1
|
Hemmat-Jou MH, Gao R, Chen G, Liang Y, Li F, Fang L. Synergistic effects of warming and humic substances on driving arsenic reduction and methanogenesis in flooded paddy soil. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:134947. [PMID: 38908180 DOI: 10.1016/j.jhazmat.2024.134947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/07/2024] [Accepted: 06/16/2024] [Indexed: 06/24/2024]
Abstract
Microbially-driven arsenic reduction and methane emissions in anaerobic soils are regulated by widespread humic substances (HS), while how this effect responds to climate change remains unknown. We investigated potential synergistic effects of HS in response to temperature changes in arsenic-contaminated paddy soils treated with humic acid (HA) and fulvic acid (FA) at temperatures ranging from 15 to 45 °C. Our results reveal a significant increase in arsenic reduction (5.6 times) and methane emissions (178 times) driven by HS, which can be exponentially stimulated at 45 °C. Acting as a electron shuttle, HS determines microbial arsenic reduction, further stimulated by warming. The top three sensitive genera are Geobacter, Anaeromyxobacter, and Gaiella which are responsible for enhanced arsenic reduction, as well as for the reduction of iron and HS with their functional genes; arrA and Geobacter spp. The top three sensitive methanogens are Methanosarsina, Methanocella, and Methanoculleus. Our study suggests notable synergistic effects between HS and warming in stimulating arsenic reduction and methanogenesis in paddy soils. Overall, the findings of this work highlight the high sensitivity of HS-mediated microbial arsenic transformation and methanogenesis in response to warming, which add potential value in predicting the biogeochemical cycling of arsenic and methane in soil under the context of climate change.
Collapse
Affiliation(s)
- Mohammad Hossein Hemmat-Jou
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Ruichuan Gao
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Guanhong Chen
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Yongmei Liang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Fangbai Li
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Liping Fang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China.
| |
Collapse
|
2
|
Li X, Bei Q, Rabiei Nematabad M, Peng J, Liesack W. Time-shifted expression of acetoclastic and methylotrophic methanogenesis by a single Methanosarcina genomospecies predominates the methanogen dynamics in Philippine rice field soil. MICROBIOME 2024; 12:39. [PMID: 38409166 PMCID: PMC10895765 DOI: 10.1186/s40168-023-01739-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 12/18/2023] [Indexed: 02/28/2024]
Abstract
BACKGROUND The final step in the anaerobic decomposition of biopolymers is methanogenesis. Rice field soils are a major anthropogenic source of methane, with straw commonly used as a fertilizer in rice farming. Here, we aimed to decipher the structural and functional responses of the methanogenic community to rice straw addition during an extended anoxic incubation (120 days) of Philippine paddy soil. The research combined process measurements, quantitative real-time PCR and RT-PCR of particular biomarkers (16S rRNA, mcrA), and meta-omics (environmental genomics and transcriptomics). RESULTS The analysis methods collectively revealed two major bacterial and methanogenic activity phases: early (days 7 to 21) and late (days 28 to 60) community responses, separated by a significant transient decline in microbial gene and transcript abundances and CH4 production rate. The two methanogenic activity phases corresponded to the greatest rRNA and mRNA abundances of the Methanosarcinaceae but differed in the methanogenic pathways expressed. While three genetically distinct Methanosarcina populations contributed to acetoclastic methanogenesis during the early activity phase, the late activity phase was defined by methylotrophic methanogenesis performed by a single Methanosarcina genomospecies. Closely related to Methanosarcina sp. MSH10X1, mapping of environmental transcripts onto metagenome-assembled genomes (MAGs) and population-specific reference genomes revealed this genomospecies as the key player in acetoclastic and methylotrophic methanogenesis. The anaerobic food web was driven by a complex bacterial community, with Geobacteraceae and Peptococcaceae being putative candidates for a functional interplay with Methanosarcina. Members of the Methanocellaceae were the key players in hydrogenotrophic methanogenesis, while the acetoclastic activity of Methanotrichaceae members was detectable only during the very late community response. CONCLUSIONS The predominant but time-shifted expression of acetoclastic and methylotrophic methanogenesis by a single Methanosarcina genomospecies represents a novel finding that expands our hitherto knowledge of the methanogenic pathways being highly expressed in paddy soils. Video Abstract.
Collapse
Affiliation(s)
- Xin Li
- Research group "Methanotrophic Bacteria and Environmental Genomics/Transcriptomics", Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, D-35043, Marburg, Germany
- Present address: Institute of Agricultural and Nutritional Sciences, Martin-Luther-Universität Halle-Wittenberg, Betty-Heimann-Strasse 5, Halle (Saale), Germany
| | - Qicheng Bei
- Research group "Methanotrophic Bacteria and Environmental Genomics/Transcriptomics", Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, D-35043, Marburg, Germany
- Present address: Department of Soil Ecology, Helmholtz Centre for Environmental Research - UFZ, Theodor-Lieser-Strasse 4, Halle (Saale), Germany
| | - Mehrdad Rabiei Nematabad
- Research group "Methanotrophic Bacteria and Environmental Genomics/Transcriptomics", Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, D-35043, Marburg, Germany
| | - Jingjing Peng
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, Key Laboratory of Plant-Soil Interactions, National Academy of Agriculture Green Development, China Agricultural University, Beijing, 100193, China.
| | - Werner Liesack
- Research group "Methanotrophic Bacteria and Environmental Genomics/Transcriptomics", Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, D-35043, Marburg, Germany.
| |
Collapse
|
3
|
Conrad R. Complexity of temperature dependence in methanogenic microbial environments. Front Microbiol 2023; 14:1232946. [PMID: 37485527 PMCID: PMC10359720 DOI: 10.3389/fmicb.2023.1232946] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 06/20/2023] [Indexed: 07/25/2023] Open
Abstract
There is virtually no environmental process that is not dependent on temperature. This includes the microbial processes that result in the production of CH4, an important greenhouse gas. Microbial CH4 production is the result of a combination of many different microorganisms and microbial processes, which together achieve the mineralization of organic matter to CO2 and CH4. Temperature dependence applies to each individual step and each individual microbe. This review will discuss the different aspects of temperature dependence including temperature affecting the kinetics and thermodynamics of the various microbial processes, affecting the pathways of organic matter degradation and CH4 production, and affecting the composition of the microbial communities involved. For example, it was found that increasing temperature results in a change of the methanogenic pathway with increasing contribution from mainly acetate to mainly H2/CO2 as immediate CH4 precursor, and with replacement of aceticlastic methanogenic archaea by thermophilic syntrophic acetate-oxidizing bacteria plus thermophilic hydrogenotrophic methanogenic archaea. This shift is consistent with reaction energetics, but it is not obligatory, since high temperature environments exist in which acetate is consumed by thermophilic aceticlastic archaea. Many studies have shown that CH4 production rates increase with temperature displaying a temperature optimum and a characteristic apparent activation energy (Ea). Interestingly, CH4 release from defined microbial cultures, from environmental samples and from wetland field sites all show similar Ea values around 100 kJ mol-1 indicating that CH4 production rates are limited by the methanogenic archaea rather than by hydrolysis of organic matter. Hence, the final rather than the initial step controls the methanogenic degradation of organic matter, which apparently is rarely in steady state.
Collapse
|
4
|
Björk M, Rosenqvist G, Gröndahl F, Bonaglia S. Methane emissions from macrophyte beach wrack on Baltic seashores. AMBIO 2023; 52:171-181. [PMID: 36029461 PMCID: PMC9666566 DOI: 10.1007/s13280-022-01774-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/27/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Beach wrack of marine macrophytes is a natural component of many beaches. To test if such wrack emits the potent greenhouse gas methane, field measurements were made at different seasons on beach wrack depositions of different ages, exposure, and distance from the water. Methane emissions varied greatly, from 0 to 176 mg CH4-C m-2 day-1, with a clear positive correlation between emission and temperature. Dry wrack had lower emissions than wet. Using temperature data from 2016 to 2020, seasonal changes in fluxes were calculated for a natural wrack accumulation area. Such calculated average emissions were close to zero during winter, but peaked in summer, with very high emissions when daily temperatures exceeded 20 °C. We conclude that waterlogged beach wrack significantly contributes to greenhouse gas emissions and that emissions might drastically increase with increasing global temperatures. When beach wrack is collected into heaps away from the water, the emissions are however close to zero.
Collapse
Affiliation(s)
- Mats Björk
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 106 91 Stockholm, Sweden
| | - Gunilla Rosenqvist
- Blue Centre Gotland, Uppsala University-Campus Gotland, 621 67 Visby, Sweden
| | - Fredrik Gröndahl
- KTH, Royale Institute of Technology, KTH Teknikringen 10B, Stockholm, Sweden
- Department of Sustainable Development, Environmental Science and Engineering, 100 44 Stockholm, Sweden
| | - Stefano Bonaglia
- Department of Marine Sciences, University of Gothenburg, Box 461, 405 30 Gothenburg, Sweden
| |
Collapse
|
5
|
Wang S, Sun P, Liu J, Xu Y, Dolfing J, Wu Y. Distribution of methanogenic and methanotrophic consortia at soil-water interfaces in rice paddies across climate zones. iScience 2022; 26:105851. [PMID: 36636345 PMCID: PMC9829807 DOI: 10.1016/j.isci.2022.105851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/15/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Periphytic biofilms (PB) at the soil-water interface contributes 7-38% of the methane emission from rice paddies, yet the biogeographical mechanism underlying and affecting the process remain elusive. In this study, rice fields along an edapho-vclimatic gradient were sampled, and the environmental drivers affecting distribution of methanogenic and methanotrophic communities were evaluated. The methanogenic and methanotrophic communities at soil-water interface showed less complex inter/intra-generic interactions than those in soil, and their relative abundances were weakly driven by spatial distance, soil organic carbon, soil total nitrogen and pH. The nutrient supply and buffering capacity of extracellular polymeric substance released by PB reduced their interaction and enhanced the resilience on edaphic environment changes. Climate affected soil metal content, extracellular polymeric substance content, and thus the methane-related communities, and caused geographical variation in the impacts of PB on methane emissions from rice paddies. This study facilitates our understanding of geographical differences in the contribution of PB to methane emission.
Collapse
Affiliation(s)
- Sichu Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing 210008, China,Institute of Agricultural Resources and Environment, Jiangsu Academy of Agriculture Sciences (JAAS), 50 Zhongling Road, Nanjing 210014, China,Zigui Three Gorges Reservoir Ecosystem, Observation and Research Station of Ministry of Water Resources of the People’s Republic of China, Shuitianba Zigui, Yichang 443605, China
| | - Pengfei Sun
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing 210008, China,Zigui Three Gorges Reservoir Ecosystem, Observation and Research Station of Ministry of Water Resources of the People’s Republic of China, Shuitianba Zigui, Yichang 443605, China
| | - Junzhuo Liu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing 210008, China,Zigui Three Gorges Reservoir Ecosystem, Observation and Research Station of Ministry of Water Resources of the People’s Republic of China, Shuitianba Zigui, Yichang 443605, China
| | - Ying Xu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing 210008, China,Zigui Three Gorges Reservoir Ecosystem, Observation and Research Station of Ministry of Water Resources of the People’s Republic of China, Shuitianba Zigui, Yichang 443605, China
| | - Jan Dolfing
- Faculty of Energy and Environment, Northumbria University, Newcastle upon Tyne NE1 8QH, UK
| | - Yonghong Wu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing 210008, China,Zigui Three Gorges Reservoir Ecosystem, Observation and Research Station of Ministry of Water Resources of the People’s Republic of China, Shuitianba Zigui, Yichang 443605, China,Corresponding author
| |
Collapse
|
6
|
Ji Y, Xu Y, Zhao M, Zhang G, Conrad R, Liu P, Feng Z, Ma J, Xu H. Winter drainage and film mulching cultivation mitigated CH 4 emission by regulating the function and structure of methanogenic archaeal and fermenting bacterial communities in paddy soil. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 323:116194. [PMID: 36115239 DOI: 10.1016/j.jenvman.2022.116194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 08/09/2022] [Accepted: 09/03/2022] [Indexed: 06/15/2023]
Abstract
Winter flooding of harvested rice fields is a typical cropping system in mountainous areas, which emits considerable amounts of CH4. Plastic film mulching cultivation is recognized as an important rice cultivation practice in paddy field for water-saving irrigation. However, the effects of these managements on CH4 emissions in paddy soil and the underlying microbial mechanism are unclear. A field experiment was carried out with the application of winter drainage followed by traditional rice cultivation (WD), winter drainage followed by plastic film mulching cultivation (MC), as well as winter flooding followed by traditional rice cultivation (WF) as control in hilly paddy fields. We investigated the CH4 emissions, functional (CH4 production rate, 13C isotope) and structural (abundance, structure) responses of soil methanogenic archaeal and fermenting bacterial communities during rice season. Shifting the fields from WF into WD and MC substantially mitigated CH4 emissions by 62.3% and 59.2%, respectively, paralleled with the enhancement of soil Eh and the reductions of soil DOC content. Compared with WF, WD and MC both significantly decreased CH4 production rates and the copy numbers of mcrA gene. Moreover, an increasing contribution of hydrogenotrophic methanogenesis (from 30.7% to 50.0%) to total CH4 production was observed during the conversion from WF to MC under an anaerobic incubation, paralleled with the decreased acetate content and increased δ13C values of acetate-methyl and total acetate. The communities of methanogenic archaea and fermenting bacteria strongly responded to the shift from WF to WD, while MC only showed significant effects on the methanogenic archaeal communities. Compared with WF, WD and MC significantly increased the relative abundance of Methanothrix, Methanosarcina and Methanocella, while those of Methanoregula, Massilia and Geobacter were decreased. The co-occurrence networks showed that WD and MC induced the loss of mixed methanogenic fermentation modules, indicating the decrease in functional biodiversity and redundancy of fermenting bacterial and methanogenic archaeal communities.The findings suggest that WD and MC approach mitigate CH4 emission by regulating the function and structure of methanogenic archaeal and fermenting bacterial communities in paddy soil, which represent the effective management strategies considering the water availability and CH4 mitigation in paddy-field agriculture.
