes in cellular fractional labeling. This is the first description of a non-destructive technique to measure single-cell photoautotrophic growth rates based on Raman spectroscopy and well-constrained assumptions, while requiring few ancillary measurements.
Collapse
Affiliation(s)
- Gordon T Taylor
- School of Marine and Atmospheric Sciences, Stony Brook UniversityStony Brook, NY, United States
| | - Elizabeth A Suter
- School of Marine and Atmospheric Sciences, Stony Brook UniversityStony Brook, NY, United States
| | - Zhuo Q Li
- School of Marine and Atmospheric Sciences, Stony Brook UniversityStony Brook, NY, United States
| | - Stephanie Chow
- School of Marine and Atmospheric Sciences, Stony Brook UniversityStony Brook, NY, United States
| | - Dallyce Stinton
- School of Marine and Atmospheric Sciences, Stony Brook UniversityStony Brook, NY, United States
| | - Tatiana Zaliznyak
- School of Marine and Atmospheric Sciences, Stony Brook UniversityStony Brook, NY, United States
| | - Steven R Beaupré
- School of Marine and Atmospheric Sciences, Stony Brook UniversityStony Brook, NY, United States
| |
Collapse
|
26
|
Abstract
Anaerobic methane oxidation in archaea is often presented to operate via a pathway of “reverse methanogenesis”. However, if the cumulative reactions of a methanogen are run in reverse there is no apparent way to conserve energy. Recent findings suggest that chemiosmotic coupling enzymes known from their use in methylotrophic and acetoclastic methanogens—in addition to unique terminal reductases—biochemically facilitate energy conservation during complete CH4 oxidation to CO2. The apparent enzyme modularity of these organisms highlights how microbes can arrange their energy metabolisms to accommodate diverse chemical potentials in various ecological niches, even in the extreme case of utilizing “reverse” thermodynamic potentials.
Collapse
|
27
|
Visualizing in situ translational activity for identifying and sorting slow-growing archaeal-bacterial consortia. Proc Natl Acad Sci U S A 2016; 113:E4069-78. [PMID: 27357680 DOI: 10.1073/pnas.1603757113] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
To understand the biogeochemical roles of microorganisms in the environment, it is important to determine when and under which conditions they are metabolically active. Bioorthogonal noncanonical amino acid tagging (BONCAT) can reveal active cells by tracking the incorporation of synthetic amino acids into newly synthesized proteins. The phylogenetic identity of translationally active cells can be determined by combining BONCAT with rRNA-targeted fluorescence in situ hybridization (BONCAT-FISH). In theory, BONCAT-labeled cells could be isolated with fluorescence-activated cell sorting (BONCAT-FACS) for subsequent genetic analyses. Here, in the first application, to our knowledge, of BONCAT-FISH and BONCAT-FACS within an environmental context, we probe the translational activity of microbial consortia catalyzing the anaerobic oxidation of methane (AOM), a dominant sink of methane in the ocean. These consortia, which typically are composed of anaerobic methane-oxidizing archaea (ANME) and sulfate-reducing bacteria, have been difficult to study due to their slow in situ growth rates, and fundamental questions remain about their ecology and diversity of interactions occurring between ANME and associated partners. Our activity-correlated analyses of >16,400 microbial aggregates provide the first evidence, to our knowledge, that AOM consortia affiliated with all five major ANME clades are concurrently active under controlled conditions. Surprisingly, sorting of individual BONCAT-labeled consortia followed by whole-genome amplification and 16S rRNA gene sequencing revealed previously unrecognized interactions of ANME with members of the poorly understood phylum Verrucomicrobia This finding, together with our observation that ANME-associated Verrucomicrobia are found in a variety of geographically distinct methane seep environments, suggests a broader range of symbiotic relationships within AOM consortia than previously thought.
Collapse
|
28
|
Dawson KS, Scheller S, Dillon JG, Orphan VJ. Stable Isotope Phenotyping via Cluster Analysis of NanoSIMS Data As a Method for Characterizing Distinct Microbial Ecophysiologies and Sulfur-Cycling in the Environment. Front Microbiol 2016; 7:774. [PMID: 27303371 PMCID: PMC4881376 DOI: 10.3389/fmicb.2016.00774] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 05/09/2016] [Indexed: 11/24/2022] Open
Abstract
Stable isotope probing (SIP) is a valuable tool for gaining insights into ecophysiology and biogeochemical cycling of environmental microbial communities by tracking isotopically labeled compounds into cellular macromolecules as well as into byproducts of respiration. SIP, in conjunction with nanoscale secondary ion mass spectrometry (NanoSIMS), allows for the visualization of isotope incorporation at the single cell level. In this manner, both active cells within a diverse population as well as heterogeneity in metabolism within a homogeneous population can be observed. The ecophysiological implications of these single cell stable isotope measurements are often limited to the taxonomic resolution of paired fluorescence in situ hybridization (FISH) microscopy. Here we introduce a taxonomy-independent method using multi-isotope SIP and NanoSIMS for identifying and grouping phenotypically similar microbial cells by their chemical and isotopic fingerprint. This method was applied to SIP experiments in a sulfur-cycling biofilm collected from sulfidic intertidal vents amended with 13C-acetate, 15N-ammonium, and 33S-sulfate. Using a cluster analysis technique based on fuzzy c-means to group cells according to their isotope (13C/12C, 15N/14N, and 33S/32S) and elemental ratio (C/CN and S/CN) profiles, our analysis partitioned ~2200 cellular regions of interest (ROIs) into five distinct groups. These isotope phenotype groupings are reflective of the variation in labeled substrate uptake by cells in a multispecies metabolic network dominated by Gamma- and Deltaproteobacteria. Populations independently grouped by isotope phenotype were subsequently compared with paired FISH data, demonstrating a single coherent deltaproteobacterial cluster and multiple gammaproteobacterial groups, highlighting the distinct ecophysiologies of spatially-associated microbes within the sulfur-cycling biofilm from White Point Beach, CA.
