1
|
Li M, Cheng L, Tang J, Daroch M. Molecular Components of Nitrogen Fixation Gene Cluster and Associated Enzymatic Activities of Non-Heterocystous Thermophilic Cyanobacterium Thermoleptolyngbya sp. Life (Basel) 2021; 11:640. [PMID: 34209262 PMCID: PMC8307165 DOI: 10.3390/life11070640] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/18/2021] [Accepted: 06/24/2021] [Indexed: 11/17/2022] Open
Abstract
Thermoleptolyngbya is a genus of non-heterocystous cyanobacteria that are typical inhabitants of hot spring microbial mats. These filamentous cyanobacteria are capable of nitrogen fixation. In this study, we examined the genome sequences of five publicly available Thermoleptolyngbya strains to explore their nitrogen fixation gene cluster. Analysis of the nitrogen-fixation clusters in these extremophilic strains revealed that the cluster is located in a single locus in Thermoleptolyngbyace. The average nucleotide and amino acid identities of the nitrogen-fixation cluster combined with phylogenetic reconstructions support that nitrogen fixation genes in Thermoleptolyngbyaceae are closely related to one another but also heterogeneous within the genus. The strains from Asia, and China more specifically, generate a separate clade within the genus. Among these strains Thermoleptolyngbya sp. PKUAC-SCTB121 has been selected for experimental validation of clade's nitrogen fixation capacity. The acetylene reduction experiments of that strain shown that the strain can reduce acetylene to ethylene, indicating a fully functional nitrogenase. The activity of nitrogenase has been tested using different gas compositions across 72 h and exhibited a two-phase trend, high nitrogenase activity at the beginning of the assay that slowed down in the second phase of the analysis.
Collapse
Affiliation(s)
- Meijin Li
- School of Environment and Energy, Peking University Shenzhen Graduate School, 2199 Lishui Rd., Shenzhen 518055, China;
| | - Lei Cheng
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University, Beijing 100048, China;
| | - Jie Tang
- School of Food and Bioengineering, Chengdu University, Chengdu 610106, China;
| | - Maurycy Daroch
- School of Environment and Energy, Peking University Shenzhen Graduate School, 2199 Lishui Rd., Shenzhen 518055, China;
| |
Collapse
|
2
|
Liu J, Yang C, Chi Y, Wu D, Dai X, Zhang X, Igarashi Y, Luo F. Algicidal characterization and mechanism of Bacillus licheniformis
Sp34 against Microcystis aeruginosa
in Dianchi Lake. J Basic Microbiol 2019; 59:1112-1124. [DOI: 10.1002/jobm.201900112] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 06/26/2019] [Accepted: 07/25/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Jinyu Liu
- Chongqing Key Laboratory, Research Center of Bioenergy and Bioremediation, College of Resources and Environment; Southwest University; Chongqing China
| | - Caiyun Yang
- Chongqing Key Laboratory, Research Center of Bioenergy and Bioremediation, College of Resources and Environment; Southwest University; Chongqing China
| | - Yuxin Chi
- Chongqing Key Laboratory, Research Center of Bioenergy and Bioremediation, College of Resources and Environment; Southwest University; Chongqing China
| | - Donghao Wu
- Chongqing Key Laboratory, Research Center of Bioenergy and Bioremediation, College of Resources and Environment; Southwest University; Chongqing China
| | - Xianzhu Dai
- Chongqing Key Laboratory, Research Center of Bioenergy and Bioremediation, College of Resources and Environment; Southwest University; Chongqing China
| | - Xiaohui Zhang
- Chongqing Key Laboratory, Research Center of Bioenergy and Bioremediation, College of Resources and Environment; Southwest University; Chongqing China
| | - Yasuo Igarashi
- Chongqing Key Laboratory, Research Center of Bioenergy and Bioremediation, College of Resources and Environment; Southwest University; Chongqing China
| | - Feng Luo
- Chongqing Key Laboratory, Research Center of Bioenergy and Bioremediation, College of Resources and Environment; Southwest University; Chongqing China
| |
Collapse
|
3
|
Li D, Liu J, Zhang R, Chen M, Yang W, Li J, Fang Z, Wang B, Qiu Y, Zheng M. N 2 fixation impacted by carbon fixation via dissolved organic carbon in the changing Daya Bay, South China Sea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 674:592-602. [PMID: 31022548 DOI: 10.1016/j.scitotenv.2019.04.176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 04/11/2019] [Accepted: 04/11/2019] [Indexed: 06/09/2023]
Abstract
We present the first concurrent measurements of N2 fixation rates (15N2 uptake), primary production (14C uptake), dissolved organic carbon (DOC) concentrations, and diazotrophic community composition derived from nitrogenase (nifH) abundance in the subtropical Daya Bay (DB) of the coastal northern South China Sea (NSCS) from 2015 to 2017. N2 fixation rates ranged from n.d. - 4.51 nmol N L-1 h-1. Such values were generally higher than those reported in the neighbouring NSCS open waters and several well-studied oligotrophic waters, thereby suggesting that N-replete conditions do not prevent N2 fixation in coastal waters. N2 fixation rates were positively and significantly correlated with the primary production and the concentration of DOC in DB in the spring and summer. Combined with other lines of evidence, we suggest that N2 fixation may be facilitated by non-diazotrophic phytoplankton via a probable regulation of the quantity and quality (bioavailability) of DOC in DB. Since DB represents a suitable site that has experienced dramatic human-induced changes in environmental conditions, our results likely provide insights in understanding how N2 fixation and relevant biogeochemical processes may respond to intensified global anthropogenic forcing in similar coastal settings.
