1
|
Jirsová D, Wideman JG. Integrated overview of stramenopile ecology, taxonomy, and heterotrophic origin. THE ISME JOURNAL 2024; 18:wrae150. [PMID: 39077993 PMCID: PMC11412368 DOI: 10.1093/ismejo/wrae150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/12/2024] [Accepted: 07/29/2024] [Indexed: 07/31/2024]
Abstract
Stramenopiles represent a significant proportion of aquatic and terrestrial biota. Most biologists can name a few, but these are limited to the phototrophic (e.g. diatoms and kelp) or parasitic species (e.g. oomycetes, Blastocystis), with free-living heterotrophs largely overlooked. Though our attention is slowly turning towards heterotrophs, we have only a limited understanding of their biology due to a lack of cultured models. Recent metagenomic and single-cell investigations have revealed the species richness and ecological importance of stramenopiles-especially heterotrophs. However, our lack of knowledge of the cell biology and behaviour of these organisms leads to our inability to match species to their particular ecological functions. Because photosynthetic stramenopiles are studied independently of their heterotrophic relatives, they are often treated separately in the literature. Here, we present stramenopiles as a unified group with shared synapomorphies and evolutionary history. We introduce the main lineages, describe their important biological and ecological traits, and provide a concise update on the origin of the ochrophyte plastid. We highlight the crucial role of heterotrophs and mixotrophs in our understanding of stramenopiles with the goal of inspiring future investigations in taxonomy and life history. To understand each of the many diversifications within stramenopiles-towards autotrophy, osmotrophy, or parasitism-we must understand the ancestral heterotrophic flagellate from which they each evolved. We hope the following will serve as a primer for new stramenopile researchers or as an integrative refresher to those already in the field.
Collapse
Affiliation(s)
- Dagmar Jirsová
- Center for Mechanisms of Evolution, Biodesign Institute, School of Life Sciences, Arizona State University, 1001 S McAllister Avenue, Tempe, Arizona, 85287-7701, United States
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31, České Budějovice 37005, Czech Republic
| | - Jeremy G Wideman
- Center for Mechanisms of Evolution, Biodesign Institute, School of Life Sciences, Arizona State University, 1001 S McAllister Avenue, Tempe, Arizona, 85287-7701, United States
| |
Collapse
|
2
|
Cho A, Tikhonenkov DV, Lax G, Prokina KI, Keeling PJ. Phylogenomic position of genetically diverse phagotrophic stramenopile flagellates in the sediment-associated MAST-6 lineage and a potentially halotolerant placididean. Mol Phylogenet Evol 2024; 190:107964. [PMID: 37951557 DOI: 10.1016/j.ympev.2023.107964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 11/02/2023] [Accepted: 11/08/2023] [Indexed: 11/14/2023]
Abstract
Unlike morphologically conspicuous ochrophytes, many flagellates belonging to basally branching stramenopiles are small and often overlooked. As a result, many of these lineages are known only through molecular surveys and identified as MArine STramenopiles (MAST), and remain largely uncharacterized at the cellular or genomic level. These likely phagotrophic flagellates are not only phylogenetically diverse, but also extremely abundant in some environments, making their characterization all the more important. MAST-6 is one example of a phylogenetically distinct group that has been known to be associated with sediments, but little else is known about it. Indeed, until the present study, only a single species from this group, Pseudophyllomitus vesiculosus (Pseudophyllomitidae), has been both formally described and associated with genomic information. Here, we describe four new species including two new genera of sediment-dwelling MAST-6, Vomastramonas tehuelche gen. et sp. nov., Mastreximonas tlaamin gen. et sp. nov., one undescribed Pseudophyllomitus sp., BSC2, and a new species belonging to Placididea, the potentially halotolerant Haloplacidia sinai sp. nov. We also provide two additional bikosian transcriptomes from a public culture collection, to allow for better phylogenetic reconstructions of deep-branching stramenopiles. With the SSU rRNA sequences of the new MAST-6 species, we investigate the phylogenetic diversity of the MAST-6 group and show a high relative abundance of MAST-6 related to M. tlaamin in samples across various depths and geographical locations. Using the new MAST-6 species, we also update the phylogenomic tree of stramenopiles, particularly focusing on the paraphyly of Bigyra.
Collapse
Affiliation(s)
- Anna Cho
- Department of Botany, University of British Columbia, Vancouver V6T 1Z4, British Columbia, Canada.
| | - Denis V Tikhonenkov
- Papanin Institute for Biology of Inland Waters, Russian Academy of Science, Borok 152742, Russia
| | - Gordon Lax
- Department of Botany, University of British Columbia, Vancouver V6T 1Z4, British Columbia, Canada
| | - Kristina I Prokina
- Papanin Institute for Biology of Inland Waters, Russian Academy of Science, Borok 152742, Russia; Ecologie Systématique Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Gif-sur-Yvette, France
| | - Patrick J Keeling
- Department of Botany, University of British Columbia, Vancouver V6T 1Z4, British Columbia, Canada
| |
Collapse
|
3
|
Lennartz Née Rybarski AE, Nitsche F, Schoenle A, Voigt C, Staubwasser M, Arndt H. High diversity and isolated distribution of aquatic heterotrophic protists in salars of the Atacama Desert at different salinities. Eur J Protistol 2023; 89:125987. [PMID: 37245304 DOI: 10.1016/j.ejop.2023.125987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/24/2023] [Accepted: 04/11/2023] [Indexed: 05/30/2023]
Abstract
The species richness of eukaryotes in the hypersaline environment is generally thought to be low. However, recent studies showed a high degree of phylogenetic novelty at these extreme conditions with variable chemical parameters. These findings call for a more thorough look into the species richness of hypersaline environments. In this study, various hypersaline lakes (salars, 1-348 PSU) as well as further aquatic ecosystems of northern Chile were investigated regarding diversity of heterotrophic protists by metabarcoding studies of surface water samples. Investigations of genotypes of 18S rRNA genes showed a unique community composition in nearly each salar and even among different microhabitats within one salar. The genotype distribution showed no clear connection to the composition of main ions at the sampling sites, but protist communities from similar salinity ranges (either hypersaline, hyposaline or mesosaline) clustered together regarding their OTU composition. Salars appeared to be fairly isolated systems with only little exchange of protist communities where evolutionary lineages could separately evolve.
Collapse
Affiliation(s)
- Alexandra E Lennartz Née Rybarski
- Department of General Ecology, Institute of Zoology, Biocenter Cologne, University of Cologne, Zuelpicher Straße 47b, D-50674 Cologne, Germany
| | - Frank Nitsche
- Department of General Ecology, Institute of Zoology, Biocenter Cologne, University of Cologne, Zuelpicher Straße 47b, D-50674 Cologne, Germany
| | - Alexandra Schoenle
- Department of General Ecology, Institute of Zoology, Biocenter Cologne, University of Cologne, Zuelpicher Straße 47b, D-50674 Cologne, Germany
| | - Claudia Voigt
- Department of Geosciences, Institute of Geology and Mineralogy, University of Cologne, Zuelpicher Straße 49b, D-50674 Cologne, Germany; Department of Biology and Geology, Universidad de Almería, Carretera de Sacramento s.n, La Cañada de San Urbano, Almería 04120, Spain
| | - Michael Staubwasser
- Department of Geosciences, Institute of Geology and Mineralogy, University of Cologne, Zuelpicher Straße 49b, D-50674 Cologne, Germany
| | - Hartmut Arndt
- Department of General Ecology, Institute of Zoology, Biocenter Cologne, University of Cologne, Zuelpicher Straße 47b, D-50674 Cologne, Germany.