Collapse
Affiliation(s)
- Katherine S Dawson
- Division of Geological and Planetary Sciences, California Institute of Technology Pasadena, CA, USA
| | - Silvan Scheller
- Division of Geological and Planetary Sciences, California Institute of Technology Pasadena, CA, USA
| | - Jesse G Dillon
- Department of Biological Sciences, California State University Long Beach Long Beach, CA, USA
| | - Victoria J Orphan
- Division of Geological and Planetary Sciences, California Institute of Technology Pasadena, CA, USA
| |
Collapse
|
29
|
Marlow JJ, Skennerton CT, Li Z, Chourey K, Hettich RL, Pan C, Orphan VJ. Proteomic Stable Isotope Probing Reveals Biosynthesis Dynamics of Slow Growing Methane Based Microbial Communities. Front Microbiol 2016; 7:563. [PMID: 27199908 PMCID: PMC4850331 DOI: 10.3389/fmicb.2016.00563] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Accepted: 04/04/2016] [Indexed: 01/02/2023] Open
Abstract
Marine methane seep habitats represent an important control on the global flux of methane. Nucleotide-based meta-omics studies outline community-wide metabolic potential, but expression patterns of environmentally relevant proteins are poorly characterized. Proteomic stable isotope probing (proteomic SIP) provides additional information by characterizing phylogenetically specific, functionally relevant activity in mixed microbial communities, offering enhanced detection through system-wide product integration. Here we applied proteomic SIP to 15NH4+ and CH4 amended seep sediment microcosms in an attempt to track protein synthesis of slow-growing, low-energy microbial systems. Across all samples, 3495 unique proteins were identified, 11% of which were 15N-labeled. Consistent with the dominant anaerobic oxidation of methane (AOM) activity commonly observed in anoxic seep sediments, proteins associated with sulfate reduction and reverse methanogenesis—including the ANME-2 associated methylenetetrahydromethanopterin reductase (Mer)—were all observed to be actively synthesized (15N-enriched). Conversely, proteins affiliated with putative aerobic sulfur-oxidizing epsilon- and gammaproteobacteria showed a marked decrease over time in our anoxic sediment incubations. The abundance and phylogenetic range of 15N-enriched methyl-coenzyme M reductase (Mcr) orthologs, many of which exhibited novel post-translational modifications, suggests that seep sediments provide niches for multiple organisms performing analogous metabolisms. In addition, 26 proteins of unknown function were consistently detected and actively expressed under conditions supporting AOM, suggesting that they play important roles in methane seep ecosystems. Stable isotope probing in environmental proteomics experiments provides a mechanism to determine protein durability and evaluate lineage-specific responses in complex microbial communities placed under environmentally relevant conditions. Our work here demonstrates the active synthesis of a metabolically specific minority of enzymes, revealing the surprising longevity of most proteins over the course of an extended incubation experiment in an established, slow-growing, methane-impacted environmental system.
Collapse
Affiliation(s)
- Jeffrey J Marlow
- Division of Geological and Planetary Sciences, California Institute of Technology Pasadena, CA, USA
| | - Connor T Skennerton
- Division of Geological and Planetary Sciences, California Institute of Technology Pasadena, CA, USA
| | - Zhou Li
- Chemical Sciences Division, Oak Ridge National Laboratory Oak Ridge, TN, USA
| | - Karuna Chourey
- Chemical Sciences Division, Oak Ridge National Laboratory Oak Ridge, TN, USA
| | - Robert L Hettich
- Chemical Sciences Division, Oak Ridge National Laboratory Oak Ridge, TN, USA
| | - Chongle Pan
- Chemical Sciences Division, Oak Ridge National Laboratory Oak Ridge, TN, USA
| | - Victoria J Orphan
- Division of Geological and Planetary Sciences, California Institute of Technology Pasadena, CA, USA
| |
Collapse
|
30
|
Ruff SE, Kuhfuss H, Wegener G, Lott C, Ramette A, Wiedling J, Knittel K, Weber M. Methane Seep in Shallow-Water Permeable Sediment Harbors High Diversity of Anaerobic Methanotrophic Communities, Elba, Italy. Front Microbiol 2016; 7:374. [PMID: 27065954 PMCID: PMC4814501 DOI: 10.3389/fmicb.2016.00374] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 03/08/2016] [Indexed: 11/13/2022] Open
Abstract
The anaerobic oxidation of methane (AOM) is a key biogeochemical process regulating methane emission from marine sediments into the hydrosphere. AOM is largely mediated by consortia of anaerobic methanotrophic archaea (ANME) and sulfate-reducing bacteria (SRB), and has mainly been investigated in deep-sea sediments. Here we studied methane seepage at four spots located at 12 m water depth in coastal, organic carbon depleted permeable sands off the Island of Elba (Italy). We combined biogeochemical measurements, sequencing-based community analyses and in situ hybridization to investigate the microbial communities of this environment. Increased alkalinity, formation of free sulfide and nearly stoichiometric methane oxidation and sulfate reduction rates up to 200 nmol g-1 day-1 indicated the predominance of sulfate-coupled AOM. With up to 40 cm thickness the zones of AOM activity were unusually large and occurred in deeper sediment horizons (20–50 cm below seafloor) as compared to diffusion-dominated deep-sea seeps, which is likely caused by advective flow of pore water due to the shallow water depth and permeability of the sands. Hydrodynamic forces also may be responsible for the substantial phylogenetic and unprecedented morphological diversity of AOM consortia inhabiting these sands, including the clades ANME-1a/b, ANME-2a/b/c, ANME-3, and their partner bacteria SEEP-SRB1a and SEEP-SRB2. High microbial dispersal, the availability of diverse energy sources and high habitat heterogeneity might explain that the emission spots shared few microbial taxa, despite their physical proximity. Although the biogeochemistry of this shallow methane seep was very different to that of deep-sea seeps, their key functional taxa were very closely related, which supports the global dispersal of key taxa and underlines strong selection by methane as the predominant energy source. Mesophilic, methane-fueled ecosystems in shallow-water permeable sediments may comprise distinct microbial habitats due to their unique biogeochemical and physical characteristics. To link AOM phylotypes with seep habitats and to enable future meta-analyses we thus propose that seep environment ontology needs to be further specified.