Collapse
Affiliation(s)
- Yang Ji
- College of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Yongji Xu
- College of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Mengying Zhao
- College of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Guangbin Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Sciences, Chinese Academy of Sciences, East Beijing Road 71, Nanjing, 210008, China.
| | - Ralf Conrad
- Max-Planck-Institute for Terrestrial Microbiology, Marburg, 35043, Germany
| | - Pengfei Liu
- Center for the Pan-Third Pole Environment, Lanzhou University, Lanzhou, 730000, China
| | - Zhaozhong Feng
- College of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Jing Ma
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Sciences, Chinese Academy of Sciences, East Beijing Road 71, Nanjing, 210008, China
| | - Hua Xu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Sciences, Chinese Academy of Sciences, East Beijing Road 71, Nanjing, 210008, China
| |
Collapse
|
7
|
Chen Y, Wu N, Liu C, Mi T, Li J, He X, Li S, Sun Z, Zhen Y. Methanogenesis pathways of methanogens and their responses to substrates and temperature in sediments from the South Yellow Sea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 815:152645. [PMID: 34998777 DOI: 10.1016/j.scitotenv.2021.152645] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/19/2021] [Accepted: 12/19/2021] [Indexed: 06/14/2023]
Abstract
Although coastal sediments are major contributors to the production of atmospheric methane, the effects of environmental conditions on methanogenesis and the community of methanogenic archaea are not well understood. Here, we investigated the methanogenesis pathways in nearshore and offshore sediments from the South Yellow Sea (SYS). Moreover, the effects of the supply of methanogenic substrates (H2/CO2, acetate, trimethylamine (TMA), and methanol) and temperature on methanogenesis and the community of methanogenic archaea were further determined. Methylotrophic, hydrogenotrophic and acetotrophic methanogenesis were found to be responsible for biogenic methane production in nearshore sediments. In the offshore sediments, methylotrophic methanogenesis was the predominant methanogenic pathway. The changes in methanogenic community structure under different substrate amendments were characterized. Lower diversities were detected in substrate-amended samples with methanogenic activity. Hydrogenotrophic Methanogenium, multitrophic Methanosarcina, methylotrophic Methanococcoide, Methanococcoide or methylotrophic Methanolobus were dominant in H2/CO2-, acetate-, TMA- and methanol-amended sediment slurries, respectively. PCoA showed that the methanogen community in H2/CO2 and acetate amendments exhibited greater differences than those in other treatments. Lower temperature (10 °C) limits hydrogenotrophic and acetoclastic methanogenesis, but methylotrophic methanogenesis is much less affected. The response of methanogen diversity to the incubation temperature varied among the different substrate-amended slurries. The multitrophic methanogen Methanosarcina became increasingly abundant in H2/CO2- and acetate-amended sediment slurries when the temperature increased from 10 to 30 °C.
Collapse
Affiliation(s)
- Ye Chen
- Key Laboratory of Gas Hydrate, Ministry of Natural Resources, Qingdao Institute of Marine Geology, Qingdao 266237, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China; Laboratory for Marine Mineral Resources, Pilot National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Nengyou Wu
- Key Laboratory of Gas Hydrate, Ministry of Natural Resources, Qingdao Institute of Marine Geology, Qingdao 266237, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Laboratory for Marine Mineral Resources, Pilot National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Changling Liu
- Key Laboratory of Gas Hydrate, Ministry of Natural Resources, Qingdao Institute of Marine Geology, Qingdao 266237, China; Laboratory for Marine Mineral Resources, Pilot National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Tiezhu Mi
- Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Jing Li
- Key Laboratory of Gas Hydrate, Ministry of Natural Resources, Qingdao Institute of Marine Geology, Qingdao 266237, China; Laboratory for Marine Mineral Resources, Pilot National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Xingliang He
- Key Laboratory of Gas Hydrate, Ministry of Natural Resources, Qingdao Institute of Marine Geology, Qingdao 266237, China; Laboratory for Marine Mineral Resources, Pilot National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Siqi Li
- Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China
| | - Zhilei Sun
- Key Laboratory of Gas Hydrate, Ministry of Natural Resources, Qingdao Institute of Marine Geology, Qingdao 266237, China; Laboratory for Marine Mineral Resources, Pilot National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Yu Zhen
- Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China.
| |
Collapse
|
8
|
The influence of the marine Bacillus cereus over carbon steel, stainless corrosion, and copper coupons. Arch Microbiol 2021; 204:9. [PMID: 34873663 DOI: 10.1007/s00203-021-02607-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 10/19/2022]
Abstract
The present study evaluated the influence of the marine bacteria Bacillus cereus Mc-1 on the corrosion of 1020 carbon steel, 316L stainless steel, and copper alloy. The Mc-1 strain was grown in a modified ammoniacal citrate culture medium (CFA.ico-), CFA.ico- with sodium nitrate supplementation (NO3-), and CFA.ico- with sodium chloride supplementation (NaCl). The mass loss and corrosion rate were evaluated after the periods of 7, 15, and 30 days. The results showed that in CFA.ico- and CFA.ico- medium added NO3- the corrosion rates of carbon steel and copper alloy were high when compared to the control. Whereas the medium was supplemented with NaCl, despite the rates being above the averages of the control system, they were considerably below the previous results. In general, the corrosion rates induced by Mc-1 on 316L coupons were below the results compared to carbon steel and copper alloy. When analyzing the corrosion rate measurements, regardless of the culture medium, the corrosion levels decreased consistently after 15 days, being below the levels evaluated after 7 days of the experiment. Our analyses suggest that B. cereus Mc-1 has different influences on corrosion in different metals and environmental conditions, such as the presence of NO3- and NaCl. These results can help to better understand the influence of this bacteria genus on the corrosion of metals in marine environments.
Collapse
|
9
|
Shrestha U, Ownley BH, Bruce A, Rosskopf EN, Butler DM. Anaerobic Soil Disinfestation Efficacy Against Fusarium oxysporum Is Affected by Soil Temperature, Amendment Type, Rate, and C:N Ratio. PHYTOPATHOLOGY 2021; 111:1380-1392. [PMID: 33289405 DOI: 10.1094/phyto-07-20-0276-r] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A meta-analysis of anaerobic soil disinfestation (ASD) efficacy against Fusarium oxysporum and F. oxysporum f. sp. lycopersici was conducted emphasizing effects of environment and organic amendment characteristics and pot and field studies conducted on ASD amendment C:N ratio and soil temperature effects on F. oxysporum f. sp. lycopersici inoculum survival. In a pot study, two organic amendments, dry molasses-based or wheat bran-based, applied at 4 mg of C/g of soil, with 40:1, 30:1, 20:1, and 10:1 C:N ratios, were evaluated against F. oxysporum f. sp. lycopersici at 15 to 25°C. This study was followed by a pot study with temperature regimes of 15 to 25°C and 25 to 35°C and two C:N ratios (20:1 and 40:1), and a field study at 40:1, 30:1, 20:1, and 10:1 C:N ratios, a 30:1 C:N ratio at a lower C rate (2 mg of C/g of soil), and an anaerobic control. Soil temperature >25°C and more labile amendments increased ASD suppression of F. oxysporum/F. oxysporum f. sp. lycopersici in the meta-analysis. In pot studies, F. oxysporum f. sp. lycopersici survival was reduced for molasses-based mixtures at 20:1 and 30:1 C:N ratios compared with wheat bran-based mixtures but not compared with the anaerobic control. At 25 to 35°C, all ASD treatments suppressed F. oxysporum f. sp. lycopersici relative to controls. In the field, all ASD treatments reduced F. oxysporum f. sp. lycopersici survival compared with the anaerobic control, and 4 mg of C/g of soil amendment rates induced higher anaerobic conditions and higher F. oxysporum f. sp. lycopersici mortality compared with the 2 mg of C/g of soil rate. Although amendment C:N ratios from 10 to 40:1 were similarly suppressive of F. oxysporum, lower temperatures reduced ASD effectiveness against F. oxysporum/F. oxysporum f. sp. lycopersici and further work is warranted to enhance suppression at soil temperatures <25°C.
Collapse
Affiliation(s)
- Utsala Shrestha
- Department of Plant Sciences, University of Tennessee, Knoxville, TN
| | - Bonnie H Ownley
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN
| | - Alex Bruce
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN
| | | | - David M Butler
- Department of Plant Sciences, University of Tennessee, Knoxville, TN
| |
Collapse
|
10
|
Muszynski S, Maurer F, Henjes S, Horn MA, Noll M. Fungal and Bacterial Diversity Patterns of Two Diversity Levels Retrieved From a Late Decaying Fagus sylvatica Under Two Temperature Regimes. Front Microbiol 2021; 11:548793. [PMID: 33584553 PMCID: PMC7874115 DOI: 10.3389/fmicb.2020.548793] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 11/19/2020] [Indexed: 11/25/2022] Open
Abstract
Environmental fluctuations are a common occurrence in an ecosystem, which have an impact on organismic diversity and associated ecosystem services. The aim of this study was to investigate how a natural and a species richness-reduced wood decaying community diversity were capable of decomposing Fagus sylvatica dead wood under a constant and a fluctuating temperature regime. Therefore, microcosms with both diversity levels (natural and species richness-reduced) were prepared and incubated for 8 weeks under both temperature regimes. Relative wood mass loss, wood pH, carbon dioxide, and methane emissions, as well as fungal and bacterial community compositions in terms of Simpson‘s diversity, richness and evenness were investigated. Community interaction patterns and co-occurrence networks were calculated. Community composition was affected by temperature regime and natural diversity caused significantly higher mass loss than richness-reduced diversity. In contrast, richness-reduced diversity increased wood pH. The bacterial community composition was less affected by richness reduction and temperature regimes than the fungal community composition. Microbial interaction patterns showed more mutual exclusions in richness-reduced compared to natural diversity as the reduction mainly reduced abundant fungal species and disintegrated previous interaction patterns. Microbial communities reassembled in richness-reduced diversity with a focus on nitrate reducing and dinitrogen-fixing bacteria as connectors in the network, indicating their high relevance to reestablish ecosystem functions. Therefore, a stochastic richness reduction was followed by functional trait based reassembly to recover previous ecosystem productivity.
Collapse
Affiliation(s)
- Sarah Muszynski
- Department of Applied Science, Institute of Bioanalysis, University of Coburg, Coburg, Germany
| | - Florian Maurer
- Department of Applied Science, Institute of Bioanalysis, University of Coburg, Coburg, Germany
| | - Sina Henjes
- Institute of Microbiology, Leibniz University of Hannover, Hanover, Germany
| | - Marcus A Horn
- Institute of Microbiology, Leibniz University of Hannover, Hanover, Germany
| | - Matthias Noll
- Department of Applied Science, Institute of Bioanalysis, University of Coburg, Coburg, Germany
| |
Collapse
|
11
|
Blake LI, Sherry A, Mejeha OK, Leary P, Coombs H, Stone W, Head IM, Gray ND. An Unexpectedly Broad Thermal and Salinity-Tolerant Estuarine Methanogen Community. Microorganisms 2020; 8:microorganisms8101467. [PMID: 32987846 PMCID: PMC7600826 DOI: 10.3390/microorganisms8101467] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/16/2020] [Accepted: 09/22/2020] [Indexed: 12/21/2022] Open
Abstract
Moderately thermophilic (Tmax, ~55 °C) methanogens are identified after extended enrichments from temperate, tropical and low-temperature environments. However, thermophilic methanogens with higher growth temperatures (Topt ≥ 60 °C) are only reported from high-temperature environments. A microcosm-based approach was used to measure the rate of methane production and methanogen community structure over a range of temperatures and salinities in sediment from a temperate estuary. We report short-term incubations (<48 h) revealing methanogens with optimal activity reaching 70 °C in a temperate estuary sediment (in situ temperature 4–5 °C). While 30 °C enrichments amended with acetate, H2 or methanol selected for corresponding mesophilic trophic groups, at 60 °C, only hydrogenotrophs (genus Methanothermobacter) were observed. Since these methanogens are not known to be active under in situ temperatures, we conclude constant dispersal from high temperature habitats. The likely provenance of the thermophilic methanogens was studied by enrichments covering a range of temperatures and salinities. These enrichments indicated that the estuarine sediment hosted methanogens encompassing the global activity envelope of most cultured species. We suggest that estuaries are fascinating sink and source environments for microbial function study.
Collapse
Affiliation(s)
- Lynsay I. Blake
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; (A.S.); (O.K.M.); (P.L.); (H.C.); (I.M.H.)
- Department of Biosciences, Durham University, Lower Mount Joy, South Road, Durham DH1 3LE, UK
- Correspondence: (L.I.B.); (N.D.G.)
| | - Angela Sherry
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; (A.S.); (O.K.M.); (P.L.); (H.C.); (I.M.H.)
- Hub for Biotechnology in the Built Environment, Department of Applied Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK
| | - Obioma K. Mejeha
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; (A.S.); (O.K.M.); (P.L.); (H.C.); (I.M.H.)
- Department of Microbiology, Federal University of Technology, Owerri P.M.B. 1526, Nigeria
| | - Peter Leary
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; (A.S.); (O.K.M.); (P.L.); (H.C.); (I.M.H.)
| | - Henry Coombs
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; (A.S.); (O.K.M.); (P.L.); (H.C.); (I.M.H.)
| | - Wendy Stone
- Water Institute and Department of Microbiology, University of Stellenbosch, Stellenbosch 7602, South Africa;
| | - Ian M. Head
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; (A.S.); (O.K.M.); (P.L.); (H.C.); (I.M.H.)
| | - Neil D. Gray
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; (A.S.); (O.K.M.); (P.L.); (H.C.); (I.M.H.)