| |
Collapse
|
4
|
Lee HB, Jeong DH, Cho BC, Park JS. The Diversity Patterns of Rare to Abundant Microbial Eukaryotes Across a Broad Range of Salinities in a Solar Saltern. MICROBIAL ECOLOGY 2022; 84:1103-1121. [PMID: 34779881 PMCID: PMC9747883 DOI: 10.1007/s00248-021-01918-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 11/04/2021] [Indexed: 06/13/2023]
Abstract
Solar salterns are excellent artificial systems for examining species diversity and succession along salinity gradients. Here, the eukaryotic community in surface water of a Korean solar saltern (30 to 380 practical salinity units) was investigated from April 2019 to October 2020 using Illumina sequencing targeting the V4 and V9 regions of 18S rDNA. A total of 926 operational taxonomic units (OTUs) and 1,999 OTUs were obtained with the V4 and V9 regions, respectively. Notably, most of the OTUs were microbial eukaryotes, and the high-abundance groups (> 5% relative abundance (RA), Alveolata, Stramenopila, Archaeplastida, and Opisthokonta) usually accounted for > 90% of the total cumulative read counts and > 80% of all OTUs. Moreover, the high-abundance Alveolata (larger forms) and Stramenopila (smaller forms) groups displayed a significant inverse relationship, probably due to predator-prey interactions. Most of the low-abundance (0.1-5% RA) and rare (< 0.1% RA) groups remained small portion during the field surveys. Taxonomic novelty (at < 90% sequence identity) was high in the Amoebozoa, Cryptista, Haptista, Rhizaria, and Stramenopila groups (69.8% of all novel OTUs), suggesting the presence of a large number of hidden species in hypersaline environments. Remarkably, the high-abundance groups had little overlap with the other groups, implying the weakness of rare-to-prevalent community dynamics. The low-abundance Discoba group alone temporarily became the high-abundance group, suggesting that it is an opportunistic group. Overall, the composition and diversity of the eukaryotic community in hypersaline environments may be persistently stabilized, despite diverse disturbance events.
Collapse
Affiliation(s)
- Hyeon Been Lee
- Department of Oceanography, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Dong Hyuk Jeong
- Department of Oceanography, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Byung Cheol Cho
- School of Earth and Environmental Sciences, Seoul National University, Seoul, 08826, Republic of Korea
- Saemangeum Environmental Research Center, Kunsan National University, Kunsan, 54150, Republic of Korea
| | - Jong Soo Park
- Department of Oceanography, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
5
|
Lee HB, Jeong DH, Park JS. Accumulation patterns of intracellular salts in a new halophilic amoeboflagellate, Euplaesiobystra salpumilio sp. nov., (Heterolobosea; Discoba) under hypersaline conditions. Front Microbiol 2022; 13:960621. [PMID: 35992684 PMCID: PMC9389213 DOI: 10.3389/fmicb.2022.960621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/15/2022] [Indexed: 11/24/2022] Open
Abstract
Halophilic microbial eukaryotes are present in many eukaryotic lineages and major groups; however, our knowledge of their diversity is still limited. Furthermore, almost nothing is known about the intracellular accumulation of salts in most halophilic eukaryotes. Here, we isolate a novel halophilic microbial eukaryote from hypersaline water of 134 practical salinity units (PSU) in a solar saltern. This species is an amoeboflagellate (capable of the amoeba-flagellate-cyst transformation) in the heterolobosean group and belongs to the genus Euplaesiobystra based on morphological data and 18S rDNA sequences. However, the isolate is distinct from any of the described Euplaesiobystra species. Especially, it is the smallest Euplaesiobystra to date, has a distinct cytostome, and grows optimally at 75–100 PSU. Furthermore, the phylogenetic tree of the 18S rDNA sequences demonstrates that the isolate forms a strongly supported group, sister to Euplaesiobystra hypersalinica. Thus, we propose that the isolate, Euplaesiobystra salpumilio, is a novel species. E. salpumilio displays a significantly increased influx of the intracellular Na+ and K+ at 50, 100, and 150 PSU, compared to freshwater species. However, the intracellular retention of the Na+ and K+ at 150 PSU does not significantly differ from 100 PSU, suggesting that E. salpumilio can extrude the Na+ and K+ from cells under high-salinity conditions. Interestingly, actively growing E. salpumilio at 100 and 150 PSU may require more intracellular accumulation of Na+ than the no-growth but-viable state at 50 PSU. It seems that our isolate displays two salt metabolisms depending on the tested salinities. E. salpumilio shows a salt-in strategy for Na+ at lower salinity of 100 PSU, while it displays a salt-out strategy for Na+ at higher salinity of 150 PSU. Our results suggest that the novel halophilic E. salpumilio fundamentally uses a salt-out strategy at higher salinities, and the accumulation patterns of intracellular salts in this species are different from those in other halophilic microbial eukaryotes.
Collapse
|
6
|
Aydin EE, Lee WJ. Free-living Heterotrophic Flagellates (Protista) from Two Hypersaline Lakes in Turkey. ACTA PROTOZOOL 2022. [DOI: 10.4467/16890027ap.22.008.17111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
This study was carried out in two hypersaline lakes (Acı and Meke Lakes) in Turkey to understand the diversity and geographic distribution of free-living heterotrophic flagellates. Heterotrophic flagellates of hypersaline environments have not previously been studied in Turkey. We found seventeen morphospecies of heterotrophic flagellates with one unidentified protist. The observed species belong to Craspedida, Heterolobosea, Apusomonadida, Neobodonida, Bicosoecida and Protista incertae sedis. Of the 17 species, ten species were new records for Turkey. All of the morphospecies described here except one unidentified protist were previously reported elsewhere and appear to be cosmopolitan.
Collapse
Affiliation(s)
| | - Won Je Lee
- Department of Environment and Energy Engineering, Kyungnam University, Changwon, Korea
| |
Collapse
|
7
|
Rybarski AE, Nitsche F, Soo Park J, Filz P, Schmidt P, Kondo R, Gb Simpson A, Arndt H. Revision of the phylogeny of Placididea (Stramenopiles): Molecular and morphological diversity of novel placidid protists from extreme aquatic environments. Eur J Protistol 2021; 81:125809. [PMID: 34673437 DOI: 10.1016/j.ejop.2021.125809] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 04/30/2021] [Accepted: 05/11/2021] [Indexed: 11/17/2022]
Abstract
Recent studies suggested that the diversity of microbial eukaryotes in hypersaline environments is widely underestimated. Placidids are a group of heterotrophic stramenopile flagellates that are frequently found in these environments, but up to now only very few species were isolated and fully described, mostly from marine or brackish water sites. In this study, we extend the known diversity of Placididea by three new genera (Allegra, Haloplacidia, and Placilonga) compromising nine new species, isolated from athalassic, mostly hypersaline environments (Allegra dunaii, Allegra atacamiensis, Allegra hypersalina, Haloplacidia cosmopolita, Suigetsumonas keniensis) and marine waters (Placilonga atlantica, Placidia azorensis, Placidia abyssalis, Wobblia pacifica) including a description of their morphology and molecular phylogeny. In total, 36 strains were comparatively analysed. Studies from athalassic waters revealed an especially high number of different genotypes. A multigene analysis based on a ten genes dataset revealed a clear separation into marine, athalassic and brackish water clades. Several representatives were found to cope with hypersaline conditions from 20 to 250 PSU, even up to 284 PSU, suggesting that they may form a halotolerant group.