Collapse
Affiliation(s)
- S Emil Ruff
- Department for Molecular Ecology, Max Planck Institute for Marine MicrobiologyBremen, Germany; HGF MPG Group for Deep Sea Ecology and Technology, Max Planck Institute for Marine MicrobiologyBremen, Germany
| | - Hanna Kuhfuss
- Department for Molecular Ecology, Max Planck Institute for Marine Microbiology Bremen, Germany
| | - Gunter Wegener
- HGF MPG Group for Deep Sea Ecology and Technology, Max Planck Institute for Marine MicrobiologyBremen, Germany; MARUM Center for Marine Environmental Sciences, University of BremenBremen, Germany
| | - Christian Lott
- HYDRA Institute for Marine Sciences, Elba Field Station Campo nell'Elba, Italy
| | - Alban Ramette
- HGF MPG Group for Deep Sea Ecology and Technology, Max Planck Institute for Marine Microbiology Bremen, Germany
| | - Johanna Wiedling
- HYDRA Institute for Marine Sciences, Elba Field StationCampo nell'Elba, Italy; Department of Biogeochemistry, Max Planck Institute for Marine MicrobiologyBremen, Germany
| | - Katrin Knittel
- Department for Molecular Ecology, Max Planck Institute for Marine Microbiology Bremen, Germany
| | - Miriam Weber
- HYDRA Institute for Marine Sciences, Elba Field StationCampo nell'Elba, Italy; Department of Biogeochemistry, Max Planck Institute for Marine MicrobiologyBremen, Germany
| |
Collapse
|
31
|
Zhu J, Wang Q, Yuan M, Tan GYA, Sun F, Wang C, Wu W, Lee PH. Microbiology and potential applications of aerobic methane oxidation coupled to denitrification (AME-D) process: A review. WATER RESEARCH 2016; 90:203-215. [PMID: 26734780 DOI: 10.1016/j.watres.2015.12.020] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 12/10/2015] [Accepted: 12/12/2015] [Indexed: 06/05/2023]
Abstract
Aerobic methane oxidation coupled to denitrification (AME-D) is an important link between the global methane and nitrogen cycles. This mini-review updates discoveries regarding aerobic methanotrophs and denitrifiers, as a prelude to spotlight the microbial mechanism and the potential applications of AME-D. Until recently, AME-D was thought to be accomplished by a microbial consortium where denitrifying bacteria utilize carbon intermediates, which are excreted by aerobic methanotrophs, as energy and carbon sources. Potential carbon intermediates include methanol, citrate and acetate. This mini-review presents microbial thermodynamic estimations and postulates that methanol is the ideal electron donor for denitrification, and may serve as a trophic link between methanotrophic bacteria and denitrifiers. More excitingly, new discoveries have revealed that AME-D is not only confined to the conventional synergism between methanotrophic bacteria and denitrifiers. Specifically, an obligate aerobic methanotrophic bacterium, Methylomonas denitrificans FJG1, has been demonstrated to couple partial denitrification with methane oxidation, under hypoxia conditions, releasing nitrous oxide as a terminal product. This finding not only substantially advances the understanding of AME-D mechanism, but also implies an important but unknown role of aerobic methanotrophs in global climate change through their influence on both the methane and nitrogen cycles in ecosystems. Hence, further investigation on AME-D microbiology and mechanism is essential to better understand global climate issues and to develop niche biotechnological solutions. This mini-review also presents traditional microbial techniques, such as pure cultivation and stable isotope probing, and powerful microbial techniques, such as (meta-) genomics and (meta-) transcriptomics, for deciphering linked methane oxidation and denitrification. Although AME-D has immense potential for nitrogen removal from wastewater, drinking water and groundwater, bottlenecks and potential issues are also discussed.