- Correspondence: (L.I.B.); (N.D.G.)
| |
Collapse
|
12
|
Chen YT, Zeng Y, Wang HZ, Zheng D, Kamagata Y, Narihiro T, Nobu MK, Tang YQ. Different Interspecies Electron Transfer Patterns during Mesophilic and Thermophilic Syntrophic Propionate Degradation in Chemostats. MICROBIAL ECOLOGY 2020; 80:120-132. [PMID: 31982930 DOI: 10.1007/s00248-020-01485-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 01/07/2020] [Indexed: 06/10/2023]
Abstract
Propionate is one of the major intermediates in anaerobic digestion of organic waste to CO2 and CH4. In methanogenic environments, propionate is degraded through a mutualistic interaction between symbiotic propionate oxidizers and methanogens. Although temperature heavily influences the microbial ecology and performance of methanogenic processes, its effect on syntrophic interaction during propionate degradation remains poorly understood. In this study, metagenomics and metatranscriptomics were employed to compare mesophilic and thermophilic propionate degradation communities. Mesophilic propionate degradation involved multiple syntrophic organisms (Syntrophobacter, Smithella, and Syntrophomonas), pathways, interactions, and preference toward formate-based electron transfer to methanogenic partners (i.e., Methanoculleus). In thermophilic propionate degradation, one syntrophic organism predominated (Pelotomaculum), interspecies H2 transfer played a major role, and phylogenetically and metabolically diverse H2-oxidizing methanogens were present (i.e., Methanoculleus, Methanothermobacter, and Methanomassiliicoccus). This study showed that microbial interactions, metabolic pathways, and niche diversity are distinct between mesophilic and thermophilic microbial communities responsible for syntrophic propionate degradation.
Collapse
Affiliation(s)
- Ya-Ting Chen
- College of Architecture and Environment, Sichuan University, No. 24, South Section 1, First Ring Road, Chengdu, 610065, Sichuan, China
- Institute for Disaster Management and Reconstruction, Sichuan University-Hong Kong Polytechnic University, Chengdu, 610207, China
| | - Yan Zeng
- College of Architecture and Environment, Sichuan University, No. 24, South Section 1, First Ring Road, Chengdu, 610065, Sichuan, China
| | - Hui-Zhong Wang
- College of Architecture and Environment, Sichuan University, No. 24, South Section 1, First Ring Road, Chengdu, 610065, Sichuan, China
| | - Dan Zheng
- College of Architecture and Environment, Sichuan University, No. 24, South Section 1, First Ring Road, Chengdu, 610065, Sichuan, China
| | - Yoichi Kamagata
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, Higashi 1-1-1, Tsukuba, Ibaraki, 305-8566, Japan
| | - Takashi Narihiro
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, Higashi 1-1-1, Tsukuba, Ibaraki, 305-8566, Japan.
| | - Masaru Konishi Nobu
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, Higashi 1-1-1, Tsukuba, Ibaraki, 305-8566, Japan.
| | - Yue-Qin Tang
- College of Architecture and Environment, Sichuan University, No. 24, South Section 1, First Ring Road, Chengdu, 610065, Sichuan, China.
| |
Collapse
|
13
|
Biderre-Petit C, Taib N, Gardon H, Hochart C, Debroas D. New insights into the pelagic microorganisms involved in the methane cycle in the meromictic Lake Pavin through metagenomics. FEMS Microbiol Ecol 2020; 95:5092586. [PMID: 30203066 DOI: 10.1093/femsec/fiy183] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 09/06/2018] [Indexed: 11/13/2022] Open
Abstract
Advances in metagenomics have given rise to the possibility of obtaining genome sequences from uncultured microorganisms, even for those poorly represented in the microbial community, thereby providing an important means to study their ecology and evolution. In this study, metagenomic sequencing was carried out at four sampling depths having different oxygen concentrations or environmental conditions in the water column of Lake Pavin. By analyzing the sequenced reads and matching the contigs to the proxy genomes of the closest cultivated relatives, we evaluated the metabolic potential of the dominant planktonic species involved in the methane cycle. We demonstrated that methane-producing communities were dominated by the genus Methanoregula while methane-consuming communities were dominated by the genus Methylobacter, thus confirming prior observations. Our work allowed the reconstruction of a draft of their core metabolic pathways. Hydrogenotrophs, the genes required for acetate activation in the methanogen genome, were also detected. Regarding methanotrophy, Methylobacter was present in the same areas as the non-methanotrophic, methylotrophic Methylotenera, which could suggest a relationship between these two groups. Furthermore, the presence of a large gene inventory for nitrogen metabolism (nitrate transport, denitrification, nitrite assimilation and nitrogen fixation, for instance) was detected in the Methylobacter genome.
Collapse
Affiliation(s)
- Corinne Biderre-Petit
- Université Clermont Auvergne, CNRS, Laboratoire Microorganismes: Génome et Environnement, F-63000 Clermont-Ferrand, France
| | - Najwa Taib
- Université Clermont Auvergne, CNRS, Laboratoire Microorganismes: Génome et Environnement, F-63000 Clermont-Ferrand, France
| | - Hélène Gardon
- Université Clermont Auvergne, CNRS, Laboratoire Microorganismes: Génome et Environnement, F-63000 Clermont-Ferrand, France
| | - Corentin Hochart
- Université Clermont Auvergne, CNRS, Laboratoire Microorganismes: Génome et Environnement, F-63000 Clermont-Ferrand, France
| | - Didier Debroas
- Université Clermont Auvergne, CNRS, Laboratoire Microorganismes: Génome et Environnement, F-63000 Clermont-Ferrand, France
| |
Collapse
|
14
|
Wang PX, Yang YD, Wang XQ, Zhao J, Peixoto L, Zeng ZH, Zang HD. Manure amendment increased the abundance of methanogens and methanotrophs but suppressed the type I methanotrophs in rice paddies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:8016-8027. [PMID: 31889290 DOI: 10.1007/s11356-019-07464-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 12/18/2019] [Indexed: 06/10/2023]
Abstract
Methane (CH4) emission is the consequence of CH4 production and consumption performed by methanogens and methanotrophs, respectively. Fertilization is an important factor that regulates the behavior of methanogens and methanotrophs; however, the effect of manure and rice straw addition combined with inorganic fertilizers on these communities is not well understood. This study aimed to explore how manure and rice straw amendments together with inorganic fertilizers influenced the methanogenic and methanotrophic communities in a 31-year fertilized rice paddy. Manure amendment significantly increased the abundance of mcrA and pmoA genes by 61.2% and 63.3% compared with the unfertilized control, whereas inorganic NPK fertilization alone or rice straw addition did not affect their abundances. Manure and rice straw amendments greatly decreased the Shannon index and ACE index of the methanogenic communities, whereas inorganic NPK fertilization alone increased the ACE index of the methanotrophic communities compared with the unfertilized control. Methanosarcinaceae and Methylococcaceae dominated at the family level, representing 23.1-35.0% and 48.7-67.2% of the total reads, for the methanogenic and methanotrophic communities, respectively. Application of manure together with inorganic fertilizers suppressed the Methanocellales methanogens and the type I methanotrophs (Methylococcus and Methylobacter). Fertilization greatly altered the community structure of methanogens and methanotrophs, and manure addition had more apparent effects than rice straw. Moreover, total nitrogen, soil organic carbon, available phosphorus, and available potassium correlated significantly to the abundance, composition, and community structure of methanogens and methanotrophs. In conclusion, our study revealed that long-term manure amendment in combination with inorganic fertilizers significantly increased the abundance of methanogens and methanotrophs, but suppressed the type I methanotrophs in rice paddies.
Collapse
Affiliation(s)
- Pei-Xin Wang
- College of Agronomy and Biotechnology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
- Key Laboratory of Farming System, Ministry of Agriculture and Rural Affairs, Beijing, 100193, China
| | - Ya-Dong Yang
- College of Agronomy and Biotechnology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
- Key Laboratory of Farming System, Ministry of Agriculture and Rural Affairs, Beijing, 100193, China
| | - Xi-Quan Wang
- College of Agronomy and Biotechnology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
- Key Laboratory of Farming System, Ministry of Agriculture and Rural Affairs, Beijing, 100193, China
| | - Jie Zhao
- College of Agronomy and Biotechnology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
- Key Laboratory of Farming System, Ministry of Agriculture and Rural Affairs, Beijing, 100193, China
| | - Leanne Peixoto
- Department of Agroecology, Aarhus University, Blichers Allé 20, 8830, Tjele, DK, Denmark
| | - Zhao-Hai Zeng
- College of Agronomy and Biotechnology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China.
- Key Laboratory of Farming System, Ministry of Agriculture and Rural Affairs, Beijing, 100193, China.
| | - Hua-Dong Zang
- College of Agronomy and Biotechnology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
- Key Laboratory of Farming System, Ministry of Agriculture and Rural Affairs, Beijing, 100193, China
| |
Collapse
|
15
|
George R, Gullström M, Mtolera MSP, Lyimo TJ, Björk M. Methane emission and sulfide levels increase in tropical seagrass sediments during temperature stress: A mesocosm experiment. Ecol Evol 2020; 10:1917-1928. [PMID: 32128125 PMCID: PMC7042687 DOI: 10.1002/ece3.6009] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 12/18/2019] [Accepted: 12/23/2019] [Indexed: 11/11/2022] Open
Abstract
Climate change-induced ocean warming is expected to greatly affect carbon dynamics and sequestration in vegetated shallow waters, especially in the upper subtidal where water temperatures may fluctuate considerably and can reach high levels at low tides. This might alter the greenhouse gas balance and significantly reduce the carbon sink potential of tropical seagrass meadows. In order to assess such consequences, we simulated temperature stress during low tide exposures by subjecting seagrass plants (Thalassia hemprichii) and associated sediments to elevated midday temperature spikes (31, 35, 37, 40, and 45°C) for seven consecutive days in an outdoor mesocosm setup. During the experiment, methane release from the sediment surface was estimated using gas chromatography. Sulfide concentration in the sediment pore water was determined spectrophotometrically, and the plant's photosynthetic capacity as electron transport rate (ETR), and maximum quantum yield (Fv/Fm) was assessed using pulse amplitude modulated (PAM) fluorometry. The highest temperature treatments (40 and 45°C) had a clear positive effect on methane emission and the level of sulfide in the sediment and, at the same time, clear negative effects on the photosynthetic performance of seagrass plants. The effects observed by temperature stress were immediate (within hours) and seen in all response variables, including ETR, Fv/Fm, methane emission, and sulfide levels. In addition, both the methane emission and the size of the sulfide pool were already negatively correlated with changes in the photosynthetic rate (ETR) during the first day, and with time, the correlations became stronger. These findings show that increased temperature will reduce primary productivity and increase methane and sulfide levels. Future increases in the frequency and severity of extreme temperature events could hence reduce the climate mitigation capacity of tropical seagrass meadows by reducing CO2 sequestration, increase damage from sulfide toxicity, and induce the release of larger amounts of methane.
Collapse
Affiliation(s)
- Rushingisha George
- Department of Ecology, Environment and Plant SciencesSeagrass Ecology and Physiology groupStockholm UniversityStockholmSweden
- Tanzania Fisheries Research Institute (TAFIRI)Dar es SalaamTanzania
| | - Martin Gullström
- Department of Ecology, Environment and Plant SciencesSeagrass Ecology and Physiology groupStockholm UniversityStockholmSweden
- Department of Biological and Environmental SciencesUniversity of GothenburgKristineberg, FiskebäckskilSweden
| | | | - Thomas J. Lyimo
- Department of Molecular Science and BiotechnologyUniversity of Dar es SalaamDar es SalaamTanzania
| | - Mats Björk
- Department of Ecology, Environment and Plant SciencesSeagrass Ecology and Physiology groupStockholm UniversityStockholmSweden
| |
Collapse
|
16
|
Buettner C, von Bergen M, Jehmlich N, Noll M. Pseudomonas spp. are key players in agricultural biogas substrate degradation. Sci Rep 2019; 9:12871. [PMID: 31492882 PMCID: PMC6731289 DOI: 10.1038/s41598-019-49313-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 08/20/2019] [Indexed: 12/11/2022] Open
Abstract
Anaerobic degradation (AD) of heterogeneous agricultural substrates is a complex process involving a diverse microbial community. While microbial community composition of a variety of biogas plants (BPs) is well described, little is known about metabolic processes and microbial interaction patterns. Here, we analyzed 16 large-scale BPs using metaproteomics. All metabolic steps of AD were observed in the metaproteome, and multivariate analyses indicated that they were shaped by temperature, pH, volatile fatty acid content and substrate types. Biogas plants could be subdivided into hydrogenotrophic, acetoclastic or a mixture of both methanogenic pathways based on their process parameters, taxonomic and functional metaproteome. Network analyses showed large differences in metabolic and microbial interaction patterns. Both, number of interactions and interaction partners were highly dependent on the prevalent methanogenic pathway for most species. Nevertheless, we observed a highly conserved metabolism of different abundant Pseudomonas spp. for all BPs indicating a key role during AD in carbohydrate hydrolysis irrespectively of variabilities in substrate input and process parameters. Thus, Pseudomonas spp. are of high importance for robust and versatile AD food webs, which highlight a large variety of downstream metabolic processes for their respective methanogenic pathways.