Collapse
Affiliation(s)
- Alexandra E Rybarski
- Department of General Ecology, Institute of Zoology, Biocenter Cologne, University of Cologne, Zuelpicher Straße 47b, D-50674 Cologne, Germany
| | - Frank Nitsche
- Department of General Ecology, Institute of Zoology, Biocenter Cologne, University of Cologne, Zuelpicher Straße 47b, D-50674 Cologne, Germany
| | - Jong Soo Park
- Department of Oceanography, School of Earth System Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Paulina Filz
- Department of General Ecology, Institute of Zoology, Biocenter Cologne, University of Cologne, Zuelpicher Straße 47b, D-50674 Cologne, Germany
| | - Patricia Schmidt
- Department of General Ecology, Institute of Zoology, Biocenter Cologne, University of Cologne, Zuelpicher Straße 47b, D-50674 Cologne, Germany
| | - Ryuji Kondo
- Department of Marine Science and Technology, Fukui Prefectural University, Obama, Fukui 917-0003, Japan
| | | | - Hartmut Arndt
- Department of General Ecology, Institute of Zoology, Biocenter Cologne, University of Cologne, Zuelpicher Straße 47b, D-50674 Cologne, Germany.
| |
Collapse
|
8
|
Genitsaris S, Stefanidou N, Beeri-Shlevin Y, Viner-Mozzini Y, Moustaka-Gouni M, Ninio S, Sukenik A. Air-dispersed aquatic microorganisms show establishment and growth preferences in different freshwater colonisation habitats. FEMS Microbiol Ecol 2021; 97:6356561. [PMID: 34424315 DOI: 10.1093/femsec/fiab122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/19/2021] [Indexed: 11/12/2022] Open
Abstract
We attempted to mimic aeolian ecosystems to examine how filters posed by regional characteristics can influence the establishment and growth of airborne microcolonisers of a common air source. Using a natural single source of aerosols we applied a combined microscopy and high-throughput sequencing approach to examine the diversity, settling and growth potential of air-dispersed microbes in water containers representing newly formed aquatic colonisation habitats of different trophic states and salinity. Heterotrophic microeukaryotes were favoured as initial settlers when nutrients were low, while autotrophs rapidly proliferated in the high-nutrient containers, possibly due to favourable germinating conditions for their preferred mode of dispersal with resting spores. Following settling of colonisers, we investigated two contrasting hypotheses: if the different water colonisation habitats harboured the same microbial communities after establishment and growth periods, this would point towards a selection of best-fit cosmopolitan colonisers, regardless of habitat-specific characteristics. Alternatively, community dissimilarities after the growth period would suggest a selection of settlers due to bottom-up controls combined with priority effects. Both analyses suggested that the structure of the microbial communities in the different colonisation habitats were driven by nutrient content and salinity, showing clustering to similar bottom-up forces and dissimilarities in significantly different colonisation habitats.
Collapse
Affiliation(s)
- Savvas Genitsaris
- Section of Ecology and Taxonomy, School of Biology, National and Kapodistrian University of Athens, Zografou Campus, 15784 Athens, Greece.,Department of Botany, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Natassa Stefanidou
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Yaron Beeri-Shlevin
- The Yigal Allon Kinneret Limnological Laboratory, Israel Oceanographic and Limnological Research, Migdal 14950, Israel
| | - Yehudit Viner-Mozzini
- The Yigal Allon Kinneret Limnological Laboratory, Israel Oceanographic and Limnological Research, Migdal 14950, Israel
| | - Maria Moustaka-Gouni
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Shira Ninio
- The Yigal Allon Kinneret Limnological Laboratory, Israel Oceanographic and Limnological Research, Migdal 14950, Israel
| | - Assaf Sukenik
- The Yigal Allon Kinneret Limnological Laboratory, Israel Oceanographic and Limnological Research, Migdal 14950, Israel
| |
Collapse
|
9
|
Schoenle A, Hohlfeld M, Hermanns K, Mahé F, de Vargas C, Nitsche F, Arndt H. High and specific diversity of protists in the deep-sea basins dominated by diplonemids, kinetoplastids, ciliates and foraminiferans. Commun Biol 2021; 4:501. [PMID: 33893386 PMCID: PMC8065057 DOI: 10.1038/s42003-021-02012-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 03/08/2021] [Indexed: 02/02/2023] Open
Abstract
Heterotrophic protists (unicellular eukaryotes) form a major link from bacteria and algae to higher trophic levels in the sunlit ocean. Their role on the deep seafloor, however, is only fragmentarily understood, despite their potential key function for global carbon cycling. Using the approach of combined DNA metabarcoding and cultivation-based surveys of 11 deep-sea regions, we show that protist communities, mostly overlooked in current deep-sea foodweb models, are highly specific, locally diverse and have little overlap to pelagic communities. Besides traditionally considered foraminiferans, tiny protists including diplonemids, kinetoplastids and ciliates were genetically highly diverse considerably exceeding the diversity of metazoans. Deep-sea protists, including many parasitic species, represent thus one of the most diverse biodiversity compartments of the Earth system, forming an essential link to metazoans.
Collapse
Affiliation(s)
- Alexandra Schoenle
- University of Cologne, Institute of Zoology, General Ecology, Cologne, Germany.
| | - Manon Hohlfeld
- University of Cologne, Institute of Zoology, General Ecology, Cologne, Germany
| | - Karoline Hermanns
- University of Cologne, Institute of Zoology, General Ecology, Cologne, Germany
| | - Frédéric Mahé
- CIRAD, UMR BGPI, Montpellier, France
- BGPI, Univ Montpellier, CIRAD, IRD, Montpellier SupAgro, Montpellier, France
| | - Colomban de Vargas
- CNRS, Sorbonne Université, Station Biologique de Roscoff, UMR7144, ECOMAP-Ecology of Marine Plankton, Roscoff, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/ Tara GOSEE, Paris, France
| | - Frank Nitsche
- University of Cologne, Institute of Zoology, General Ecology, Cologne, Germany
| | - Hartmut Arndt
- University of Cologne, Institute of Zoology, General Ecology, Cologne, Germany.
| |
Collapse
|
10
|
Tikhonenkov DV, Jhin SH, Eglit Y, Miller K, Plotnikov A, Simpson AGB, Park JS. Ecological and evolutionary patterns in the enigmatic protist genus Percolomonas (Heterolobosea; Discoba) from diverse habitats. PLoS One 2019; 14:e0216188. [PMID: 31465455 PMCID: PMC6715209 DOI: 10.1371/journal.pone.0216188] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 08/14/2019] [Indexed: 12/26/2022] Open
Abstract
The heterotrophic flagellate Percolomonas cosmopolitus (Heterolobosea) is often observed in saline habitats worldwide, from coastal waters to saturated brines. However, only two cultures assigned to this morphospecies have been examined using molecular methods, and their 18S rRNA gene sequences are extremely different. Further the salinity tolerances of individual strains are unknown. Thus, our knowledge on the autecology and diversity in this morphospecies is deficient. Here, we report 18S rRNA gene data on seven strains similar to P. cosmopolitus from seven geographically remote locations (New Zealand, Kenya, Korea, Poland, Russia, Spain, and the USA) with sample salinities ranging from 4‰ to 280‰, and compare morphology and salinity tolerance of the nine available strains. Percolomonas cosmopolitus-like strains show few-to-no consistent morphological differences, and form six clades separated by often extremely large 18S rRNA gene divergences (up to 42.4%). Some strains grow best at salinities from 75 to 125‰ and represent halophiles. All but one of these belong to two geographically heterogeneous clusters that form a robust monophyletic group in phylogenetic trees; this likely represents an ecologically specialized subclade of halophiles. Our results suggest that P. cosmopolitus is a cluster of several cryptic species (at least), which are unlikely to be distinguished by geography. Interestingly, the 9 Percolomonas strains formed a clade in 18S rRNA gene phylogenies, unlike most previous analyses based on two sequences.