Collapse
Affiliation(s)
- Jing Zhu
- Institute of Environmental Science and Technology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Qian Wang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Mengdong Yuan
- Institute of Environmental Science and Technology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Giin-Yu Amy Tan
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Faqian Sun
- Institute of Environmental Science and Technology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Cheng Wang
- Institute of Environmental Science and Technology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Weixiang Wu
- Institute of Environmental Science and Technology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China.
| | - Po-Heng Lee
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| |
Collapse
|
32
|
Scheller S, Yu H, Chadwick GL, McGlynn SE, Orphan VJ. Artificial electron acceptors decouple archaeal methane oxidation from sulfate reduction. Science 2016; 351:703-7. [DOI: 10.1126/science.aad7154] [Citation(s) in RCA: 266] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
33
|
Abstract
UNLABELLED Marine methane seeps are globally distributed geologic features in which reduced fluids, including methane, are advected upward from the subsurface. As a result of alkalinity generation during sulfate-coupled methane oxidation, authigenic carbonates form slabs, nodules, and extensive pavements. These carbonates shape the landscape within methane seeps, persist long after methane flux is diminished, and in some cases are incorporated into the geologic record. In this study, microbial assemblages from 134 native and experimental samples across 5,500 km, representing a range of habitat substrates (carbonate nodules and slabs, sediment, bottom water, and wood) and seepage conditions (active and low activity), were analyzed to address two fundamental questions of seep microbial ecology: (i) whether carbonates host distinct microbial assemblages and (ii) how sensitive microbial assemblages are to habitat substrate type and temporal shifts in methane seepage flux. Through massively parallel 16S rRNA gene sequencing and statistical analysis, native carbonates are shown to be reservoirs of distinct and highly diverse seep microbial assemblages. Unique coupled transplantation and colonization experiments on the seafloor demonstrated that carbonate-associated microbial assemblages are resilient to seep quiescence and reactive to seep activation over 13 months. Various rates of response to simulated seep quiescence and activation are observed among similar phylogenies (e.g., Chloroflexi operational taxonomic units) and similar metabolisms (e.g., putative S oxidizers), demonstrating the wide range of microbial sensitivity to changes in seepage flux. These results imply that carbonates do not passively record a time-integrated history of seep microorganisms but rather host distinct, diverse, and dynamic microbial assemblages. IMPORTANCE Since their discovery in 1984, the global distribution and importance of marine methane seeps have become increasingly clear. Much of our understanding of methane seep microorganisms-from metabolisms to community ecology-has stemmed from detailed studies of seep sediments. However, it has become apparent that carbonates represent a volumetrically significant habitat substrate at methane seeps. Through combined in situ characterization and incubation experiments, this study demonstrates that carbonates host microbial assemblages distinct from and more diverse than those of other seep habitats. This emphasizes the importance of seep carbonates as biodiversity locales. Furthermore, we demonstrate that carbonate-associated microbial assemblages are well adapted to withstand fluctuations in methane seepage, and we gain novel insight into particular taxa that are responsive (or recalcitrant) to changes in seep conditions.
Collapse
|
34
|
Activity and interactions of methane seep microorganisms assessed by parallel transcription and FISH-NanoSIMS analyses. ISME JOURNAL 2015; 10:678-92. [PMID: 26394007 PMCID: PMC4817681 DOI: 10.1038/ismej.2015.145] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Revised: 05/29/2015] [Accepted: 07/05/2015] [Indexed: 01/15/2023]
Abstract
To characterize the activity and interactions of methanotrophic archaea (ANME) and Deltaproteobacteria at a methane-seeping mud volcano, we used two complimentary measures of microbial activity: a community-level analysis of the transcription of four genes (16S rRNA, methyl coenzyme M reductase A (mcrA), adenosine-5′-phosphosulfate reductase α-subunit (aprA), dinitrogenase reductase (nifH)), and a single-cell-level analysis of anabolic activity using fluorescence in situ hybridization coupled to nanoscale secondary ion mass spectrometry (FISH-NanoSIMS). Transcript analysis revealed that members of the deltaproteobacterial groups Desulfosarcina/Desulfococcus (DSS) and Desulfobulbaceae (DSB) exhibit increased rRNA expression in incubations with methane, suggestive of ANME-coupled activity. Direct analysis of anabolic activity in DSS cells in consortia with ANME by FISH-NanoSIMS confirmed their dependence on methanotrophy, with no 15NH4+ assimilation detected without methane. In contrast, DSS and DSB cells found physically independent of ANME (i.e., single cells) were anabolically active in incubations both with and without methane. These single cells therefore comprise an active ‘free-living' population, and are not dependent on methane or ANME activity. We investigated the possibility of N2 fixation by seep Deltaproteobacteria and detected nifH transcripts closely related to those of cultured diazotrophic Deltaproteobacteria. However, nifH expression was methane-dependent. 15N2 incorporation was not observed in single DSS cells, but was detected in single DSB cells. Interestingly, 15N2 incorporation in single DSB cells was methane-dependent, raising the possibility that DSB cells acquired reduced 15N products from diazotrophic ANME while spatially coupled, and then subsequently dissociated. With this combined data set we address several outstanding questions in methane seep microbial ecosystems and highlight the benefit of measuring microbial activity in the context of spatial associations.