Collapse
Affiliation(s)
- Christian Buettner
- Coburg University of Applied Sciences and Arts, Institute for Bioanalysis, Friedrich-Streib-Str. 2, 96450, Coburg, Germany
| | - Martin von Bergen
- Helmholtz-Centre for Environmental Research - UFZ GmbH, Department of Molecular Systems Biology, Permoserstraße 15, 04318, Leipzig, Germany.,University of Leipzig, Institute for Biochemistry, Brüderstraße 34, 04103, Leipzig, Germany
| | - Nico Jehmlich
- Helmholtz-Centre for Environmental Research - UFZ GmbH, Department of Molecular Systems Biology, Permoserstraße 15, 04318, Leipzig, Germany
| | - Matthias Noll
- Coburg University of Applied Sciences and Arts, Institute for Bioanalysis, Friedrich-Streib-Str. 2, 96450, Coburg, Germany.
| |
Collapse
|
17
|
Zhang Y, Li Q, Dai Q, Kang Y. Microbial mechanism underlying high and stable methane oxidation rates during mudflat reclamation with long-term rice cultivation: Illumina high-throughput sequencing-based data analysis. JOURNAL OF HAZARDOUS MATERIALS 2019; 371:332-341. [PMID: 30856444 DOI: 10.1016/j.jhazmat.2019.03.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 02/10/2019] [Accepted: 03/06/2019] [Indexed: 06/09/2023]
Abstract
This study aimed to determine the methane oxidation rates (MOR), pmoA gene abundance and diversity, and microbial community composition using Illumina high-throughput sequencing. Mudflats located within Yancheng City, divided into different plots with 0-, 11-, and 20-year successive rice planting histories, were selected and sampled. The study found that the relative MOR (normalized with the 16S rRNA gene) increased dramatically after 11-year cultivation and remained stable in 20-year treatment, indicating that long-term rice cultivation in mudflats promoted MOR. The sequencing data analysis revealed that high MOR was related to the synergistic growth of methane-producing archaea (MPA) and aerobic and facultative methane-consuming bacteria (MCB) mainly belonging to Proteobacteria. Redundancy and correlation analyses showed that Methylophilaceae and Methylococcaceae affiliated within β- and γ-Proteobacterial methanotrophs were closely related to the relative MOR. Methane-oxidizing archaea (MOA) coupled to sulfate and nitrite reductions contributed more to the high and stable MOR compared with Proteobacterial MCB. Chloroflexi and Geobacter were the potential hydrogen donors for hydrogenotrophic MPA. The results showed that long-term rice cultivation in mudflats promoted the relative MOR. The unknown MOA coupled to sulfate and nitrite reductions, besides the necessary hydrogenotrophic MPA and their hydrogen donors (Chloroflexi and Geobacter) collectively contributed to methane cycling.
Collapse
Affiliation(s)
- Yang Zhang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Research Institute of Rice Industry Engineering Technology, Yangzhou University, Yangzhou, 225009, PR China
| | - Qing Li
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Research Institute of Rice Industry Engineering Technology, Yangzhou University, Yangzhou, 225009, PR China
| | - Qigen Dai
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Research Institute of Rice Industry Engineering Technology, Yangzhou University, Yangzhou, 225009, PR China.
| | - Yijun Kang
- College of Marine and Bio-engineering, Yancheng Teachers University, Yancheng, Jiangsu, PR China.
| |
Collapse
|
18
|
Liu P, Klose M, Conrad R. Temperature-Dependent Network Modules of Soil Methanogenic Bacterial and Archaeal Communities. Front Microbiol 2019; 10:496. [PMID: 30915063 PMCID: PMC6422946 DOI: 10.3389/fmicb.2019.00496] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 02/26/2019] [Indexed: 11/13/2022] Open
Abstract
Temperature is an important factor regulating the production of the greenhouse gas CH4. Structure and function of the methanogenic microbial communities are often drastically different upon incubation at 45°C versus 25°C or 35°C, but are also different in different soils. However, the extent of taxonomic redundancy within each functional group and the existence of different temperature-dependent microbial community network modules are unknown. Therefore, we investigated paddy soils from Italy and the Philippines and a desert soil from Utah (United States), which all expressed CH4 production upon flooding and exhibited structural and functional differences upon incubation at three different temperatures. We continued incubation of the pre-incubated soils (Liu et al., 2018) by changing the temperature in a factorial manner. We determined composition, abundance and function of the methanogenic archaeal and bacterial communities using HiSeq Illumina sequencing, qPCR and analysis of activity and stable isotope fractionation, respectively. Heatmap analysis of operational taxonomic units (OTU) from the different incubations gave detailed insights into the community structures and their putative functions. Network analysis showed that the microbial communities in the different soils were all organized within modules distinct for the three incubation temperatures. The diversity of Bacteria and Archaea was always lower at 45°C than at 25 or 35°C. A shift from 45°C to lower temperatures did not recover archaeal diversity, but nevertheless resulted in the establishment of structures and functions that were largely typical for soil at moderate temperatures. At 25 and 35°C and after shifting to one of these temperatures, CH4 was always produced by a combination of acetoclastic and hydrogenotrophic methanogenesis being consistent with the presence of acetoclastic (Methanosarcinaceae, Methanotrichaceae) and hydrogenotrophic (Methanobacteriales, Methanocellales, Methanosarcinaceae) methanogens. At 45°C, however, or after shifting from moderate temperatures to 45°C, only the Philippines soil maintained such combination, while the other soils were devoid of acetoclastic methanogens and consumed acetate instead by syntrophic acetate oxidation coupled to hydrogenotrophic methanogenesis. Syntrophic acetate oxidation was apparently achieved by Thermoanaerobacteraceae, which were especially abundant in Italian paddy soil and Utah desert soil when incubated at 45°C. Other bacterial taxa were also differently abundant at 45°C versus moderate temperatures, as seen by the formation of specific network modules. However, the archaeal OTUs with putative function in acetoclastic or hydrogenotrophic methanogenesis as well as the bacterial OTUs were usually not identical across the different soils and incubation conditions, and if they were, they suggested the existence of mesophilic and thermophilic ecotypes within the same OTUs. Overall, methanogenic function was determined by the bacterial and/or archaeal community structures, which in turn were to quite some extent determined by the incubation temperature, albeit largely individually in each soil. There was quite some functional redundancy as seen by different taxonomic community structures in the different soils and at the different temperatures.
Collapse
Affiliation(s)
- Pengfei Liu
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Melanie Klose
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Ralf Conrad
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| |
Collapse
|
19
|
Short-Term Response of the Soil Microbial Abundances and Enzyme Activities to Experimental Warming in a Boreal Peatland in Northeast China. SUSTAINABILITY 2019. [DOI: 10.3390/su11030590] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Global warming is likely to influence the soil microorganisms and enzyme activity and alter the carbon and nitrogen balance of peatland ecosystems. To investigate the difference in sensitivities of carbon and nitrogen cycling microorganisms and enzyme activity to warming, we conducted three-year warming experiments in a boreal peatland. Our findings demonstrated that both mcrA and nirS gene abundance in shallow soil and deep soil exhibited insensitivity to warming, while shallow soil archaea 16S rRNA gene and amoA gene abundance in both shallow soil and deep soil increased under warming. Soil pmoA gene abundance of both layers, bacterial 16S rRNA gene abundance in shallow soil, and nirK gene abundance in deep soil decreased due to warming. The decreases of these gene abundances would be a result of losing labile substrates because of the competitive interactions between aboveground plants and underground soil microorganisms. Experimental warming inhibited β-glucosidase activity in two soil layers and invertase activity in deep soil, while it stimulated acid phosphatase activity in shallow soil. Both temperature and labile substrates regulate the responses of soil microbial abundances and enzyme activities to warming and affect the coupling relationships of carbon and nitrogen. This study provides a potential microbial mechanism controlling carbon and nitrogen cycling in peatland under climate warming.
Collapse
|
20
|
Peng J, Wegner CE, Bei Q, Liu P, Liesack W. Metatranscriptomics reveals a differential temperature effect on the structural and functional organization of the anaerobic food web in rice field soil. MICROBIOME 2018; 6:169. [PMID: 30231929 PMCID: PMC6147125 DOI: 10.1186/s40168-018-0546-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 08/31/2018] [Indexed: 05/22/2023]
Abstract
BACKGROUND The expected increase in global surface temperature due to climate change may have a tremendous effect on the structure and function of the anaerobic food web in flooded rice field soil. Here, we used the metatranscriptomic analysis of total RNA to gain a system-level understanding of this temperature effect on the methanogenic food web. RESULTS Mesophilic (30 °C) and thermophilic (45 °C) food web communities had a modular structure. Family-specific rRNA dynamics indicated that each network module represents a particular function within the food webs. Temperature had a differential effect on all the functional activities, including polymer hydrolysis, syntrophic oxidation of key intermediates, and methanogenesis. This was further evidenced by the temporal expression patterns of total bacterial and archaeal mRNA and of transcripts encoding carbohydrate-active enzymes (CAZymes). At 30 °C, various bacterial phyla contributed to polymer hydrolysis, with Firmicutes decreasing and non-Firmicutes (e.g., Bacteroidetes, Ignavibacteriae) increasing with incubation time. At 45 °C, CAZyme expression was solely dominated by the Firmicutes but, depending on polymer and incubation time, varied on family level. The structural and functional community dynamics corresponded well to process measurements (acetate, propionate, methane). At both temperatures, a major change in food web functionality was linked to the transition from the early to late stage. The mesophilic food web was characterized by gradual polymer breakdown that governed acetoclastic methanogenesis (Methanosarcinaceae) and, with polymer hydrolysis becoming the rate-limiting step, syntrophic propionate oxidation (Christensenellaceae, Peptococcaceae). The thermophilic food web had two activity stages characterized first by polymer hydrolysis and followed by syntrophic oxidation of acetate (Thermoanaerobacteraceae, Heliobacteriaceae, clade OPB54). Hydrogenotrophic Methanocellaceae were the syntrophic methanogen partner, but their population structure differed between the temperatures. Thermophilic temperature promoted proliferation of a new Methanocella ecotype. CONCLUSIONS Temperature had a differential effect on the structural and functional continuum in which the methanogenic food web operates. This temperature-induced change in food web functionality may not only be a near-future scenario for rice paddies but also for natural wetlands in the tropics and subtropics.
Collapse
Affiliation(s)
- Jingjing Peng
- Research Group Methanotrophic Bacteria and Environmental Genomics/Transcriptomics, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043, Marburg, Germany
| | - Carl-Eric Wegner
- Institute of Ecology, Aquatic Geomicrobiology, Friedrich Schiller University Jena, Dornburger Str. 159, 07749, Jena, Germany
| | - Qicheng Bei
- Research Group Methanotrophic Bacteria and Environmental Genomics/Transcriptomics, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043, Marburg, Germany
| | - Pengfei Liu
- Research Group Methanotrophic Bacteria and Environmental Genomics/Transcriptomics, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043, Marburg, Germany
| | - Werner Liesack
- Research Group Methanotrophic Bacteria and Environmental Genomics/Transcriptomics, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043, Marburg, Germany.
| |
Collapse
|
21
|
Temporal and spatial impact of Spartina alterniflora invasion on methanogens community in Chongming Island, China. J Microbiol 2018; 56:507-515. [PMID: 29948827 DOI: 10.1007/s12275-018-8062-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 04/23/2018] [Accepted: 04/23/2018] [Indexed: 10/14/2022]
Abstract
Methane production by methanogens in wetland is recognized as a significant contributor to global warming. Spartina alterniflora (S. alterniflora), which is an invasion plant in China's wetland, was reported to have enormous effects on methane production. But studies on shifts in the methanogen community in response to S. alterniflora invasion at temporal and spatial scales in the initial invasion years are rare. Sediments derived from the invasive species S. alterniflora and the native species Phragmites australis (P. australis) in pairwise sites and an invasion chronosequence patch (4 years) were analyzed to investigate the abundance and community structure of methanogens using quantitative real-time PCR (qPCR) and Denaturing gradient gel electrophoresis (DGGE) cloning of the methyl-coenzyme M reductase A (mcrA) gene. For the pairwise sites, the abundance of methanogens in S. alterniflora soils was lower than that of P. australis soils. For the chronosequence patch, the abundance and diversity of methanogens was highest in the soil subjected to two years invasion, in which we detected some rare groups including Methanocellales and Methanococcales. These results indicated a priming effect at the initial invasion stages of S. alterniflora for microorganisms in the soil, which was also supported by the diverse root exudates. The shifts of methanogen communities after S. alterniflora invasion were due to changes in pH, salinity and sulfate. The results indicate that root exudates from S. alterniflora have a priming effect on methanogens in the initial years after invasion, and the predominate methylotrophic groups (Methanosarcinales) may adapt to the availability of diverse substrates and reflects the potential for high methane production after invasion by S. alterniflora.