Collapse
Affiliation(s)
- Denis V. Tikhonenkov
- Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, Russia
- Zoological Institute, Russian Academy of Sciences, Saint Petersburg, Russia
| | - Soo Hwan Jhin
- Department of Oceanography, Research Institute for Dok-do and Ulleung-do Island and Kyungpook Institute of Oceanography, School of Earth System Sciences, Kyungpook National University, Daegu, Korea
| | - Yana Eglit
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Kai Miller
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Andrey Plotnikov
- Center of Shared Scientific Equipment “Persistence of Microorganisms”, Institute for Cellular and Intracellular Symbiosis UB RAS, Orenburg, Russia
| | - Alastair G. B. Simpson
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
- Canadian Institute for Advanced Research, Program in Integrated Microbial Diversity, Toronto, Ontario, Canada
| | - Jong Soo Park
- Department of Oceanography, Research Institute for Dok-do and Ulleung-do Island and Kyungpook Institute of Oceanography, School of Earth System Sciences, Kyungpook National University, Daegu, Korea
- * E-mail:
| |
Collapse
|
11
|
Li W, Morgan-Kiss RM. Influence of Environmental Drivers and Potential Interactions on the Distribution of Microbial Communities From Three Permanently Stratified Antarctic Lakes. Front Microbiol 2019; 10:1067. [PMID: 31156585 PMCID: PMC6530420 DOI: 10.3389/fmicb.2019.01067] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Accepted: 04/29/2019] [Indexed: 12/14/2022] Open
Abstract
The McMurdo Dry Valley (MDV) lakes represent unique habitats in the microbial world. Perennial ice covers protect liquid water columns from either significant allochthonous inputs or seasonal mixing, resulting in centuries of stable biogeochemistry. Extreme environmental conditions including low seasonal photosynthetically active radiation (PAR), near freezing temperatures, and oligotrophy have precluded higher trophic levels from the food webs. Despite these limitations, diverse microbial life flourishes in the stratified water columns, including Archaea, bacteria, fungi, protists, and viruses. While a few recent studies have applied next generation sequencing, a thorough understanding of the MDV lake microbial diversity and community structure is currently lacking. Here we used Illumina MiSeq sequencing of the 16S and 18S rRNA genes combined with a microscopic survey of key eukaryotes to compare the community structure and potential interactions among the bacterial and eukaryal communities within the water columns of Lakes Bonney (east and west lobes, ELB, and WLB, respectively) and Fryxell (FRX). Communities were distinct between the upper, oxic layers and the dark, anoxic waters, particularly among the bacterial communities residing in WLB and FRX. Both eukaryal and bacterial community structure was influenced by different biogeochemical parameters in the oxic and anoxic zones. Bacteria formed complex interaction networks which were lake-specific. Several eukaryotes exhibit potential interactions with bacteria in ELB and WLB, while interactions between these groups in the more productive FRX were relatively rare.
Collapse
Affiliation(s)
- Wei Li
- Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, MT, United States
| | | |
Collapse
|
12
|
Stefanidou N, Genitsaris S, Lopez-Bautista J, Sommer U, Moustaka-Gouni M. Unicellular Eukaryotic Community Response to Temperature and Salinity Variation in Mesocosm Experiments. Front Microbiol 2018; 9:2444. [PMID: 30356732 PMCID: PMC6189394 DOI: 10.3389/fmicb.2018.02444] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 09/24/2018] [Indexed: 12/24/2022] Open
Abstract
Climate change has profound impacts on marine biodiversity and biodiversity changes in turn might affect the community sensitivity to impacts of abiotic changes. We used mesocosm experiments and Next Generation Sequencing to study the response of the natural Baltic and Mediterranean unicellular eukaryotic plankton communities (control and +6°C heat shock) to subsequent salinity changes (-5 psu, +5 psu). The impact on Operational Taxonomic Unit (OTU) richness, taxonomic and functional composition and rRNA:rDNA ratios were examined. Our results showed that heat shock leads to lower OTU richness (21% fewer OTUs in the Baltic and 14% fewer in the Mediterranean) and a shift in composition toward pico- and nanophytoplankton and heterotrophic related OTUs. Heat shock also leads to increased rRNA:rDNA ratios for pico- and micrograzers. Less than 18% of shared OTUs were found among the different salinities indicating the crucial role of salinity in shaping communities. The response of rRNA:rDNA ratios varied highly after salinity changes. In both experiments the diversity decrease brought about by heat shock influenced the sensitivity to salinity changes. The heat shock either decreased or increased the sensitivity of the remaining community, depending on whether it removed the more salinity-sensitive or the salinity-tolerant taxa.
Collapse
Affiliation(s)
- Natassa Stefanidou
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Savvas Genitsaris
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece.,School of Economics, Business Administration and Legal Studies, International Hellenic University, Thermi, Greece
| | - Juan Lopez-Bautista
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL, United States
| | - Ulrich Sommer
- Geomar Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Maria Moustaka-Gouni
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
13
|
Jhin SH, Park JS. A New Halophilic Heterolobosean Flagellate, Aurem hypersalina gen. n. et sp. n., Closely Related to the Pleurostomum-Tulamoeba Clade: Implications for Adaptive Radiation of Halophilic Eukaryotes. J Eukaryot Microbiol 2018; 66:221-231. [PMID: 29938869 DOI: 10.1111/jeu.12664] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 05/28/2018] [Accepted: 06/19/2018] [Indexed: 12/15/2022]
Abstract
Halophilic protozoa are independently scattered across the molecular phylogeny of eukaryotes; most of which are assigned to Heterolobosea. Here, we isolated a biflagellate from a hypersaline water of 342‰ salinity. This isolate shared several morphological features with typical halophilic heterolobosean flagellates. In addition, molecular phylogenetic trees of the 18S rRNA gene sequences clearly indicated flagellate is a heterolobosean species closely related to the halophilic Tulamoebidae. However, the flagellate was not accommodated to any described genus. Cells were ovoid-shaped, and no amoebae were observed. The two unequal flagella beat heterodynamically. An ear-like bulge at the margin of a cytostomal groove was observed. Flagellates could grow at 100-200‰ salinity, suggesting an obligately halophilic species. Currently, it appears that the new halophilic Aurem hypersalina forms a strong clade with Tulamoebidae, and is sister to the Tulamoebidae, indicating that this new clade is composed almost entirely of obligate halophilic taxa. Thus, A. hypersalina and the Tulamoebidae clade currently represent a unique adaptive radiation of halophilic eukaryotes.
Collapse
Affiliation(s)
- Soo Hwan Jhin
- Department of Oceanography, Research Institute for Dok-do and Ulleung-do Island and Kyungpook Institute of Oceanography, School of Earth System Sciences, Kyungpook National University, Daegu, Korea
| | - Jong Soo Park
- Department of Oceanography, Research Institute for Dok-do and Ulleung-do Island and Kyungpook Institute of Oceanography, School of Earth System Sciences, Kyungpook National University, Daegu, Korea
| |
Collapse
|
14
|
Tropidoatractidae fam. nov., a Deep Branching Lineage of Metopida (Armophorea, Ciliophora) Found in Diverse Habitats and Possessing Prokaryotic Symbionts. Protist 2018; 169:362-405. [DOI: 10.1016/j.protis.2018.04.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 04/03/2018] [Accepted: 04/11/2018] [Indexed: 11/29/2022]
|
15
|
Harding T, Simpson AGB. Recent Advances in Halophilic Protozoa Research. J Eukaryot Microbiol 2018; 65:556-570. [PMID: 29266533 DOI: 10.1111/jeu.12495] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 11/14/2017] [Accepted: 12/08/2017] [Indexed: 11/30/2022]
Abstract
Most research on microorganisms adapted to hypersaline habitats has focused on Archaea and Bacteria, with microbial eukaryotes receiving much less attention. Over the past 15 yr, our knowledge of phagotrophic microbial eukaryotes, i.e. protozoa, from hypersaline habitats has greatly improved through combinations of microscopy, molecular phylogenetics, environmental sequencing, transcriptomics and growth experiments. High salinity waters from salterns, other landlocked water masses and deep hypersaline anoxic basins contain unique and diverse halophilic protozoan assemblages. These have the potential to exert substantial grazing pressure on prokaryotes and other eukaryotes. They represent many separate evolutionary lineages; species of Heterolobosea, Bicosoecida, and Ciliophora have been most intensively characterized, with several proven to be extreme (or borderline extreme) halophiles. Transcriptomic examinations of the bicosoecid Halocafeteria (and the heteroloboseid Pharyngomonas) indicate that high-salt adaptation is associated with a subtle shift in protein amino acid composition, and involves the differential expression of genes participating in ion homeostasis, signal transduction, stress management, and lipid remodeling. Instances of gene duplication and lateral transfer possibly conferring adaptation have been documented. Indirect evidence suggests that these protozoa use "salt-out" osmoadaptive strategies.