Collapse
|
35
|
McGlynn SE, Chadwick GL, Kempes CP, Orphan VJ. Single cell activity reveals direct electron transfer in methanotrophic consortia. Nature 2015; 526:531-5. [PMID: 26375009 DOI: 10.1038/nature15512] [Citation(s) in RCA: 342] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 08/10/2015] [Indexed: 11/09/2022]
Abstract
Multicellular assemblages of microorganisms are ubiquitous in nature, and the proximity afforded by aggregation is thought to permit intercellular metabolic coupling that can accommodate otherwise unfavourable reactions. Consortia of methane-oxidizing archaea and sulphate-reducing bacteria are a well-known environmental example of microbial co-aggregation; however, the coupling mechanisms between these paired organisms is not well understood, despite the attention given them because of the global significance of anaerobic methane oxidation. Here we examined the influence of interspecies spatial positioning as it relates to biosynthetic activity within structurally diverse uncultured methane-oxidizing consortia by measuring stable isotope incorporation for individual archaeal and bacterial cells to constrain their potential metabolic interactions. In contrast to conventional models of syntrophy based on the passage of molecular intermediates, cellular activities were found to be independent of both species intermixing and distance between syntrophic partners within consortia. A generalized model of electric conductivity between co-associated archaea and bacteria best fit the empirical data. Combined with the detection of large multi-haem cytochromes in the genomes of methanotrophic archaea and the demonstration of redox-dependent staining of the matrix between cells in consortia, these results provide evidence for syntrophic coupling through direct electron transfer.
Collapse
Affiliation(s)
- Shawn E McGlynn
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91125, USA
| | - Grayson L Chadwick
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91125, USA
| | - Christopher P Kempes
- Exobiology Branch, National Aeronautics and Space Administration Ames Research Center, Moffett Field, California 94035, USA.,Control and Dynamical Systems, California Institute of Technology, Pasadena, California 91125, USA.,SETI Institute, Mountain View, California 94034, USA
| | - Victoria J Orphan
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|
36
|
Tereshina EV, Laskavy VN, Ivanenko SI. Four components of the conjugated redox system in organisms: Carbon, nitrogen, sulfur, oxygen. BIOCHEMISTRY (MOSCOW) 2015; 80:1186-200. [DOI: 10.1134/s0006297915090096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
37
|
Kopf SH, McGlynn SE, Green-Saxena A, Guan Y, Newman DK, Orphan VJ. Heavy water and (15) N labelling with NanoSIMS analysis reveals growth rate-dependent metabolic heterogeneity in chemostats. Environ Microbiol 2015; 17:2542-56. [PMID: 25655651 DOI: 10.1111/1462-2920.12752] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 12/11/2014] [Accepted: 12/12/2014] [Indexed: 11/30/2022]
Abstract
To measure single-cell microbial activity and substrate utilization patterns in environmental systems, we employ a new technique using stable isotope labelling of microbial populations with heavy water (a passive tracer) and (15) N ammonium in combination with multi-isotope imaging mass spectrometry. We demonstrate simultaneous NanoSIMS analysis of hydrogen, carbon and nitrogen at high spatial and mass resolution, and report calibration data linking single-cell isotopic compositions to the corresponding bulk isotopic equivalents for Pseudomonas aeruginosa and Staphylococcus aureus. Our results show that heavy water is capable of quantifying in situ single-cell microbial activities ranging from generational time scales of minutes to years, with only light isotopic incorporation (∼0.1 atom % (2) H). Applying this approach to study the rates of fatty acid biosynthesis by single cells of S. aureus growing at different rates in chemostat culture (∼6 h, 1 day and 2 week generation times), we observe the greatest anabolic activity diversity in the slowest growing populations. By using heavy water to constrain cellular growth activity, we can further infer the relative contributions of ammonium versus amino acid assimilation to the cellular nitrogen pool. The approach described here can be applied to disentangle individual cell activities even in nutritionally complex environments.
Collapse
Affiliation(s)
- Sebastian H Kopf
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA.,Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.,Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA, USA
| | - Shawn E McGlynn
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA
| | - Abigail Green-Saxena
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Yunbin Guan
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA.,Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA, USA
| | - Dianne K Newman
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA.,Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.,Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA, USA
| | - Victoria J Orphan
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA
| |
Collapse
|
38
|
|
39
|
Marlow JJ, Steele JA, Ziebis W, Thurber AR, Levin LA, Orphan VJ. Carbonate-hosted methanotrophy represents an unrecognized methane sink in the deep sea. Nat Commun 2014; 5:5094. [PMID: 25313858 DOI: 10.1038/ncomms6094] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 08/28/2014] [Indexed: 11/10/2022] Open
Abstract
The atmospheric flux of methane from the oceans is largely mitigated through microbially mediated sulphate-coupled methane oxidation, resulting in the precipitation of authigenic carbonates. Deep-sea carbonates are common around active and palaeo-methane seepage, and have primarily been viewed as passive recorders of methane oxidation; their role as active and unique microbial habitats capable of continued methane consumption has not been examined. Here we show that seep-associated carbonates harbour active microbial communities, serving as dynamic methane sinks. Microbial aggregate abundance within the carbonate interior exceeds that of seep sediments, and molecular diversity surveys reveal methanotrophic communities within protolithic nodules and well-lithified carbonate pavements. Aggregations of microbial cells within the carbonate matrix actively oxidize methane as indicated by stable isotope FISH-nanoSIMS experiments and (14)CH4 radiotracer rate measurements. Carbonate-hosted methanotrophy extends the known ecological niche of these important methane consumers and represents a previously unrecognized methane sink that warrants consideration in global methane budgets.