Collapse
|
22
|
Yuan J, Yuan Y, Zhu Y, Cao L. Effects of different fertilizers on methane emissions and methanogenic community structures in paddy rhizosphere soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 627:770-781. [PMID: 29426201 DOI: 10.1016/j.scitotenv.2018.01.233] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 01/23/2018] [Accepted: 01/23/2018] [Indexed: 06/08/2023]
Abstract
Paddy soil accounts for 10% of global atmospheric methane (CH4) emissions. Many types of fertilizers may enhance CH4 emissions, especially organic fertilizer. The aim of this study was to explore the effects of different fertilizers on CH4 and methanogen patterns in paddy soil. This experiment involved four treatments: chemical fertilizer (CT), organic fertilizer (OT), mixed with chemical and organic fertilizer (MT), and no fertilizer (ctrl). The three fertilization treatments were applied with total nitrogen at the same rate of 300 kg N ha-1. Paddy CH4, soil physicochemical variables and methanogen communities were quantitatively analyzed. Rhizosphere soil mcrA and pmoA gene copy numbers were determined by qPCR. Methanogenic 16S rRNA genes were identified by MiSeq sequencing. The results indicated CH4 emissions were significantly higher in OT (145.31 kg ha-1) than MT (84.62 kg ha-1), CT (77.88 kg ha-1) or ctrl (32.19 kg ha-1). Soil organic acids were also increased by organic fertilization. CH4 effluxes were significantly and negatively related to mcrA and pmoA gene copy numbers, and positively related to mcrA/pmoA. Above all, hydrogenotrophic Methanocella and acetoclastic Methanosaeta were the predominant methanogenic communities; these communities were strictly associated with soil potassium, oxalate, acetate, and succinate. Application of organic fertilizer promoted the dominant acetoclastic methanogens, but suppressed the dominant hydrogenotrophic methanogens. The transformation in methanogenic community structure and enhanced availability of C substrates may explain the increased CH4 production in OT compared to other treatments. Compared to OT, MT may partially mitigate CH4 emissions while guaranteeing a high rice yield. On this basis, we recommend the local fertilization pattern should change from 300 N kg ha-1 of organic manure to the same level of mixed fertilization. Moreover, we suggest multiple combinations of mixed fertilization merit more investigation in the future.
Collapse
Affiliation(s)
- Jing Yuan
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yongkun Yuan
- Irrigation Technology Extension Station of Qingpu, 2 Yuan Road, Shanghai 201707, China
| | - Yihang Zhu
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Linkui Cao
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| |
Collapse
|
23
|
Sihi D, Inglett PW, Gerber S, Inglett KS. Rate of warming affects temperature sensitivity of anaerobic peat decomposition and greenhouse gas production. GLOBAL CHANGE BIOLOGY 2018; 24:e259-e274. [PMID: 28746792 DOI: 10.1111/gcb.13839] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 06/14/2017] [Indexed: 06/07/2023]
Abstract
Temperature sensitivity of anaerobic carbon mineralization in wetlands remains poorly represented in most climate models and is especially unconstrained for warmer subtropical and tropical systems which account for a large proportion of global methane emissions. Several studies of experimental warming have documented thermal acclimation of soil respiration involving adjustments in microbial physiology or carbon use efficiency (CUE), with an initial decline in CUE with warming followed by a partial recovery in CUE at a later stage. The variable CUE implies that the rate of warming may impact microbial acclimation and the rate of carbon-dioxide (CO2 ) and methane (CH4 ) production. Here, we assessed the effects of warming rate on the decomposition of subtropical peats, by applying either a large single-step (10°C within a day) or a slow ramping (0.1°C/day for 100 days) temperature increase. The extent of thermal acclimation was tested by monitoring CO2 and CH4 production, CUE, and microbial biomass. Total gaseous C loss, CUE, and MBC were greater in the slow (ramp) warming treatment. However, greater values of CH4 -C:CO2 -C ratios lead to a greater global warming potential in the fast (step) warming treatment. The effect of gradual warming on decomposition was more pronounced in recalcitrant and nutrient-limited soils. Stable carbon isotopes of CH4 and CO2 further indicated the possibility of different carbon processing pathways under the contrasting warming rates. Different responses in fast vs. slow warming treatment combined with different endpoints may indicate alternate pathways with long-term consequences. Incorporations of experimental results into organic matter decomposition models suggest that parameter uncertainties in CUE and CH4 -C:CO2 -C ratios have a larger impact on long-term soil organic carbon and global warming potential than uncertainty in model structure, and shows that particular rates of warming are central to understand the response of wetland soils to global climate change.
Collapse
Affiliation(s)
- Debjani Sihi
- Wetland Biogeochemistry Laboratory, Soil and Water Sciences Department, University of Florida, Gainesville, FL, USA
- University of Maryland Center for Environmental Science Appalachian Laboratory, Frostburg, MD, USA
| | - Patrick W Inglett
- Wetland Biogeochemistry Laboratory, Soil and Water Sciences Department, University of Florida, Gainesville, FL, USA
| | - Stefan Gerber
- Wetland Biogeochemistry Laboratory, Soil and Water Sciences Department, University of Florida, Gainesville, FL, USA
| | - Kanika S Inglett
- Wetland Biogeochemistry Laboratory, Soil and Water Sciences Department, University of Florida, Gainesville, FL, USA
| |
Collapse
|
24
|
Li XX, Yang T, Mbadinga SM, Liu JF, Yang SZ, Gu JD, Mu BZ. Responses of Microbial Community Composition to Temperature Gradient and Carbon Steel Corrosion in Production Water of Petroleum Reservoir. Front Microbiol 2017; 8:2379. [PMID: 29259586 PMCID: PMC5723327 DOI: 10.3389/fmicb.2017.02379] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 11/17/2017] [Indexed: 11/13/2022] Open
Abstract
Oil reservoir production systems are usually associated with a temperature gradient and oil production facilities frequently suffer from pipeline corrosion failures. Both bacteria and archaea potentially contribute to biocorrosion of the oil production equipment. Here the response of microbial populations from the petroleum reservoir to temperature gradient and corrosion of carbon steel coupons were investigated under laboratory condition. Carbon steel coupons were exposed to production water from a depth of 1809 m of Jiangsu petroleum reservoir (China) and incubated for periods of 160 and 300 days. The incubation temperatures were set at 37, 55, and 65°C to monitoring mesophilic, thermophilic and hyperthermophilic microorganisms associated with anaerobic carbon steel corrosion. The results showed that corrosion rate at 55°C (0.162 ± 0.013 mm year-1) and 37°C (0.138 ± 0.008 mm year-1) were higher than that at 65°C (0.105 ± 0.007 mm year-1), and a dense biofilm was observed on the surface of coupons under all biotic incubations. The microbial community analysis suggests a high frequency of bacterial taxa associated with families Porphyromonadaceae, Enterobacteriaceae, and Spirochaetaceae at all three temperatures. While the majority of known sulfate-reducing bacteria, in particular Desulfotignum, Desulfobulbus and Desulfovibrio spp., were predominantly observed at 37°C; Desulfotomaculum spp., Thermotoga spp. and Thermanaeromonas spp. as well as archaeal members closely related to Thermococcus and Archaeoglobus spp. were substantially enriched at 65°C. Hydrogenotrophic methanogens of the family Methanobacteriaceae were dominant at both 37 and 55°C; acetoclastic Methanosaeta spp. and methyltrophic Methanolobus spp. were enriched at 37°C. These observations show that temperature changes significantly alter the microbial community structure in production fluids and also affected the biocorrosion of carbon steel under anaerobic conditions.
Collapse
Affiliation(s)
- Xiao-Xiao Li
- State Key Laboratory of Bioreactor Engineering and Institute of Applied Chemistry, East China University of Science and Technology, Shanghai, China
| | - Tao Yang
- State Key Laboratory of Bioreactor Engineering and Institute of Applied Chemistry, East China University of Science and Technology, Shanghai, China
| | - Serge M Mbadinga
- State Key Laboratory of Bioreactor Engineering and Institute of Applied Chemistry, East China University of Science and Technology, Shanghai, China.,Shanghai Collaborative Innovation Center for Biomanufacturing Technology, Shanghai, China
| | - Jin-Feng Liu
- State Key Laboratory of Bioreactor Engineering and Institute of Applied Chemistry, East China University of Science and Technology, Shanghai, China
| | - Shi-Zhong Yang
- State Key Laboratory of Bioreactor Engineering and Institute of Applied Chemistry, East China University of Science and Technology, Shanghai, China
| | - Ji-Dong Gu
- School of Biological Sciences, The University of Hong Kong, Hong Kong, Hong Kong
| | - Bo-Zhong Mu
- State Key Laboratory of Bioreactor Engineering and Institute of Applied Chemistry, East China University of Science and Technology, Shanghai, China.,Shanghai Collaborative Innovation Center for Biomanufacturing Technology, Shanghai, China
| |
Collapse
|
25
|
Vaksmaa A, van Alen TA, Ettwig KF, Lupotto E, Valè G, Jetten MSM, Lüke C. Stratification of Diversity and Activity of Methanogenic and Methanotrophic Microorganisms in a Nitrogen-Fertilized Italian Paddy Soil. Front Microbiol 2017; 8:2127. [PMID: 29180985 PMCID: PMC5693880 DOI: 10.3389/fmicb.2017.02127] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 10/18/2017] [Indexed: 11/30/2022] Open
Abstract
Paddy fields are important ecosystems, as rice is the primary food source for about half of the world's population. Paddy fields are impacted by nitrogen fertilization and are a major anthropogenic source of methane. Microbial diversity and methane metabolism were investigated in the upper 60 cm of a paddy soil by qPCR, 16S rRNA gene amplicon sequencing and anoxic 13C-CH4 turnover with a suite of electron acceptors. The bacterial community consisted mainly of Acidobacteria, Chloroflexi, Proteobacteria, Planctomycetes, and Actinobacteria. Among archaea, Euryarchaeota and Bathyarchaeota dominated over Thaumarchaeota in the upper 30 cm of the soil. Bathyarchaeota constituted up to 45% of the total archaeal reads in the top 5 cm. In the methanogenic community, Methanosaeta were generally more abundant than the versatile Methanosarcina. The measured maximum methane production rate was 444 nmol gdwh-1, and the maximum rates of nitrate-, nitrite-, and iron-dependent anaerobic oxidation of methane (AOM) were 57 nmol, 55 nmol, and 56 nmol gdwh-1, respectively, at different depths. qPCR revealed a higher abundance of 'Candidatus Methanoperedens nitroreducens' than methanotrophic NC10 phylum bacteria at all depths, except at 60 cm. These results demonstrate that there is substantial potential for AOM in fertilized paddy fields, with 'Candidatus Methanoperedens nitroreducens' archaea as a potential important contributor.
Collapse
Affiliation(s)
- Annika Vaksmaa
- Department of Microbiology – Institute of Water and Wetland Research, Radboud University, Nijmegen, Netherlands
| | - Theo A. van Alen
- Department of Microbiology – Institute of Water and Wetland Research, Radboud University, Nijmegen, Netherlands
| | - Katharina F. Ettwig
- Department of Microbiology – Institute of Water and Wetland Research, Radboud University, Nijmegen, Netherlands
| | - Elisabetta Lupotto
- Research Centre for Food and Nutrition, Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Rome, Italy
| | - Giampiero Valè
- Research Centre for Cereal and Industrial Crops, Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Vercelli, Italy
| | - Mike S. M. Jetten
- Department of Microbiology – Institute of Water and Wetland Research, Radboud University, Nijmegen, Netherlands
| | - Claudia Lüke
- Department of Microbiology – Institute of Water and Wetland Research, Radboud University, Nijmegen, Netherlands
| |
Collapse
|
26
|
Laskar F, Das Purkayastha S, Sen A, Bhattacharya MK, Misra BB. Diversity of methanogenic archaea in freshwater sediments of lacustrine ecosystems. J Basic Microbiol 2017; 58:101-119. [PMID: 29083035 DOI: 10.1002/jobm.201700341] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Revised: 09/25/2017] [Accepted: 09/27/2017] [Indexed: 12/15/2022]
Abstract
About half of the global methane (CH4 ) emission is contributed by the methanogenic archaeal communities leading to a significant increase in global warming. This unprecedented situation has increased the ever growing necessity of evaluating the control measures for limiting CH4 emission to the atmosphere. Unfortunately, research endeavors on the diversity and functional interactions of methanogens are not extensive till date. We anticipate that the study of the diversity of methanogenic community is paramount for understanding the metabolic processes in freshwater lake ecosystems. Although there are several disadvantages of conventional culture-based methods for determining the diversity of methanogenic archaeal communities, in order to understand their ecological roles in natural environments it is required to culture the microbes. Recently different molecular techniques have been developed for determining the structure of methanogenic archaeal communities thriving in freshwater lake ecosystem. The two gene based cloning techniques required for this purpose are 16S rRNA and methyl coenzyme M reductase (mcrA) in addition to the recently developed metagenomics approaches and high throughput next generation sequencing efforts. This review discusses the various methods of culture-dependent and -independent measures of determining the diversity of methanogen communities in lake sediments in lieu of the different molecular approaches and inter-relationships of diversity of methanogenic archaea.
Collapse
Affiliation(s)
- Folguni Laskar
- Advance Institutional Biotech Hub, Karimganj College, Karimganj, Assam, India
| | | | - Aniruddha Sen
- Advance Institutional Biotech Hub, Karimganj College, Karimganj, Assam, India
| | | | - Biswapriya B Misra
- Department of Genetics, Texas Biomedical Research Institute, San Antonio 78227, Texas, USA
| |
Collapse
|
27
|
Xiao Y, Liu X, Fang J, Liang Y, Zhang X, Meng D, Yin H. Responses of zinc recovery to temperature and mineral composition during sphalerite bioleaching process. AMB Express 2017; 7:190. [PMID: 29063373 PMCID: PMC5653677 DOI: 10.1186/s13568-017-0491-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 10/14/2017] [Indexed: 11/15/2022] Open
Abstract
Temperature and energy resources (e.g., iron, sulfur and organic matter) usually undergo dynamic changes, and play important roles during industrial bioleaching process. Thus, it is essential to investigate their synergistic effects and the changes of their independent effects with simultaneous actions of multi-factors. In this study, we explored the synergistic effects of temperature and original mineral compositions (OMCs, energy resources) on the sphalerite bioleaching process. The microbial community structure was monitored by 16S rRNA gene sequencing technology and showed clear segregation along temperature gradients and Shannon diversity decreased at high temperature. On the contrary, the physicochemical parameters (pH and [Fe3+]) in the leachate were significantly affected by the OMCs. Interestingly, the influence of temperature on zinc recovery was greater at relatively simpler OMCs level, whereas the influence of OMCs was stronger at lower temperature. In addition, using [Fe3+], pH, relative abundances of dominant OTUs of microbial community and temperature as variable parameters, several models were constructed to predict zinc leaching efficiency, providing a possibility to predict the metal recovery efficiency under temperature change and variable energy resources.