Collapse
Affiliation(s)
- Tommy Harding
- Department of Biochemistry and Molecular Biology, Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Alastair G B Simpson
- Department of Biology, and Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| |
Collapse
|
16
|
Filker S, Forster D, Weinisch L, Mora-Ruiz M, González B, Farías ME, Rosselló-Móra R, Stoeck T. Transition boundaries for protistan species turnover in hypersaline waters of different biogeographic regions. Environ Microbiol 2017; 19:3186-3200. [PMID: 28574222 DOI: 10.1111/1462-2920.13805] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 05/26/2017] [Indexed: 11/28/2022]
Abstract
The identification of environmental barriers which govern species distribution is a fundamental concern in ecology. Even though salt was previously identified as a major transition boundary for micro- and macroorganisms alike, the salinities causing species turnover in protistan communities are unknown. We investigated 4.5 million high-quality protistan metabarcodes (V4 region of the SSU rDNA) obtained from 24 shallow salt ponds (salinities 4%-44%) from South America and Europe. Statistical analyses of protistan community profiles identified four salinity classes, which strongly selected for different protistan communities: 4-9%, 14-24%, 27-36% and 38-44%. The proportion of organisms unknown to science is highest in the 14-24% salinity class, showing that environments within this salinity range are an unappreciated reservoir of as yet undiscovered organisms. Distinct higher-rank taxon groups dominated in the four salinity classes in terms of diversity. As increasing salinities require different cellular responses to cope with salt, our results suggest that different evolutionary lineages of protists have evolved distinct haloadaptation strategies. Salinity appears to be a stronger selection factor for the structuring of protistan communities than geography. Yet, we find a higher degree of endemism in shallow salt ponds compared with less isolated ecosystems such as the open ocean. Thus, rules for biogeographic structuring of protistan communities are not universal, but depend on the ecosystem under consideration.
Collapse
Affiliation(s)
- Sabine Filker
- Department of Molecular Ecology, University of Kaiserslautern, 67663, Kaiserslautern, Germany
| | - Dominik Forster
- Department of Ecology, University of Kaiserslautern, 67663, Kaiserslautern, Germany
| | - Lea Weinisch
- Department of Ecology, University of Kaiserslautern, 67663, Kaiserslautern, Germany
| | - Merit Mora-Ruiz
- Marine Microbiology Group, Department of Ecology and Marine Resources, Institut Mediterrani d'Estudis Avançats, IMEDEA (CSIC-UIB), 07190 Esporles, Illes Balears, Spain
| | - Bernardo González
- Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez - Center of Applied Ecology and Sustainability, Santiago de Chile, Chile
| | - María Eugenia Farías
- Laboratorio de Investigaciones Microbiológicas de Lagunas Andinas (LIMLA), Planta Piloto de Procesos Industriales Microbiológicos (PROIMI), CCT, CONICET, San Miguel de Tucumán, Tucumán, Argentina
| | - Ramon Rosselló-Móra
- Marine Microbiology Group, Department of Ecology and Marine Resources, Institut Mediterrani d'Estudis Avançats, IMEDEA (CSIC-UIB), 07190 Esporles, Illes Balears, Spain
| | - Thorsten Stoeck
- Department of Ecology, University of Kaiserslautern, 67663, Kaiserslautern, Germany
| |
Collapse
|
17
|
Kondo R, Okamura T. Growth and Grazing Kinetics of the Facultative Anaerobic Nanoflagellate, Suigetsumonas clinomigrationis. Microbes Environ 2017; 32:80-83. [PMID: 28190796 PMCID: PMC5371079 DOI: 10.1264/jsme2.me16113] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The functional and numerical responses of the facultative anaerobic heterotrophic nanoflagellate, Suigetsumonas clinomigrationis NIES-3647 to prey density were examined under oxic and anoxic conditions. S. clinomigrationis grew at temperatures between 10 and 30°C and in the salinity range of 3.9–36.9 psu. The maximum specific growth and ingestion rates of S. clinomigrationis were lower under anoxic conditions than under oxic conditions. Half-saturation constants for the growth of S. clinomigrationis were within or greater than the range of bacterial densities in the water column of Lake Suigetsu, suggesting that its growth rate is limited by bacterial prey densities in natural environments.
Collapse
Affiliation(s)
- Ryuji Kondo
- Department of Marine Bioscience, Fukui Prefectural University
| | | |
Collapse
|
18
|
Placement of the unclassified Cyranomonas australis Lee 2002 within a novel clade of Cercozoa. Eur J Protistol 2016; 56:60-66. [PMID: 27541187 DOI: 10.1016/j.ejop.2016.06.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Revised: 06/27/2016] [Accepted: 06/30/2016] [Indexed: 11/23/2022]
Abstract
Two heterotrophic flagellate strains were isolated from marine sediment samples off eastern Canada and Korea. These new isolates are indistinguishable by light microscopy from the unclassified protist Cyranomonas australis. The organisms are ovoid-shaped cells, 3.5-6μm long, laterally compressed, and somewhat flexible. They have two unequal flagella, about 1.1-2.5 times body length. Typically, the cells show a gliding motility and do not exhibit any amoeboid form or pseudopodia. 18S rDNA phylogenies clearly indicate that the isolates can be assigned to the taxon Filosa, within Cercozoa. The isolates are closest to an environmental sequence (CYSGM-16; 99% identity). Cyranomonas, CYSGM-16, and uncultured eukaryote RM1-SGM46 form a clade with strong statistical supports, here called novel clade CU (Cyranomonas plus Uncultured eukaryotes). This clade may be sister to the order Marimonadida. The novel clade CU and the Marimonadida have been detected only in marine habitats. Our findings suggest that C. australis may not belong to any previously described family within Filosa and Cercozoa.
Collapse
|
19
|
Mitterboeck TF, Chen AY, Zaheer OA, Ma EYT, Adamowicz SJ. Do saline taxa evolve faster? Comparing relative rates of molecular evolution between freshwater and marine eukaryotes. Evolution 2016; 70:1960-78. [PMID: 27402284 DOI: 10.1111/evo.13000] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 05/24/2016] [Accepted: 06/28/2016] [Indexed: 12/16/2022]
Abstract
The major branches of life diversified in the marine realm, and numerous taxa have since transitioned between marine and freshwaters. Previous studies have demonstrated higher rates of molecular evolution in crustaceans inhabiting continental saline habitats as compared with freshwaters, but it is unclear whether this trend is pervasive or whether it applies to the marine environment. We employ the phylogenetic comparative method to investigate relative molecular evolutionary rates between 148 pairs of marine or continental saline versus freshwater lineages representing disparate eukaryote groups, including bony fish, elasmobranchs, cetaceans, crustaceans, mollusks, annelids, algae, and other eukaryotes, using available protein-coding and noncoding genes. Overall, we observed no consistent pattern in nucleotide substitution rates linked to habitat across all genes and taxa. However, we observed some trends of higher evolutionary rates within protein-coding genes in freshwater taxa-the comparisons mainly involving bony fish-compared with their marine relatives. The results suggest no systematic differences in substitution rate between marine and freshwater organisms.