Collapse
Affiliation(s)
- Jeffrey J Marlow
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91125, USA
| | - Joshua A Steele
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91125, USA
| | - Wiebke Ziebis
- Department of Biological Science, University of Southern California, Los Angeles, California 90089, USA
| | - Andrew R Thurber
- College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, Oregon 97331, USA
| | - Lisa A Levin
- Center for Marine Biodiversity and Conservation, Integrative Oceanography Division, Scripps Institution of Oceanography, University of California-San Diego, La Jolla, California 92037, USA
| | - Victoria J Orphan
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|
40
|
Iron oxides stimulate sulfate-driven anaerobic methane oxidation in seeps. Proc Natl Acad Sci U S A 2014; 111:E4139-47. [PMID: 25246590 DOI: 10.1073/pnas.1412269111] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Seep sediments are dominated by intensive microbial sulfate reduction coupled to the anaerobic oxidation of methane (AOM). Through geochemical measurements of incubation experiments with methane seep sediments collected from Hydrate Ridge, we provide insight into the role of iron oxides in sulfate-driven AOM. Seep sediments incubated with (13)C-labeled methane showed co-occurring sulfate reduction, AOM, and methanogenesis. The isotope fractionation factors for sulfur and oxygen isotopes in sulfate were about 40‰ and 22‰, respectively, reinforcing the difference between microbial sulfate reduction in methane seeps versus other sedimentary environments (for example, sulfur isotope fractionation above 60‰ in sulfate reduction coupled to organic carbon oxidation or in diffusive sedimentary sulfate-methane transition zone). The addition of hematite to these microcosm experiments resulted in significant microbial iron reduction as well as enhancing sulfate-driven AOM. The magnitude of the isotope fractionation of sulfur and oxygen isotopes in sulfate from these incubations was lowered by about 50%, indicating the involvement of iron oxides during sulfate reduction in methane seeps. The similar relative change between the oxygen versus sulfur isotopes of sulfate in all experiments (with and without hematite addition) suggests that oxidized forms of iron, naturally present in the sediment incubations, were involved in sulfate reduction, with hematite addition increasing the sulfate recycling or the activity of sulfur-cycling microorganisms by about 40%. These results highlight a role for natural iron oxides during bacterial sulfate reduction in methane seeps not only as nutrient but also as stimulator of sulfur recycling.
Collapse
|
41
|
Ding ZW, Ding J, Fu L, Zhang F, Zeng RJ. Simultaneous enrichment of denitrifying methanotrophs and anammox bacteria. Appl Microbiol Biotechnol 2014; 98:10211-21. [DOI: 10.1007/s00253-014-5936-8] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 07/03/2014] [Indexed: 10/25/2022]
|
42
|
Hatzenpichler R, Scheller S, Tavormina PL, Babin BM, Tirrell DA, Orphan VJ. In situ visualization of newly synthesized proteins in environmental microbes using amino acid tagging and click chemistry. Environ Microbiol 2014; 16:2568-90. [PMID: 24571640 PMCID: PMC4122687 DOI: 10.1111/1462-2920.12436] [Citation(s) in RCA: 144] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 02/14/2014] [Accepted: 02/18/2014] [Indexed: 12/01/2022]
Abstract
Here we describe the application of a new click chemistry method for fluorescent tracking of protein synthesis in individual microorganisms within environmental samples. This technique, termed bioorthogonal non-canonical amino acid tagging (BONCAT), is based on the in vivo incorporation of the non-canonical amino acid L-azidohomoalanine (AHA), a surrogate for l-methionine, followed by fluorescent labelling of AHA-containing cellular proteins by azide-alkyne click chemistry. BONCAT was evaluated with a range of phylogenetically and physiologically diverse archaeal and bacterial pure cultures and enrichments, and used to visualize translationally active cells within complex environmental samples including an oral biofilm, freshwater and anoxic sediment. We also developed combined assays that couple BONCAT with ribosomal RNA (rRNA)-targeted fluorescence in situ hybridization (FISH), enabling a direct link between taxonomic identity and translational activity. Using a methanotrophic enrichment culture incubated under different conditions, we demonstrate the potential of BONCAT-FISH to study microbial physiology in situ. A direct comparison of anabolic activity using BONCAT and stable isotope labelling by nano-scale secondary ion mass spectrometry ((15)NH(3) assimilation) for individual cells within a sediment-sourced enrichment culture showed concordance between AHA-positive cells and (15)N enrichment. BONCAT-FISH offers a fast, inexpensive and straightforward fluorescence microscopy method for studying the in situ activity of environmental microbes on a single-cell level.
Collapse
Affiliation(s)
- Roland Hatzenpichler
- Divisions of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, 91125, USA
| | | | | | | | | | | |
Collapse
|
43
|
Hatzenpichler R, Scheller S, Tavormina PL, Babin BM, Tirrell DA, Orphan VJ. In situ visualization of newly synthesized proteins in environmental microbes using amino acid tagging and click chemistry. Environ Microbiol 2014. [PMID: 24571640 DOI: 10.1111/1462‐2920.12436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Here we describe the application of a new click chemistry method for fluorescent tracking of protein synthesis in individual microorganisms within environmental samples. This technique, termed bioorthogonal non-canonical amino acid tagging (BONCAT), is based on the in vivo incorporation of the non-canonical amino acid L-azidohomoalanine (AHA), a surrogate for l-methionine, followed by fluorescent labelling of AHA-containing cellular proteins by azide-alkyne click chemistry. BONCAT was evaluated with a range of phylogenetically and physiologically diverse archaeal and bacterial pure cultures and enrichments, and used to visualize translationally active cells within complex environmental samples including an oral biofilm, freshwater and anoxic sediment. We also developed combined assays that couple BONCAT with ribosomal RNA (rRNA)-targeted fluorescence in situ hybridization (FISH), enabling a direct link between taxonomic identity and translational activity. Using a methanotrophic enrichment culture incubated under different conditions, we demonstrate the potential of BONCAT-FISH to study microbial physiology in situ. A direct comparison of anabolic activity using BONCAT and stable isotope labelling by nano-scale secondary ion mass spectrometry ((15)NH(3) assimilation) for individual cells within a sediment-sourced enrichment culture showed concordance between AHA-positive cells and (15)N enrichment. BONCAT-FISH offers a fast, inexpensive and straightforward fluorescence microscopy method for studying the in situ activity of environmental microbes on a single-cell level.