Collapse
|
28
|
Xie W, Jiao N, Ma C, Fang S, Phelps TJ, Zhu R, Zhang C. The response of archaeal species to seasonal variables in a subtropical aerated soil: insight into the low abundant methanogens. Appl Microbiol Biotechnol 2017; 101:6505-6515. [PMID: 28555278 DOI: 10.1007/s00253-017-8349-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 05/08/2017] [Accepted: 05/10/2017] [Indexed: 10/19/2022]
Abstract
Archaea are cosmopolitan in aerated soils around the world. While the dominance of Thaumarchaeota has been reported in most soils, the methanogens are recently found to be ubiquitous but with low abundances in the aerated soil globally. However, the seasonal changes of Archaea community in the aerated soils are still in the mist. In this study, we investigated the change of Archaea in the context of environmental variables over a period of 12 months in a subtropical soil on the Chongming Island, China. The results showed that Nitrososphaera spp. were the dominant archaeal population while the methanogens were in low proportions but highly diverse (including five genera: Methanobacterium, Methanocella, Methanosaeta, Methanosarcina, and Methanomassiliicoccus) in the aerated soil samples determined by high throughput sequencing. A total of 126 LSA correlations were found in the dataset including all the 72 archaeal OTUs and 8 environmental factors. A significance index defined as the pagerank score of each OTU divided by its relative abundance was used to evaluate the significance of each OTU. The results showed that five out of 17 methanogen OTUs were significantly positively correlated with temperature, suggesting those methanogens might increase with temperature rather than being dormant in the aerated soils. Given the metabolic response of methanogens to temperature under aerated soil conditions, their contribution to the global methane cycle warrants evaluation.
Collapse
Affiliation(s)
- Wei Xie
- State Key Lab of Marine Geology, Tongji University, Shanghai, 200092, People's Republic of China.
| | - Na Jiao
- Department of Bioinformatics, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, People's Republic of China
| | - Cenling Ma
- State Key Lab of Marine Geology, Tongji University, Shanghai, 200092, People's Republic of China
| | - Sa Fang
- Department of Bioinformatics, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, People's Republic of China
| | - Tommy J Phelps
- Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, TN, 37996, USA
| | - Ruixin Zhu
- Department of Bioinformatics, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, People's Republic of China.
| | - Chuanlun Zhang
- State Key Lab of Marine Geology, Tongji University, Shanghai, 200092, People's Republic of China
| |
Collapse
|
29
|
Zu Q, Zhong L, Deng Y, Shi Y, Wang B, Jia Z, Lin X, Feng Y. Geographical Distribution of Methanogenic Archaea in Nine Representative Paddy Soils in China. Front Microbiol 2016; 7:1447. [PMID: 27679621 PMCID: PMC5020086 DOI: 10.3389/fmicb.2016.01447] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 08/30/2016] [Indexed: 11/21/2022] Open
Abstract
Paddy field methanogenic archaea are responsible for methane (CH4) production and contribute significantly to climate change. The information regarding the spatial variations in the abundance, the diversity and the composition of such ecologically important microbes, however, is quite limited at large scale. In this investigation, we studied the abundance, alpha diversity and geographical distribution of methanogenic archaeal communities in nine representative paddy sites, along a large latitudinal gradient in China, using pyrosequencing and real-time quantitative PCR. It is found that all paddy soils harbor constant methanogenic archaeal constituents, which is dominated by family Methanocellaceae (37.3%), Methanobacteriaceae (22.1%), Methanosaetaceae (17.2%), and Methanosarcinaceae (9.8%). Methanogenic archaeal abundance is primarily influenced by soil C (R = 0.612, P = 0.001) and N (R = 0.673, P = 0.001) contents, as well as alpha diversity by soil pH (PD: R = -0.552, P = 0.006; Chao1: R = -0.615, P = 0.002). Further exploration revealed that both spatial distance (R = 0.3469, P = 0.001, partial mental test) and soil chemical variables mainly about soil C and N (R = 0.2847, P = 0.001) are the two major factors affecting methanogenic archaeal community composition distribution in paddy soils. This finding will allow us to develop a better picture of the biogeographic ranges of these ecologically important microbes and get deeper insights into their ecology.
Collapse
Affiliation(s)
- Qianhui Zu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing China
| | - Linghao Zhong
- Department of Chemistry, Pennsylvania State University, Mont Alto, PA USA
| | - Ye Deng
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing China
| | - Yu Shi
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing China
| | - Baozhan Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing China
| | - Zhongjun Jia
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing China
| | - Xiangui Lin
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing China
| | - Youzhi Feng
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing China
| |
Collapse
|
30
|
Yuan J, Ding W, Liu D, Kang H, Xiang J, Lin Y. Shifts in methanogen community structure and function across a coastal marsh transect: effects of exotic Spartina alterniflora invasion. Sci Rep 2016; 6:18777. [PMID: 26728134 PMCID: PMC4700438 DOI: 10.1038/srep18777] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 11/26/2015] [Indexed: 11/08/2022] Open
Abstract
Invasion of Spartina alterniflora in coastal areas of China increased methane (CH4) emissions. To elucidate the underlying mechanisms, we measured CH4 production potential, methanogen community structure and biogeochemical factors along a coastal wetland transect comprised of five habitat regions: open water, bare tidal flat, invasive S. alterniflora marsh and native Suaeda salsa and Phragmites australis marshes. CH4 production potential in S. alterniflora marsh was 10 times higher than that in other regions, and it was significantly correlated with soil organic carbon, dissolved organic carbon and trimethylamine concentrations, but was not correlated with acetate or formate concentrations. Although the diversity of methanogens was lowest in S. alterniflora marsh, invasion increased methanogen abundance by 3.48-fold, compared with native S. salsa and P. australis marshes due to increase of facultative Methanosarcinaceae rather than acetotrophic and hydrogenotrophic methanogens. Ordination analyses suggested that trimethylamine was the primary factor regulating shift in methanogen community structure. Addition of trimethylamine increased CH4 production rates by 1255-fold but only by 5.61- and 11.4-fold for acetate and H2/CO2, respectively. S. alterniflora invasion elevated concentration of non-competitive trimethylamine, and shifted methanogen community from acetotrophic to facultative methanogens, which together facilitated increased CH4 production potential.
Collapse
Affiliation(s)
- Junji Yuan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 10049, China
| | - Weixin Ding
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Deyan Liu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Hojeong Kang
- School of Civil and Environmental Engineering, Yonsei University, Seoul 120–749, Korea
| | - Jian Xiang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 10049, China
| | - Yongxin Lin
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 10049, China
| |
Collapse
|
31
|
Chapleur O, Mazeas L, Godon JJ, Bouchez T. Asymmetrical response of anaerobic digestion microbiota to temperature changes. Appl Microbiol Biotechnol 2015; 100:1445-1457. [DOI: 10.1007/s00253-015-7046-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 09/17/2015] [Accepted: 09/25/2015] [Indexed: 10/22/2022]
|
32
|
Roussel EG, Cragg BA, Webster G, Sass H, Tang X, Williams AS, Gorra R, Weightman AJ, Parkes RJ. Complex coupled metabolic and prokaryotic community responses to increasing temperatures in anaerobic marine sediments: critical temperatures and substrate changes. FEMS Microbiol Ecol 2015. [PMID: 26207045 PMCID: PMC4629870 DOI: 10.1093/femsec/fiv084] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The impact of temperature (0-80°C) on anaerobic biogeochemical processes and prokaryotic communities in marine sediments (tidal flat) was investigated in slurries for up to 100 days. Temperature had a non-linear effect on biogeochemistry and prokaryotes with rapid changes over small temperature intervals. Some activities (e.g. methanogenesis) had multiple 'windows' within a large temperature range (∼10 to 80°C). Others, including acetate oxidation, had maximum activities within a temperature zone, which varied with electron acceptor [metal oxide (up to ∼34°C) and sulphate (up to ∼50°C)]. Substrates for sulphate reduction changed from predominantly acetate below, and H2 above, a 43°C critical temperature, along with changes in activation energies and types of sulphate-reducing Bacteria. Above ∼43°C, methylamine metabolism ceased with changes in methanogen types and increased acetate concentrations (>1 mM). Abundances of uncultured Archaea, characteristic of deep marine sediments (e.g. MBGD Euryarchaeota, 'Bathyarchaeota') changed, indicating their possible metabolic activity and temperature range. Bacterial cell numbers were consistently higher than archaeal cells and both decreased above ∼15°C. Substrate addition stimulated activities, widened some activity temperature ranges (methanogenesis) and increased bacterial (×10) more than archaeal cell numbers. Hence, additional organic matter input from climate-related eutrophication may amplify the impact of temperature increases on sedimentary biogeochemistry.
Collapse
Affiliation(s)
- Erwan G Roussel
- School of Earth and Ocean Sciences, Main Building, Park Place, Cardiff University, CF10 3AT Cardiff, UK
| | - Barry A Cragg
- School of Earth and Ocean Sciences, Main Building, Park Place, Cardiff University, CF10 3AT Cardiff, UK
| | - Gordon Webster
- School of Earth and Ocean Sciences, Main Building, Park Place, Cardiff University, CF10 3AT Cardiff, UK Cardiff School of Biosciences, Main Building, Park Place, Cardiff University, CF10 3AT Cardiff, UK
| | - Henrik Sass
- School of Earth and Ocean Sciences, Main Building, Park Place, Cardiff University, CF10 3AT Cardiff, UK
| | - Xiaohong Tang
- School of Earth and Ocean Sciences, Main Building, Park Place, Cardiff University, CF10 3AT Cardiff, UK
| | - Angharad S Williams
- Cardiff School of Biosciences, Main Building, Park Place, Cardiff University, CF10 3AT Cardiff, UK
| | - Roberta Gorra
- DISAFA, University of Turin, Largo P. Baccini 2, 10095 Grugliasco, TO, Italy
| | - Andrew J Weightman
- Cardiff School of Biosciences, Main Building, Park Place, Cardiff University, CF10 3AT Cardiff, UK
| | - R John Parkes
- School of Earth and Ocean Sciences, Main Building, Park Place, Cardiff University, CF10 3AT Cardiff, UK
| |
Collapse
|
33
|
Mach V, Blaser MB, Claus P, Chaudhary PP, Rulík M. Methane production potentials, pathways, and communities of methanogens in vertical sediment profiles of river Sitka. Front Microbiol 2015; 6:506. [PMID: 26052322 PMCID: PMC4440369 DOI: 10.3389/fmicb.2015.00506] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 05/07/2015] [Indexed: 11/13/2022] Open
Abstract
Biological methanogenesis is linked to permanent water logged systems, e.g., rice field soils or lake sediments. In these systems the methanogenic community as well as the pathway of methane formation are well-described. By contrast, the methanogenic potential of river sediments is so far not well-investigated. Therefore, we analyzed (a) the methanogenic potential (incubation experiments), (b) the pathway of methane production (stable carbon isotopes and inhibitor studies), and (c) the methanogenic community composition (terminal restriction length polymorphism of mcrA) in depth profiles of sediment cores of River Sitka, Czech Republic. We found two depth-related distinct maxima for the methanogenic potentials (a) The pathway of methane production was dominated by hydrogenotrophic methanogenesis (b) The methanogenic community composition was similar in all depth layers (c) The main TRFs were representative for Methanosarcina, Methanosaeta, Methanobacterium, and Methanomicrobium species. The isotopic signals of acetate indicated a relative high contribution of chemolithotrophic acetogenesis to the acetate pool.
Collapse
Affiliation(s)
- Václav Mach
- Department of Ecology and Environmental Science, Faculty of Science, Palacky University Olomouc, Czech Republic
| | - Martin B Blaser
- Department of Ecology and Environmental Science, Faculty of Science, Palacky University Olomouc, Czech Republic
| | - Peter Claus
- Department of Biogeochemistry, Max Planck Institute for Terrestrial Microbiology Marburg, Germany
| | - Prem P Chaudhary
- Department of Ecology and Environmental Science, Faculty of Science, Palacky University Olomouc, Czech Republic
| | - Martin Rulík
- Department of Ecology and Environmental Science, Faculty of Science, Palacky University Olomouc, Czech Republic
| |
Collapse
|
34
|
Archaeal communities associated with roots of the common reed (Phragmites australis) in Beijing Cuihu Wetland. World J Microbiol Biotechnol 2015; 31:823-32. [DOI: 10.1007/s11274-015-1836-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Accepted: 02/28/2015] [Indexed: 11/26/2022]
|
35
|
Fu L, Song T, Lu Y. Snapshot of methanogen sensitivity to temperature in Zoige wetland from Tibetan plateau. Front Microbiol 2015; 6:131. [PMID: 25745422 PMCID: PMC4333864 DOI: 10.3389/fmicb.2015.00131] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 02/04/2015] [Indexed: 12/02/2022] Open
Abstract
Zoige wetland in Tibetan plateau represents a cold environment at high altitude where significant methane emission has been observed. However, it remains unknown how the production and emission of CH4 from Zoige wetland will respond to a warming climate. Here we investigated the temperature sensitivity of methanogen community in a Zoige wetland soil under the laboratory incubation conditions. One soil sample was collected and the temperature sensitivity of the methanogenic activity, the structure of methanogen community and the methanogenic pathways were determined. We found that the response of methanogenesis to temperature could be separated into two phases, a high sensitivity in the low temperature range and a modest sensitivity under mesophilic conditions, respectively. The aceticlastic methanogens Methanosarcinaceae were the main methanogens at low temperatures, while hydrogenotrophic Methanobacteriales, Methanomicrobiales, and Methanocellales were more abundant at higher temperatures. The total abundance of mcrA genes increased with temperature indicating that the growth of methanogens was stimulated. The growth of hydrogenotrophic methanogens, however, was faster than aceticlastic ones resulting in the shift of methanogen community. Determination of carbon isotopic signatures indicated that methanogenic pathway was also shifted from mainly aceticlastic methanogenesis to a mixture of hydrogenotrophic and aceticlastic methanogenesis with the increase of temperature. Collectively, the shift of temperature responses of methanogenesis was in accordance with the changes in methanogen composition and methanogenic pathway in this wetland sample. It appears that the aceticlastic methanogenesis dominating at low temperatures is more sensitive than the hydrogenotrophic one at higher temperatures.