Collapse
Affiliation(s)
- T Fatima Mitterboeck
- Biodiversity Institute of Ontario, University of Guelph, Guelph, Ontario, N1G 2W1, Canada. .,Department of Integrative Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada.
| | - Alexander Y Chen
- Biodiversity Institute of Ontario, University of Guelph, Guelph, Ontario, N1G 2W1, Canada.,Department of Integrative Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Omar A Zaheer
- Biodiversity Institute of Ontario, University of Guelph, Guelph, Ontario, N1G 2W1, Canada.,Department of Integrative Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Eddie Y T Ma
- Biodiversity Institute of Ontario, University of Guelph, Guelph, Ontario, N1G 2W1, Canada.,Department of Integrative Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada.,School of Computer Science, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Sarah J Adamowicz
- Biodiversity Institute of Ontario, University of Guelph, Guelph, Ontario, N1G 2W1, Canada.,Department of Integrative Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| |
Collapse
|
20
|
Park JS, Simpson AG. Characterization of a Deep-Branching Heterolobosean, Pharyngomonas turkanaensis
n. sp., Isolated from a Non-Hypersaline Habitat, and Ultrastructural Comparison of Cysts and Amoebae Among Pharyngomonas
Strains. J Eukaryot Microbiol 2015; 63:100-11. [DOI: 10.1111/jeu.12260] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 07/24/2015] [Accepted: 07/31/2015] [Indexed: 01/14/2023]
Affiliation(s)
- Jong Soo Park
- Department of Oceanography and Kyungpook Institute of Oceanography; School of Earth System Sciences; Kyungpook National University; Daegu Korea
| | - Alastair G.B. Simpson
- Department of Biology; Dalhousie University; Halifax Nova Scotia Canada
- Canadian Institute for Advanced Research; Program in Integrated Microbial Diversity; Toronto Ontario Canada
| |
Collapse
|
21
|
|
22
|
Okamura T, Kondo R. Suigetsumonas clinomigrationis gen. et sp. nov., a Novel Facultative Anaerobic Nanoflagellate Isolated from the Meromictic Lake Suigetsu, Japan. Protist 2015. [PMID: 26202992 DOI: 10.1016/j.protis.2015.06.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
A novel facultative anaerobic bacterivorous nanoflagellate was isolated from the water just below the permanent oxic-anoxic interface of the meromictic Lake Suigetsu, Japan. We characterized the isolate using light and transmission electron microscopy and molecular phylogenetic analyses inferred from 18S rDNA sequences. The phylogenetic analyses showed that the isolate belonged to class Placididea (stramenopiles). The isolate showed key ultrastructural features of the Placididea, such as flagellar hairs with two unequal terminal filaments, microtubular root 2 changing in shape from an arced to an acute-angled shape, and a lack of an x-fiber in root 2. However, the isolate had a single helix in the flagellar transition region, which is a double helix in the two known placidid nanoflagellates Placidia cafeteriopsis and Wobblia lunata. Moreover, the isolate had different intracellular features compared with these two genera, such as the arrangement of basal bodies, the components of the flagellar apparatus, the number of mitochondria, and the absence (or presence) of paranuclear bodies. The 18S rDNA sequence was also phylogenetically distant from the clades of the known Placididae W. lunata and P. cafeteriopsis. Consequently, the newly isolated nanoflagellate was described as Suigetsumonas clinomigrationis gen. et sp. nov.
Collapse
Affiliation(s)
- Takahiko Okamura
- Graduate School of Bioscience and Biotechnology, Fukui Prefectural University, Obama, Fukui 917-0003, Japan
| | - Ryuji Kondo
- Department of Marine Bioscience, Fukui Prefectural University, Obama, Fukui 917-0003, Japan.
| |
Collapse
|
23
|
Haloviruses of archaea, bacteria, and eukaryotes. Curr Opin Microbiol 2015; 25:40-8. [DOI: 10.1016/j.mib.2015.04.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 04/06/2015] [Indexed: 02/04/2023]
|
24
|
Yubuki N, Pánek T, Yabuki A, Čepička I, Takishita K, Inagaki Y, Leander BS. Morphological Identities of Two Different Marine Stramenopile Environmental Sequence Clades: Bicosoeca kenaiensis
(Hilliard, 1971) and Cantina marsupialis
(Larsen and Patterson, 1990) gen. nov., comb. nov. J Eukaryot Microbiol 2015; 62:532-42. [DOI: 10.1111/jeu.12207] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 12/09/2014] [Accepted: 12/19/2014] [Indexed: 11/28/2022]
Affiliation(s)
- Naoji Yubuki
- The Departments of Botany and Zoology; Beaty Biodiversity Research Centre and Museum; University of British Columbia; Vancouver British Columbia V6T 1Z4 Canada
| | - Tomáš Pánek
- Department of Zoology; Faculty of Science; Charles University in Prague; Prague 128 44 Czech Republic
| | - Akinori Yabuki
- Japan Agency for Marine-Earth Science and Technology (JAMSTEC); Yokosuka Kanagawa 237-0061 Japan
| | - Ivan Čepička
- Department of Zoology; Faculty of Science; Charles University in Prague; Prague 128 44 Czech Republic
| | - Kiyotaka Takishita
- Japan Agency for Marine-Earth Science and Technology (JAMSTEC); Yokosuka Kanagawa 237-0061 Japan
| | - Yuji Inagaki
- Center for Computational Sciences and Graduate School of Life and Environmental Sciences; University of Tsukuba; Tsukuba Ibaraki 305-8577 Japan
| | - Brian S. Leander
- The Departments of Botany and Zoology; Beaty Biodiversity Research Centre and Museum; University of British Columbia; Vancouver British Columbia V6T 1Z4 Canada
| |
Collapse
|
25
|
Oikonomou A, Filker S, Breiner HW, Stoeck T. Protistan diversity in a permanently stratified meromictic lake (Lake Alatsee, SW Germany). Environ Microbiol 2014; 17:2144-57. [PMID: 25330396 DOI: 10.1111/1462-2920.12666] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 09/26/2014] [Accepted: 10/08/2014] [Indexed: 11/28/2022]
Abstract
Protists play a crucial role for ecosystem function(ing) and oxygen is one of the strongest barriers against their local dispersal. However, protistan diversity in freshwater habitats with oxygen gradients received very little attention. We applied high-throughput sequencing of the V9 region (18S rRNA gene) to provide a hitherto unique spatiotemporal analysis of protistan diversity along the oxygen gradient of a freshwater meromictic lake (Lake Alatsee, SW Germany). In the mixolimnion, the communities experienced most seasonal structural changes, with Stramenopiles dominating in autumn and Dinoflagellata in summer. The suboxic interface supported the highest diversity, but only 23 OTUs95% (mainly Euglenozoa, after quality check and removal of operational taxonomic units (OTUs) with less than three sequences) were exclusively associated with this habitat. Eukaryotic communities in the anoxic monimolimnion showed the most stable seasonal pattern, with Chrysophyta and Bicosoecida being the dominant taxa. Our data pinpoint to the ecological role of the interface as a short-term 'meeting point' for protists, contributing to the coupling of the mixolimnion and the monimolimnion. Our analyses of divergent genetic diversity suggest a high degree of previously undescribed OTUs. Future research will have to reveal if this result actually points to a high number of undescribed species in such freshwater habitats.