Collapse
Affiliation(s)
- Roland Hatzenpichler
- Divisions of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, 91125, USA
| | | | | | | | | | | |
Collapse
|
44
|
Dekas AE, Chadwick GL, Bowles MW, Joye SB, Orphan VJ. Spatial distribution of nitrogen fixation in methane seep sediment and the role of the ANME archaea. Environ Microbiol 2013; 16:3012-29. [PMID: 24107237 DOI: 10.1111/1462-2920.12247] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 05/24/2013] [Accepted: 08/09/2013] [Indexed: 11/29/2022]
Abstract
Nitrogen (N2) fixation was investigated at Mound 12, Costa Rica, to determine its spatial distribution and biogeochemical controls in deep-sea methane seep sediment. Using (15)N2 tracer experiments and isotope ratio mass spectrometry analysis, we observed that seep N2 fixation is methane-dependent, and that N2 fixation rates peak in a narrow sediment depth horizon corresponding to increased abundance of aggregates of anaerobic methanotrophic archaea (ANME-2) and sulfate-reducing bacteria (SRB). Using fluorescence in situ hybridization coupled to nanoscale secondary ion mass spectrometry (FISH-NanoSIMS), we directly measured (15)N2 uptake by ANME-2/SRB aggregates (n = 26) and observed maximum (15)N incorporation within ANME-2-dominated areas of the aggregates, consistent with previous analyses. NanoSIMS analysis of single cells (n = 34) from the same microcosm experiment revealed no (15)N2 uptake. Together, these observations suggest that ANME-2, and possibly physically associated SRB, mediate the majority of new nitrogen production within the seep ecosystem. ANME-2 diazotrophy was observed while in association with members of two distinct orders of SRB: Desulfobacteraceae and Desulfobulbaceae. The rate of N2 fixation per unit volume biomass was independent of the identity of the associated SRB, aggregate size and morphology. Our results show that the distribution of seep N2 fixation is heterogeneous, laterally and with depth in the sediment, and is likely influenced by chemical gradients affecting the abundance and activity of ANME-2/SRB aggregates.
Collapse
Affiliation(s)
- Anne E Dekas
- California Institute of Technology, Pasadena, CA, 91106, USA
| | | | | | | | | |
Collapse
|
45
|
Siegert M, Taubert M, Seifert J, von Bergen-Tomm M, Basen M, Bastida F, Gehre M, Richnow HH, Krüger M. The nitrogen cycle in anaerobic methanotrophic mats of the Black Sea is linked to sulfate reduction and biomass decomposition. FEMS Microbiol Ecol 2013; 86:231-45. [DOI: 10.1111/1574-6941.12156] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 05/16/2013] [Accepted: 05/29/2013] [Indexed: 11/27/2022] Open
Affiliation(s)
- Michael Siegert
- Bundesanstalt für Geowissenschaften und Rohstoffe Hannover; Hannover; Germany
| | - Martin Taubert
- School of Environmental Sciences; University of East Anglia; Norwich; UK
| | - Jana Seifert
- Institute of Animal Nutrition; University of Hohenheim; Stuttgart; Germany
| | | | - Mirko Basen
- Max-Planck-Institut für Marine Mikrobiologie; Bremen; Germany
| | - Felipe Bastida
- Department of Isotope Biogeochemistry; Helmholtz Centre for Environmental Research - UFZ; Leipzig; Germany
| | - Matthias Gehre
- Department of Isotope Biogeochemistry; Helmholtz Centre for Environmental Research - UFZ; Leipzig; Germany
| | - Hans-Hermann Richnow
- Department of Isotope Biogeochemistry; Helmholtz Centre for Environmental Research - UFZ; Leipzig; Germany
| | - Martin Krüger
- Bundesanstalt für Geowissenschaften und Rohstoffe Hannover; Hannover; Germany
| |
Collapse
|
46
|
Voss M, Bange HW, Dippner JW, Middelburg JJ, Montoya JP, Ward B. The marine nitrogen cycle: recent discoveries, uncertainties and the potential relevance of climate change. Philos Trans R Soc Lond B Biol Sci 2013; 368:20130121. [PMID: 23713119 DOI: 10.1098/rstb.2013.0121] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The ocean's nitrogen cycle is driven by complex microbial transformations, including nitrogen fixation, assimilation, nitrification, anammox and denitrification. Dinitrogen is the most abundant form of nitrogen in sea water but only accessible by nitrogen-fixing microbes. Denitrification and nitrification are both regulated by oxygen concentrations and potentially produce nitrous oxide (N2O), a climate-relevant atmospheric trace gas. The world's oceans, including the coastal areas and upwelling areas, contribute about 30 per cent to the atmospheric N2O budget and are, therefore, a major source of this gas to the atmosphere. Human activities now add more nitrogen to the environment than is naturally fixed. More than half of the nitrogen reaches the coastal ocean via river input and atmospheric deposition, of which the latter affects even remote oceanic regions. A nitrogen budget for the coastal and open ocean, where inputs and outputs match rather well, is presented. Furthermore, predicted climate change will impact the expansion of the oceans' oxygen minimum zones, the productivity of surface waters and presumably other microbial processes, with unpredictable consequences for the cycling of nitrogen. Nitrogen cycling is closely intertwined with that of carbon, phosphorous and other biologically important elements via biological stoichiometric requirements. This linkage implies that human alterations of nitrogen cycling are likely to have major consequences for other biogeochemical processes and ecosystem functions and services.