Collapse
Affiliation(s)
- Li Fu
- College of Resources and Environmental Sciences, China Agricultural University Beijing, China
| | - Tianze Song
- School of Life Science, Fudan University Shanghai, China ; College of Urban and Environmental Sciences, Peking University Beijing, China
| | - Yahai Lu
- College of Resources and Environmental Sciences, China Agricultural University Beijing, China ; College of Urban and Environmental Sciences, Peking University Beijing, China
| |
Collapse
|
36
|
Breidenbach B, Conrad R. Seasonal dynamics of bacterial and archaeal methanogenic communities in flooded rice fields and effect of drainage. Front Microbiol 2015; 5:752. [PMID: 25620960 PMCID: PMC4288041 DOI: 10.3389/fmicb.2014.00752] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 12/11/2014] [Indexed: 01/13/2023] Open
Abstract
We studied the resident (16S rDNA) and the active (16S rRNA) members of soil archaeal and bacterial communities during rice plant development by sampling three growth stages (vegetative, reproductive and maturity) under field conditions. Additionally, the microbial community was investigated in two non-flooded fields (unplanted, cultivated with upland maize) in order to monitor the reaction of the microbial communities to non-flooded, dry conditions. The abundance of Bacteria and Archaea was monitored by quantitative PCR showing an increase in 16S rDNA during reproductive stage and stable 16S rRNA copies throughout the growth season. Community profiling by T-RFLP indicated a relatively stable composition during rice plant growth whereas pyrosequencing revealed minor changes in relative abundance of a few bacterial groups. Comparison of the two non-flooded fields with flooded rice fields showed that the community composition of the Bacteria was slightly different, while that of the Archaea was almost the same. Only the relative abundance of Methanosarcinaceae and Soil Crenarchaeotic Group increased in non-flooded vs. flooded soil. The abundance of bacterial and archaeal 16S rDNA copies was highest in flooded rice fields, followed by non-flooded maize and unplanted fields. However, the abundance of ribosomal RNA (active microbes) was similar indicating maintenance of a high level of ribosomal RNA under the non-flooded conditions, which were unfavorable for anaerobic bacteria and methanogenic archaea. This maintenance possibly serves as preparedness for activity when conditions improve. In summary, the analyses showed that the bacterial and archaeal communities inhabiting Philippine rice field soil were relatively stable over the season but reacted upon change in field management.
Collapse
Affiliation(s)
| | - Ralf Conrad
- Department of Biogeochemistry, Max Planck Institute for Terrestrial MicrobiologyMarburg, Germany
| |
Collapse
|
37
|
Pan Y, Abell GCJ, Bodelier PLE, Meima-Franke M, Sessitsch A, Bodrossy L. Remarkable recovery and colonization behaviour of methane oxidizing bacteria in soil after disturbance is controlled by methane source only. MICROBIAL ECOLOGY 2014; 68:259-270. [PMID: 24658413 DOI: 10.1007/s00248-014-0402-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 02/21/2014] [Indexed: 06/03/2023]
Abstract
Little is understood about the relationship between microbial assemblage history, the composition and function of specific functional guilds and the ecosystem functions they provide. To learn more about this relationship we used methane oxidizing bacteria (MOB) as model organisms and performed soil microcosm experiments comprised of identical soil substrates, hosting distinct overall microbial diversities(i.e., full, reduced and zero total microbial and MOB diversities). After inoculation with undisturbed soil, the recovery of MOB activity, MOB diversity and total bacterial diversity were followed over 3 months by methane oxidation potential measurements and analyses targeting pmoA and 16S rRNA genes. Measurement of methane oxidation potential demonstrated different recovery rates across the different treatments. Despite different starting microbial diversities, the recovery and succession of the MOB communities followed a similar pattern across the different treatment microcosms. In this study we found that edaphic parameters were the dominant factor shaping microbial communities over time and that the starting microbial community played only a minor role in shaping MOB microbial community.
Collapse
|
38
|
Lee HJ, Kim SY, Kim PJ, Madsen EL, Jeon CO. Methane emission and dynamics of methanotrophic and methanogenic communities in a flooded rice field ecosystem. FEMS Microbiol Ecol 2014; 88:195-212. [DOI: 10.1111/1574-6941.12282] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 01/03/2014] [Accepted: 01/03/2014] [Indexed: 01/19/2023] Open
Affiliation(s)
- Hyo Jung Lee
- Department of Life Science; Chung-Ang University; Seoul Korea
| | - Sang Yoon Kim
- Division of Applied Life Science; Gyeongsang National University; Jinju Korea
| | - Pil Joo Kim
- Division of Applied Life Science; Gyeongsang National University; Jinju Korea
| | | | - Che Ok Jeon
- Department of Life Science; Chung-Ang University; Seoul Korea
| |
Collapse
|
39
|
Youngblut ND, Dell'aringa M, Whitaker RJ. Differentiation between sediment and hypolimnion methanogen communities in humic lakes. Environ Microbiol 2013; 16:1411-23. [PMID: 24237594 DOI: 10.1111/1462-2920.12330] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 10/01/2013] [Indexed: 11/28/2022]
Abstract
The traditional view of carbon cycling within the pelagic zone of freshwater lakes has consisted of methane production within the anoxic sediment, followed by diffusive flux and ebullition through the water column. Methanogenic archaea have been shown to be present within the water columns of freshwater lakes; however, little is known about whether these methanogenic communities are distinct from those in the sediment or how these communities change over space and time. We used the methanogen-specific phylogenetic marker mcrA to perform a 3-year study focusing on the community structure of methanogens within the sediment and anoxic hypolimnion water layer of five humic lakes in WI, USA. The hypolimnion and sediment communities were distinct in composition, richness and phylogenetic diversity. Hypolimnion communities displayed a temporally stable biogeographical pattern among lakes, which was driven by both lake-specific environmental variables and barriers to dispersal. We conclude that the hypolimnion comprised communities of methanogens that are distinct from those in the sediment, differentiated among lakes, and likely have unique ecological roles and evolutionary trajectories in these anaerobic environments.
Collapse
Affiliation(s)
- Nicholas D Youngblut
- Department of Microbiology, University of Illinois at Urbana-Champaign, 601 South Goodwin Avenue, Urbana, IL, 61801, USA
| | | | | |
Collapse
|
40
|
Feng Y, Lin X, Yu Y, Zhang H, Chu H, Zhu J. Elevated ground-level O3 negatively influences paddy methanogenic archaeal community. Sci Rep 2013; 3:3193. [PMID: 24217205 PMCID: PMC3824163 DOI: 10.1038/srep03193] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 10/25/2013] [Indexed: 11/30/2022] Open
Abstract
The current knowledge regarding the effect of global climate change on rice-paddy methane (CH4) emissions is incomplete, partly because information is limited concerning the mechanism of the microbial response to elevated ground-level ozone (O3). A field experiment was conducted in the China Ozone Free-Air Concentration Enrichment facility in a rice-wheat rotation system to investigate the responses of methanogenic archaeal communities to elevated ground-level O3 by culture-independent and -reliant approaches. We found that elevated ground-level O3 inhibited methanogenic activity and influenced the composition of paddy methanogenic communities, reducing the abundance and diversity of paddy methanogens by adversely affecting dominant groups, such as aceticlastic Methanosaeta, especially at the rice tillering stage. Our results indicated that continuously elevated ground-level O3 would negatively influence paddy methanogenic archaeal communities and its critical ecological function. These findings will contribute to a comprehensive understanding of the responses and feedbacks of paddy ecosystems to global climate change.
Collapse
Affiliation(s)
- Youzhi Feng
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences Nanjing, 210008, Jiangsu Province P.R. China
| | - Xiangui Lin
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences Nanjing, 210008, Jiangsu Province P.R. China
| | - Yongchang Yu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences Nanjing, 210008, Jiangsu Province P.R. China
| | - Huayong Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences Nanjing, 210008, Jiangsu Province P.R. China
| | - Haiyan Chu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences Nanjing, 210008, Jiangsu Province P.R. China
| | - Jianguo Zhu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences Nanjing, 210008, Jiangsu Province P.R. China
| |
Collapse
|
41
|
Aronson EL, Allison SD, Helliker BR. Environmental impacts on the diversity of methane-cycling microbes and their resultant function. Front Microbiol 2013; 4:225. [PMID: 23966984 PMCID: PMC3743065 DOI: 10.3389/fmicb.2013.00225] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Accepted: 07/25/2013] [Indexed: 11/29/2022] Open
Abstract
Methane is an important anthropogenic greenhouse gas that is produced and consumed in soils by microorganisms responding to micro-environmental conditions. Current estimates show that soil consumption accounts for 5–15% of methane removed from the atmosphere on an annual basis. Recent variability in atmospheric methane concentrations has called into question the reliability of estimates of methane consumption and calls for novel approaches in order to predict future atmospheric methane trends. This review synthesizes the environmental and climatic factors influencing the consumption of methane from the atmosphere by non-wetland, terrestrial soil microorganisms. In particular, we focus on published efforts to connect community composition and diversity of methane-cycling microbial communities to observed rates of methane flux. We find abundant evidence for direct connections between shifts in the methane-cycling microbial community, due to climate and environmental changes, and observed methane flux levels. These responses vary by ecosystem and associated vegetation type. This information will be useful in process-based models of ecosystem methane flux responses to shifts in environmental and climatic parameters.
Collapse
Affiliation(s)
- Emma L Aronson
- Department of Plant Pathology and Microbiology, University of California Riverside, CA, USA ; Department of Ecology and Evolutionary Biology, University of California Irvine, CA, USA
| | | | | |
Collapse
|
42
|
Methane production potential and methanogenic archaea community dynamics along the Spartina alterniflora invasion chronosequence in a coastal salt marsh. Appl Microbiol Biotechnol 2013; 98:1817-29. [DOI: 10.1007/s00253-013-5104-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 07/02/2013] [Accepted: 07/04/2013] [Indexed: 11/30/2022]
|
43
|
Scavino AF, Ji Y, Pump J, Klose M, Claus P, Conrad R. Structure and function of the methanogenic microbial communities in Uruguayan soils shifted between pasture and irrigated rice fields. Environ Microbiol 2013; 15:2588-602. [PMID: 23763330 DOI: 10.1111/1462-2920.12161] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 05/15/2013] [Indexed: 11/30/2022]
Abstract
Irrigated rice fields in Uruguay are temporarily established on soils used as cattle pastures. Typically, 4 years of cattle pasture are alternated with 2 years of irrigated rice cultivation. Thus, oxic upland conditions are rotated with seasonally anoxic wetland conditions. Only the latter conditions are suitable for the production of CH4 from anaerobic degradation of organic matter. We studied soil from a permanent pasture as well as soils from different years of the pasture-rice rotation hypothesizing that activity and structure of the bacterial and archaeal communities involved in production of CH4 change systematically with the duration of either oxic or anoxic conditions. Soil samples were taken from drained fields, air-dried and used for the experiments. Indeed, methanogenic archaeal gene copy numbers (16S rRNA, mcrA) were lower in soil from the permanent pasture than from the pasture-rice alternation fields, but within the latter, there was no significant difference. Methane production started to accumulate after 16 days and 7 days of anoxic incubation in soil from the permanent pasture and the pasture-rice alternation fields respectively. Then, CH4 production rates were slightly higher in the soils used for pasture than for rice production. Analysis of δ(13) C in CH4, CO2 and acetate in the presence and absence of methyl fluoride, an inhibitor of aceticlastic methanogenesis, indicated that CH4 was mainly (58-75%) produced from acetate, except in the permanent pasture soil (42%). Terminal restriction fragment length polymorphism (T-RFLP) of archaeal 16S rRNA genes showed no difference among the soils from the pasture-rice alternation fields with Methanocellaceae and Methanosarcinaceae as the main groups of methanogens, but in the permanent pasture soil, Methanocellaceae were relatively less abundant. T-RFLP analysis of bacterial 16S rRNA genes allowed the distinction of permanent pasture and fields from the pasture-rice rotation, but nevertheless with a high similarity. Pyrosequencing of bacterial 16S rRNA genes generally revealed Firmicutes as the dominant bacterial phylum, followed by Proteobacteria, Acidobacteria and Actinobacteria. We conclude that a stable methanogenic microbial community established once pastures have been turned into management by pasture-rice alternation despite the fact that 2 years of wetland conditions were followed by 4 years of upland conditions that were not suitable for CH4 production.