Collapse
Affiliation(s)
- Andreas Oikonomou
- Department of Ecology, University of Kaiserslautern, Erwin Schroedinger Str. 14, D-67663, Kaiserslautern, Germany
| | - Sabine Filker
- Department of Ecology, University of Kaiserslautern, Erwin Schroedinger Str. 14, D-67663, Kaiserslautern, Germany
| | - Hans-Werner Breiner
- Department of Ecology, University of Kaiserslautern, Erwin Schroedinger Str. 14, D-67663, Kaiserslautern, Germany
| | - Thorsten Stoeck
- Department of Ecology, University of Kaiserslautern, Erwin Schroedinger Str. 14, D-67663, Kaiserslautern, Germany
| |
Collapse
|
26
|
Filker S, Gimmler A, Dunthorn M, Mahé F, Stoeck T. Deep sequencing uncovers protistan plankton diversity in the Portuguese Ria Formosa solar saltern ponds. Extremophiles 2014; 19:283-95. [DOI: 10.1007/s00792-014-0713-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 11/16/2014] [Indexed: 11/24/2022]
|
27
|
Kirby WA, Tikhonenkov DV, Mylnikov AP, Janouškovec J, Lax G, Simpson AGB. Characterization of Tulamoeba bucina n. sp., an extremely halotolerant amoeboflagellate heterolobosean belonging to the Tulamoeba-Pleurostomum clade (Tulamoebidae n. fam.). J Eukaryot Microbiol 2014; 62:227-38. [PMID: 25227416 DOI: 10.1111/jeu.12172] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Revised: 06/23/2014] [Accepted: 07/30/2014] [Indexed: 12/01/2022]
Abstract
Most protozoans that have been cultivated recently from high salinity waters appear to be obligate halophiles. Phylogenetic analyses indicate that these species mostly represent independent lineages. Here, we report the cultivation, morphological characterization, and phylogenetic analysis of two strains (XLG1 and HLM-8) of a new extremely halotolerant heterolobosean amoeboflagellate. This species is closely related to the obligate halophiles Tulamoeba peronaphora and Pleurostomum flabellatum, and more specifically to the former. Like Tulamoeba, the new species has a monopodial limax amoeba stage, however, its cyst stage lacks an intrusive pore plug. The flagellate stage bears a combination of a planar spiral feeding apparatus and unequal heterodynamic flagella that discriminates it from described Pleurostomum species. Strain XLG1 grows at salinities from 35‰ to 225‰. This degree of halotolerance is uncommon in protozoa, as most species showing growth in seawater are unable to grow at 200‰ salinity. The unrelatedness of most halophilic protozoa suggested that independent colonization of the hypersaline environment is more common than speciation within it. However, this study supports the idea that the Tulamoeba-Pleurostomum clade underwent an adaptive radiation within the hypersaline environment. A new species Tulamoeba bucina n. sp. is described, with Tulamoebidae n. fam. proposed for the Tulamoeba-Pleurostomum clade.
Collapse
Affiliation(s)
- William A Kirby
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
| | | | | | | | | | | |
Collapse
|
28
|
Living at the Limits: Evidence for Microbial Eukaryotes Thriving under Pressure in Deep Anoxic, Hypersaline Habitats. ACTA ACUST UNITED AC 2014. [DOI: 10.1155/2014/532687] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The advent of molecular tools in microbial ecology paved the way to exploit the diversity of microbes in extreme environments. Here, we review these tools as applied in one of the most polyextreme habitats known on our planet, namely, deep hypersaline anoxic basins (DHABs), located at ca. 3000–3500 m depth in the Eastern Mediterranean Sea. Molecular gene signatures amplified from environmental DHAB samples identified a high degree of genetic novelty, as well as distinct communities in the DHABs. Canonical correspondence analyses provided strong evidence that salinity, ion composition, and anoxia were the strongest selection factors shaping protistan community structures, largely preventing cross-colonization among the individual basins. Thus, each investigated basin represents a unique habitat (“isolated islands of evolution”), making DHABs ideal model sites to test evolutionary hypotheses. Fluorescence in situ hybridization assays using specifically designed probes revealed that the obtained genetic signatures indeed originated from indigenous polyextremophiles. Electron microscopy imaging revealed unknown ciliates densely covered with prokaryote ectosymbionts, which may enable adaptations of eukaryotes to DHAB conditions. The research reviewed here significantly advanced our knowledge on polyextremophile eukaryotes, which are excellent models for a number of biological research areas, including ecology, diversity, biotechnology, evolutionary research, physiology, and astrobiology.
Collapse
|
29
|
Harder CB, Ekelund F, Karpov SA. Ultrastructure and Phylogenetic Position of Regin rotiferus and Otto terricolus Genera et Species Novae (Bicosoecida, Heterokonta/Stramenopiles). Protist 2014; 165:144-60. [DOI: 10.1016/j.protis.2014.01.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 01/15/2014] [Accepted: 01/21/2014] [Indexed: 11/17/2022]
|
30
|
Edgcomb VP, Bernhard JM. Heterotrophic protists in hypersaline microbial mats and deep hypersaline basin water columns. Life (Basel) 2013; 3:346-62. [PMID: 25369746 PMCID: PMC4187137 DOI: 10.3390/life3020346] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 04/02/2013] [Accepted: 04/02/2013] [Indexed: 11/16/2022] Open
Abstract
Although hypersaline environments pose challenges to life because of the low water content (water activity), many such habitats appear to support eukaryotic microbes. This contribution presents brief reviews of our current knowledge on eukaryotes of water-column haloclines and brines from Deep Hypersaline Anoxic Basins (DHABs) of the Eastern Mediterranean, as well as shallow-water hypersaline microbial mats in solar salterns of Guerrero Negro, Mexico and benthic microbialite communities from Hamelin Pool, Shark Bay, Western Australia. New data on eukaryotic diversity from Shark Bay microbialites indicates eukaryotes are more diverse than previously reported. Although this comparison shows that eukaryotic communities in hypersaline habitats with varying physicochemical characteristics are unique, several groups are commonly found, including diverse alveolates, strameonopiles, and fungi, as well as radiolaria. Many eukaryote sequences (SSU) in both regions also have no close homologues in public databases, suggesting that these environments host unique microbial eukaryote assemblages with the potential to enhance our understanding of the capacity of eukaryotes to adapt to hypersaline conditions.
Collapse
Affiliation(s)
- Virginia P Edgcomb
- Geology and Geophysics Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA.
| | - Joan M Bernhard
- Geology and Geophysics Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA.
| |
Collapse
|
31
|
Heidelberg KB, Nelson WC, Holm JB, Eisenkolb N, Andrade K, Emerson JB. Characterization of eukaryotic microbial diversity in hypersaline Lake Tyrrell, Australia. Front Microbiol 2013; 4:115. [PMID: 23717306 PMCID: PMC3651956 DOI: 10.3389/fmicb.2013.00115] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 04/24/2013] [Indexed: 11/13/2022] Open
Abstract
This study describes the community structure of the microbial eukaryotic community from hypersaline Lake Tyrrell, Australia, using near full length 18S rRNA sequences. Water samples were taken in both summer and winter over a 4-year period. The extent of eukaryotic diversity detected was low, with only 35 unique phylotypes using a 97% sequence similarity threshold. The water samples were dominated (91%) by a novel cluster of the Alveolate, Apicomplexa Colpodella spp., most closely related to C. edax. The Chlorophyte, Dunaliella spp. accounted for less than 35% of water column samples. However, the eukaryotic community entrained in a salt crust sample was vastly different and was dominated (83%) by the Dunaliella spp. The patterns described here represent the first observation of microbial eukaryotic dynamics in this system and provide a multiyear comparison of community composition by season. The lack of expected seasonal distribution in eukaryotic communities paired with abundant nanoflagellates suggests that grazing may significantly structure microbial eukaryotic communities in this system.