Collapse
Affiliation(s)
- Maren Voss
- Leibniz Institute of Baltic Sea Research, Warnemünde, Seestrasse 15, 18119 Rostock, Germany.
| | | | | | | | | | | |
Collapse
|
47
|
Estimating changes of isotopic fractionation based on chemical kinetics and microbial dynamics during anaerobic methane oxidation: apparent zero- and first-order kinetics at high and low initial methane concentrations. Antonie van Leeuwenhoek 2012; 103:375-83. [PMID: 23011008 DOI: 10.1007/s10482-012-9818-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 09/13/2012] [Indexed: 10/27/2022]
Abstract
Changes in natural isotopic composition may be used to reveal metabolic pathways of substrate transformation by microbial communities (Vavilin in Ecol Model 240:84-92, 2012b). Anaerobic oxidation of methane (AOM) by sulfate has been described using a mathematical model based on chemical kinetics, microbial dynamics and equations for (13)C isotope accumulation in products as well as their redistribution between substrate and products. Experimental data for two batch cultures that originated from microbial mats covering methane seep chimneys in the Black Sea, previously obtained by Seifert et al. (Org Geochem 37:1411-1419, 2006) and Holler et al. (Env Microbiol Reports 1(5):370-376, 2009), were used to model AOM. During long-time incubation, changes of isotope signatures in CH(4) showed that in the Seifert et al. batch tests (low methane concentration), in contrast to the Holler et al. batch tests (high methane concentration), methane production occurred along with methane oxidation. In accordance with the model, apparent zero and first-order kinetics of methane oxidation were valid for the Holler et al. and Seifert et al. batch tests, respectively. The observed change of [Formula: see text] was explained by microbial kinetics reflecting that the rate is lower for heavy substrate microbial utilization when compared to light substrate microbial utilization. The model showed that small amounts of methanogenesis will change the carbon isotopic composition of methane because biogenic methane has a distinct isotopic composition and due to the large difference between the maximum specific rates of methane oxidation and production. The estimated biomass doubling time of methane-oxidizers for high and low methane concentration was 408/126 days and 4640/1160 days, respectively, depending on the value of the half-saturation constant K ( S ) (5 and 20 mM).
Collapse
|
48
|
Quillet L, Besaury L, Popova M, Paissé S, Deloffre J, Ouddane B. Abundance, diversity and activity of sulfate-reducing prokaryotes in heavy metal-contaminated sediment from a salt marsh in the Medway Estuary (UK). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2012; 14:363-381. [PMID: 22124626 DOI: 10.1007/s10126-011-9420-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Accepted: 11/17/2011] [Indexed: 05/31/2023]
Abstract
We investigated the diversity and activity of sulfate-reducing prokaryotes (SRP) in a 3.5-m sediment core taken from a heavy metal-contaminated site in the Medway Estuary, UK. The abundance of SRPs was quantified by qPCR of the dissimilatory sulfite reductase gene β-subunit (dsrB) and taking into account DNA extraction efficiency. This showed that SRPs were abundant throughout the core with maximum values in the top 50 cm of the sediment core making up 22.4% of the total bacterial community and were 13.6% at 250 cm deep. Gene libraries for dsrA (dissimilatory sulfite reductase α-subunit) were constructed from the heavily contaminated (heavy metals) surface sediment (top 20 cm) and from the less contaminated and sulfate-depleted, deeper zone (250 cm). Certain cloned sequences were similar to dsrA found in members of the Syntrophobacteraceae, Desulfobacteraceae and Desulfovibrionaceae as well as a large fraction (60%) of novel sequences that formed a deep branching dsrA lineage. Phylogenetic analysis of metabolically active SRPs was performed by reverse transcription PCR and single strand conformational polymorphism analysis (RT-PCR-SSCP) of dsrA genes derived from extracted sediment RNA. Subsequent comparative sequence analysis of excised SSCP bands revealed a high transcriptional activity of dsrA belonging to Desulfovibrio species in the surface sediment. These results may suggest that members of the Desulfovibrionaceae are more active than other SRP groups in heavy metal-contaminated surface sediments.
Collapse
Affiliation(s)
- Laurent Quillet
- Faculté des Sciences, Université de Rouen-CNRS 6143-M2C, Groupe de Microbiologie, Place Emile Blondel, Mont Saint Aignan Cedex 76821, France.
| | | | | | | | | | | |
Collapse
|
49
|
Wegener G, Bausch M, Holler T, Thang NM, Prieto Mollar X, Kellermann MY, Hinrichs KU, Boetius A. Assessing sub-seafloor microbial activity by combined stable isotope probing with deuterated water and 13C-bicarbonate. Environ Microbiol 2012; 14:1517-27. [DOI: 10.1111/j.1462-2920.2012.02739.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
50
|
Behrens S, Kappler A, Obst M. Linking environmental processes to thein situfunctioning of microorganisms by high-resolution secondary ion mass spectrometry (NanoSIMS) and scanning transmission X-ray microscopy (STXM). Environ Microbiol 2012; 14:2851-69. [DOI: 10.1111/j.1462-2920.2012.02724.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|