Collapse
Affiliation(s)
- Ana Fernandez Scavino
- Max-Planck-Institute for Terrestrial Microbiology, Karl-von-Frisch-Str.10, 35043, Marburg, Germany
| | | | | | | | | | | |
Collapse
|
44
|
Polag D, Heuwinkel H, Laukenmann S, Greule M, Keppler F. Evidence of anaerobic syntrophic acetate oxidation in biogas batch reactors by analysis of 13C carbon isotopes. ISOTOPES IN ENVIRONMENTAL AND HEALTH STUDIES 2013; 49:365-77. [PMID: 23781862 DOI: 10.1080/10256016.2013.805758] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Between 2008 and 2010 various batch experiments were carried out to study the stable carbon isotopic composition of biogas (CH4 and CO2) produced from (i) pure sludge and (ii) sludge including maize. From the evolution of the natural isotopic signature, a temporal change of methanogenic pathways could be detected for the treatment with maize showing that a dominance in acetotrophic methanogenesis was replaced by a mixture of hydrogenotrophic and acetotrophic methanogenesis. For pure sludge, hydrogenotrophic methanogenesis was the dominant or probably exclusive pathway. Experiments with isotopically labelled acetate (99% (13)CH3COONa and 99% CH3(13)COONa) indicated a significant contribution of syntrophic acetate oxidation (SAO) for all the investigated treatments. In the case of pure sludge, experiments from 2008 showed that acetate was almost entirely oxidised to CO2, i.e. acetotrophic methanogenesis was negligible. However, in 2010, the sludge showed a clear dominance in acetotrophic methanogenesis with a minor contribution by SAO indicating a significant change in the metabolic character. Our results indicate that SAO during anaerobic degradation of maize might be a significant process that needs to be considered in biogas research.
Collapse
Affiliation(s)
- Daniela Polag
- a Max-Planck-Institute for Chemistry , Mainz , Germany
| | | | | | | | | |
Collapse
|
45
|
Ahn JH, Song J, Kim BY, Kim MS, Joa JH, Weon HY. Characterization of the bacterial and archaeal communities in rice field soils subjected to long-term fertilization practices. J Microbiol 2012; 50:754-65. [PMID: 23124742 DOI: 10.1007/s12275-012-2409-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 09/26/2012] [Indexed: 12/23/2022]
Abstract
The bacterial and archaeal communities in rice field soils subjected to different fertilization regimes for 57 years were investigated in two different seasons, a non-planted, drained season (April) and a rice-growing, flooded season (August), by performing soil dehydrogenase assay, real-time PCR assay and pyrosequencing analysis. All fertilization regimes increased the soil dehydrogenase activity while the abundances of bacteria and archaea increased in the plots receiving inorganic fertilizers plus compost and not in those receiving inorganic fertilizers only. Rice-growing and flooding decreased the soil dehydrogenase activity while they increased the bacterial diversity in rice field soils. The bacterial communities were dominated by Chloroflexi, Proteobacteria, and Actinobacteria and the archaeal communities by Crenarchaeota at the phylum level. In principal coordinates analysis based on the weighted Fast UniFrac metric, the bacterial and archaeal communities were separated primarily by season, and generally distributed along with soil pH, the variation of which had been caused by long-term fertilization. Variations in the relative abundance according to the season or soil pH were observed for many bacterial and archaeal groups. In conclusion, the microbial activity, prokaryotic abundance and diversity, and prokaryotic community structure in the rice field soils were changed by season and long-term fertilization.
Collapse
Affiliation(s)
- Jae-Hyung Ahn
- Agricultural Microbiology Division, National Academy of Agricultural Science, Rural Development Administration, Suwon 441-707, Republic of Korea
| | | | | | | | | | | |
Collapse
|
46
|
Banger K, Tian H, Lu C. Do nitrogen fertilizers stimulate or inhibit methane emissions from rice fields? GLOBAL CHANGE BIOLOGY 2012; 18:3259-3267. [PMID: 28741830 DOI: 10.1111/j.1365-2486.2012.02762.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 06/04/2012] [Indexed: 05/22/2023]
Abstract
In rice cultivation, there are controversial reports on net impacts of nitrogen (N) fertilizers on methane (CH 4 ) emissions. Nitrogen fertilizers increase crop growth as well as alter CH 4 producing (Methanogens) and consuming (Methanotrophs) microbes, and thereby produce complex effects on CH 4 emissions. Objectives of this study were to determine net impact of N fertilizers on CH 4 emissions and to identify their underlying mechanisms in the rice soils. Database was obtained from 33 published papers that contained CH 4 emissions observations from N fertilizer (28-406 kg N ha-1 ) treatment and its control. Results have indicated that N fertilizers increased CH 4 emissions in 98 of 155 data pairs in rice soils. Response of CH 4 emissions per kg N fertilizer was significantly (P < 0.05) greater at < 140 kg N ha-1 than > 140 kg N ha-1 indicating that substrate switch from CH 4 to ammonia by Methanotrophs may not be a dominant mechanism for increased CH 4 emissions. On the contrary, decreased CH 4 emission in intermittent drainage by N fertilizers has suggested the stimulation of Methanotrophs in rice soils. Effects of N fertilizer stimulated Methanotrophs in reducing CH 4 emissions were modified by the continuous flood irrigation due to limitation of oxygen to Methanotrophs. Greater response of CH 4 emissions per kg N fertilizer in urea than ammonia sulfate probably indicated the interference of sulfate in the CH 4 production process. Overall, response of CH 4 emissions to N fertilizers was correlated with N-induced crop yield (r = +0.39; P < 0.01), probably due to increased carbon substrates for Methanogens. Using CH 4 emission observations, this meta-analysis has identified dominant microbial processes that control net effects of N fertilizers on CH 4 emissions in rice soils. Finally, we have provided a conceptual model that included microbial processes and controlling factors to predict effects of N fertilizers on CH 4 emissions in rice soils.
Collapse
Affiliation(s)
- Kamaljit Banger
- Ecosystem Dynamics and Global Ecology (EDGE) Laboratory, School of Forestry and Wildlife Sciences, Auburn University, Auburn, AL, 36849, USA
- International Center for Climate and Global Change Research, Auburn University, Auburn, AL, 36849, USA
| | - Hanqin Tian
- Ecosystem Dynamics and Global Ecology (EDGE) Laboratory, School of Forestry and Wildlife Sciences, Auburn University, Auburn, AL, 36849, USA
- International Center for Climate and Global Change Research, Auburn University, Auburn, AL, 36849, USA
| | - Chaoqun Lu
- Ecosystem Dynamics and Global Ecology (EDGE) Laboratory, School of Forestry and Wildlife Sciences, Auburn University, Auburn, AL, 36849, USA
- International Center for Climate and Global Change Research, Auburn University, Auburn, AL, 36849, USA
| |
Collapse
|
47
|
Weaver KH, Harper LA, Brown SM. Effects on carbon and nitrogen emissions due to swine manure removal for biofuel production. JOURNAL OF ENVIRONMENTAL QUALITY 2012; 41:1371-1382. [PMID: 23099928 DOI: 10.2134/jeq2011.0374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Methane (CH) and ammonia (NH) are emitted from swine-manure processing lagoons, contributing to global climate change and reducing air quality. Manure diverted to biofuel production is proposed as a means to reduce CH emissions. At a swine confined animal feeding operation in the U.S. Central Great Basin, animal manure was diverted from 12 farms to a biofuel facility and converted to methanol. Ammonia emissions were determined using the De Visscher Model from measured data of dissolved lagoon ammoniacal N concentrations, pH, temperature, and wind speed at the lagoon sites. Other lagoon gas emissions were measured with subsurface gas collection devices and gas chromatography analysis. During 2 yr of study, CO and CH emissions from the primary lagoons decreased 11 and 12%, respectfully, as a result of the biofuel process, compared with concurrently measured control lagoon emissions. Ammonia emissions increased 47% compared with control lagoons. The reduction of CH and increase in NH emissions agrees with a short-term study measured at this location by Lagrangian inverse dispersion analysis. The increase in NH emissions was primarily due to an increase in lagoon solution pH attributable to decreased methanogenesis. Also observed due to biofuel production was a 20% decrease in conversion of total ammoniacal N to N, a secondary process for the removal of N in anaerobic waste lagoons. The increase in NH emissions can be partially attributed to the decrease in N production by a proposed NH conversion to N mechanism. This mechanism predicts that a decrease in NH conversion to N increases ammoniacal N pH. Both effects increase NH emissions. It is unknown whether the decrease in NH conversion to N is a direct or physical result of the decrease in methanogenesis. Procedures and practices intended to reduce emissions of one pollutant can have an unintended consequence on the emissions of another pollutant.
Collapse
Affiliation(s)
- Kim H Weaver
- Department of Physical Science, Southern Utah University, Cedar City, UT, USA.
| | | | | |
Collapse
|
48
|
Noll M, Jirjis R. Microbial communities in large-scale wood piles and their effects on wood quality and the environment. Appl Microbiol Biotechnol 2012; 95:551-63. [PMID: 22695800 DOI: 10.1007/s00253-012-4164-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Revised: 05/09/2012] [Accepted: 05/10/2012] [Indexed: 11/30/2022]
Abstract
The demand of renewable energy sources, i.e. biomass, is steadily increasing worldwide to reduce the need of fossil energy sources. Biomass such as energy crops, woody species, forestry and agricultural residues are the most common renewable energy sources. Due to uneven demand for wood fuel, the material is mostly stored outdoors in chip piles or as logs until utilisation. Storage of biomass is accompanied by chemical, physical and biological processes which can significantly reduce the fuel quality. However, heating plants require high-quality biomass to ensure efficient operation, thereby minimising maintenance costs. Therefore, optimised storage conditions and duration times for chipped wood and tree logs have to be found. This paper aims at reviewing available knowledge on the pathways of microbial effects on stored woody biomass and on investigations of the fungal and bacterial community structure and identity. Moreover, potential functions of microorganisms present in wood chip piles and logs are discussed in terms of (1) reduction of fuel quality, (2) catalysing self-ignition processes, and (3) constituting health risk and unfriendly work environment.
Collapse
Affiliation(s)
- Matthias Noll
- Bioanalytics, University of Applied Science, Friedrich-Streib-Str. 2, 96450 Coburg, Germany.
| | | |
Collapse
|
49
|
Syntrophic oxidation of propionate in rice field soil at 15 and 30°C under methanogenic conditions. Appl Environ Microbiol 2012; 78:4923-32. [PMID: 22582054 DOI: 10.1128/aem.00688-12] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Propionate is one of the major intermediary products in the anaerobic decomposition of organic matter in wetlands and paddy fields. Under methanogenic conditions, propionate is decomposed through syntrophic interaction between proton-reducing and propionate-oxidizing bacteria and H(2)-consuming methanogens. Temperature is an important environmental regulator; yet its effect on syntrophic propionate oxidation has been poorly understood. In the present study, we investigated the syntrophic oxidation of propionate in a rice field soil at 15°C and 30°C. [U-(13)C]propionate (99 atom%) was applied to anoxic soil slurries, and the bacteria and archaea assimilating (13)C were traced by DNA-based stable isotope probing. Syntrophobacter spp., Pelotomaculum spp., and Smithella spp. were found significantly incorporating (13)C into their nucleic acids after [(13)C]propionate incubation at 30°C. The activity of Smithella spp. increased in the later stage, and concurrently that of Syntrophomonas spp. increased. Aceticlastic Methanosaetaceae and hydrogenotrophic Methanomicrobiales and Methanocellales acted as methanogenic partners at 30°C. Syntrophic oxidation of propionate also occurred actively at 15°C. Syntrophobacter spp. were significantly labeled with (13)C, whereas Pelotomaculum spp. were less active at this temperature. In addition, Methanomicrobiales, Methanocellales, and Methanosarcinaceae dominated the methanogenic community, while Methanosaetaceae decreased. Collectively, temperature markedly influenced the activity and community structure of syntrophic guilds degrading propionate in the rice field soil. Interestingly, Geobacter spp. and some other anaerobic organisms like Rhodocyclaceae, Acidobacteria, Actinobacteria, and Thermomicrobia probably also assimilated propionate-derived (13)C. The mechanisms for the involvement of these organisms remain unclear.
Collapse
|
50
|
Long-term field fertilization alters the diversity of autotrophic bacteria based on the ribulose-1,5-biphosphate carboxylase/oxygenase (RubisCO) large-subunit genes in paddy soil. Appl Microbiol Biotechnol 2011; 95:1061-71. [PMID: 22159889 DOI: 10.1007/s00253-011-3760-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Revised: 11/12/2011] [Accepted: 11/14/2011] [Indexed: 10/14/2022]
Abstract
Carbon dioxide (CO(2)) assimilation by autotrophic bacteria is an important process in the soil carbon cycle with major environmental implications. The long-term impact of fertilizer on CO(2) assimilation in the bacterial community of paddy soils remains poorly understood. To narrow this knowledge gap, the composition and abundance of CO(2)-assimilating bacteria were investigated using terminal restriction fragment length polymorphism and quantitative PCR of the cbbL gene [that encodes ribulose-1,5-biphosphate carboxylase/oxygenase (RubisCO)] in paddy soils. Soils from three stations in subtropical China were used. Each station is part of a long-term fertilization experiment with three treatments: no fertilizer (CK), chemical fertilizers (NPK), and NPK combined with rice straw (NPKM). At all of the stations, the cbbL-containing bacterial communities were dominated by facultative autotrophic bacteria such as Rhodopseudomonas palustris, Bradyrhizobium japonicum, and Ralstonia eutropha. The community composition in the fertilized soil (NPK and NPKM) was distinct from that in unfertilized soil (CK). The bacterial cbbL abundance (3-8 × 10(8) copies g soil(-1)) and RubisCO activity (0.40-1.76 nmol CO(2) g soil(-1) min(-1)) in paddy soils were significantly positively correlated, and both increased with the addition of fertilizer. Among the measured soil parameters, soil organic carbon and pH were the most significant factors influencing the community composition, abundance, and activity of the cbbL-containing bacteria. These results suggest that long-term fertilization has a strong impact on the activity and community of cbbL-containing bacterial populations in paddy soils, especially when straw is combined with chemical fertilizers.
Collapse
|