Collapse
Affiliation(s)
- Karla B Heidelberg
- Department of Biology, University of Southern California Los Angeles, CA, USA
| | | | | | | | | | | |
Collapse
|
32
|
Triadó-Margarit X, Casamayor EO. High genetic diversity and novelty in planktonic protists inhabiting inland and coastal high salinity water bodies. FEMS Microbiol Ecol 2013; 85:27-36. [DOI: 10.1111/1574-6941.12095] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 01/04/2013] [Accepted: 02/07/2013] [Indexed: 11/30/2022] Open
Affiliation(s)
- Xavier Triadó-Margarit
- Biogeodynamics & Biodiversity Group; Centre d'Estudis Avançats de Blanes; CEAB-CSIC; Blanes; Spain
| | - Emilio O. Casamayor
- Biogeodynamics & Biodiversity Group; Centre d'Estudis Avançats de Blanes; CEAB-CSIC; Blanes; Spain
| |
Collapse
|
33
|
Phylogeny of Heterokonta: Incisomonas marina, a uniciliate gliding opalozoan related to Solenicola (Nanomonadea), and evidence that Actinophryida evolved from raphidophytes. Eur J Protistol 2012; 49:328-53. [PMID: 23219323 DOI: 10.1016/j.ejop.2012.09.002] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 09/29/2012] [Accepted: 09/30/2012] [Indexed: 12/28/2022]
Abstract
Environmental rDNA sequencing has revealed many novel heterokont clades of unknown morphology. We describe a new marine heterotrophic heterokont flagellate, Incisomonas marina, which most unusually lacks an anterior cilium. It glides and swims with its cilium trailing behind, but is predominantly sedentary on the substratum, with or without a cilium. 18S rDNA sequence phylogeny groups Incisomonas strongly within clade MAST-3; with others it forms a robust sister clade to Solenicola, here grouped with it as new order Uniciliatida, placed within new class Nanomonadea encompassing MAST-3. Our comprehensive maximum likelihood heterokont phylogeny shows Nanomonadea as sister to MAST-12 plus Opalinata within Opalozoa, and that Actinophryida are not Opalozoa (previously suggested by distance trees), but highly modified raphidomonads, arguably related to Heliorapha (formerly Ciliophrys) azurina gen., comb. n. We discuss evolution of Actinophryida from photosynthetic raphidophytes. Clades MAST-4,6-11 form one early-branching bigyran clade. Olisthodiscus weakly groups with Hypogyristea not Raphidomonadea. Phylogenetic analysis shows that MAST-13 is all Bicosoeca. Some gliding uniciliates similar to Incisomonas marina seem to have been misclassified: therefore we establish Incisomonas devorata comb. n. for Rigidomastix devoratum, revise the genus Rigidomastix, transfer Clautriavia parva to Kiitoksia. We make 17 new familes (13 heterokont (three algal), two cercozoan, two amoebozoan).
Collapse
|
34
|
Park JS, De Jonckheere JF, Simpson AGB. Characterization of Selenaion koniopes n. gen., n. sp., an amoeba that represents a new major lineage within heterolobosea, isolated from the Wieliczka salt mine. J Eukaryot Microbiol 2012; 59:601-13. [PMID: 22888835 DOI: 10.1111/j.1550-7408.2012.00641.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Accepted: 06/15/2012] [Indexed: 11/30/2022]
Abstract
A new heterolobosean amoeba, Selenaion koniopes n. gen., n. sp., was isolated from 73‰ saline water in the Wieliczka salt mine, Poland. The amoeba had eruptive pseudopodia, a prominent uroid, and a nucleus without central nucleolus. Cysts had multiple crater-like pore plugs. No flagellates were observed. Transmission electron microscopy revealed several typical heterolobosean features: flattened mitochondrial cristae, mitochondria associated with endoplasmic reticulum, and an absence of obvious Golgi dictyosomes. Two types of larger and smaller granules were sometimes abundant in the cytoplasm--these may be involved in cyst formation. Mature cysts had a fibrous endocyst that could be thick, plus an ectocyst that was covered with small granules. Pore plugs had a flattened dome shape, were bipartite, and penetrated only the endocyst. Phylogenies based on the 18S rRNA gene and the presence of 18S rRNA helix 17_1 strongly confirmed assignment to Heterolobosea. The organism was not closely related to any described genus, and instead formed the deepest branch within the Heterolobosea clade after Pharyngomonas, with support for this deep-branching position being moderate (i.e. maximum likelihood bootstrap support--67%; posterior probability--0.98). Cells grew at 15-150‰ salinity. Thus, S. koniopes is a halotolerant, probably moderately halophilic heterolobosean, with a potentially pivotal evolutionary position within this large eukaryote group.
Collapse
Affiliation(s)
- Jong Soo Park
- Department of Oceanography and Institute for Phylogenomics and Evolution, Kyungpook National University, Sangju, 742-711, Korea
| | | | | |
Collapse
|
35
|
Park JS. Effects of different ion compositions on growth of obligately halophilic protozoan Halocafeteria seosinensis. Extremophiles 2011; 16:161-4. [DOI: 10.1007/s00792-011-0416-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Accepted: 11/18/2011] [Indexed: 10/15/2022]
|
36
|
Stock A, Breiner HW, Pachiadaki M, Edgcomb V, Filker S, La Cono V, Yakimov MM, Stoeck T. Microbial eukaryote life in the new hypersaline deep-sea basin Thetis. Extremophiles 2011; 16:21-34. [DOI: 10.1007/s00792-011-0401-4] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 09/27/2011] [Indexed: 02/03/2023]
|
37
|
Park JS, Simpson AGB. Characterization of Pharyngomonas kirbyi (= "Macropharyngomonas halophila" nomen nudum), a very deep-branching, obligately halophilic heterolobosean flagellate. Protist 2011; 162:691-709. [PMID: 21723194 DOI: 10.1016/j.protis.2011.05.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Accepted: 02/14/2011] [Indexed: 11/15/2022]
Abstract
The tetraflagellate Pharyngomonas is among the most commonly reported morphotypes of halophilic protozoa. We have established two cultures of Pharyngomonas kirbyi, SD1A and AS12B, from 300‰ and 210‰ salinity waters from the USA and Australia, respectively. 18S rRNA gene phylogenies confirm that Pharyngomonas is the same entity as 'Macropharyngomonas' (nomen nudum), and represents the deepest branch in the heterolobosean lineage. Pharyngomonas kirbyi (Strain SD1A) has flattened/discoidal cristae, and lacks conspicuous Golgi dictyosomes. It also has a heterolobosean 'double bikont' flagellar apparatus, with two right roots, each associated with an 'I' fibre and part of a rhizoplast-like complex. One right root splits shortly after its origin, and supplies most of the microtubules that support both the ventral groove, and the sub-anterior cytopharynx. Interestingly, Pharyngomonas has some potentially ancestral features not found in typical Heterolobosea, including elongated left roots associated with multilayered 'C' fibres, orthogonal basal bodies, and a spur structure that might represent a 'B' fibre homolog. Both isolates are obligate halophiles that grow best at 100-200‰ salinity and do not grow below 75‰ salinity. Pharyngomonas is therefore of considerable evolutionary importance, both as a deep-branching, plesiomorphic heterolobosean, and a borderline extreme halophile.
Collapse
Affiliation(s)
- Jong Soo Park
- School of Life Science, Kyungpook National University, Daegu, 702-701, Republic of Korea
| | | |
Collapse
|