Collapse
Affiliation(s)
- Danyang Li
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Jiaxing Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 164, West Xingang Road, Guangzhou 510301, China
| | - Run Zhang
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China.
| | - Min Chen
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Weifeng Yang
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China
| | - Junjie Li
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Ziming Fang
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Bo Wang
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Yusheng Qiu
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Minfang Zheng
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| |
Collapse
|
4
|
Li S, Peng C, Cheng T, Wang C, Guo L, Li D. Nitrogen-cycling microbial community functional potential and enzyme activities in cultured biofilms with response to inorganic nitrogen availability. J Environ Sci (China) 2019; 76:89-99. [PMID: 30528038 DOI: 10.1016/j.jes.2018.03.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 03/21/2018] [Accepted: 03/21/2018] [Indexed: 05/03/2023]
Abstract
Biofilms mediate crucial biochemical processes in aquatic ecosystems. It was hypothesized that eutrophication may promote the growth of biofilms, resulting in larger numbers of functional genes. However, the metabolic activity and the roles of biofilms in N cycling will be affected by ambient inorganic nitrogen availability, not by the abundance of functional genes. Biofilms were cultured either with replete inorganic nitrogen (N-rep) or without exogenous inorganic nitrogen supply (N-def) in a flow incubator, and the N-cycling gene abundances (nifH, N2 fixation; amoA, ammonia oxidation, archaea and bacteria; nirS and nirK, denitrification) and enzyme activities (nitrogenase and nitrate reductase) were analyzed. The results showed that, comparing the N-def and N-rep biofilms, the former contained lower nifH gene abundance, but higher nitrogenase activity (NA), while the latter contained higher nifH gene abundance, but lower NA. Different patterns of NA diel variations corresponded to the dynamic microbial community composition and different stages of biofilm colonization. Ammonia oxidizing bacteria (AOB), detected only in N-def biofilms, were responsible for nitrification in biofilms. N-rep biofilms contained high nirS and nirK gene abundance and high denitrification enzyme activity, but N-def biofilms contained significantly lower denitrification gene abundance and activity. In general, the strong N2 fixation in N-def biofilms and strong denitrification in N-rep biofilms assured the balance of aquatic ecosystems. The results suggested that evaluation of the functional processes of N cycling should not only focus on genetic potential, but also on the physiological activity of biofilms.
Collapse
Affiliation(s)
- Shuangshuang Li
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; Hebei Engineering Research Center for Water Pollution Control and Water Ecological Remediation, College of Energy and Environmental Engineering, Hebei University of Engineering, Handan 056038, China
| | - Chengrong Peng
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Taisheng Cheng
- National University of Tainan, Department of Biological Sciences and Technology, Tainan 70005, China
| | - Chun Wang
- Environmental Simulation and Pollution Control State Key Joint Laboratory and State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 10084, China
| | - Liangliang Guo
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Dunhai Li
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
5
|
Yoon KS, Nguyen NT, Tran KT, Tsuji K, Ogo S. Nitrogen Fixation Genes and Nitrogenase Activity of the Non-Heterocystous Cyanobacterium Thermoleptolyngbya sp. O-77. Microbes Environ 2017; 32:324-329. [PMID: 29176306 PMCID: PMC5745016 DOI: 10.1264/jsme2.me17015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cyanobacteria are widely distributed in marine, aquatic, and terrestrial ecosystems, and play an important role in the global nitrogen cycle. In the present study, we examined the genome sequence of the thermophilic non-heterocystous N2-fixing cyanobacterium, Thermoleptolyngbya sp. O-77 (formerly known as Leptolyngbya sp. O-77) and characterized its nitrogenase activity. The genome of this cyanobacterial strain O-77 consists of a single chromosome containing a nitrogen fixation gene cluster. A phylogenetic analysis indicated that the NifH amino acid sequence from strain O-77 was clustered with those from a group of mesophilic species: the highest identity was found in Leptolyngbya sp. KIOST-1 (97.9% sequence identity). The nitrogenase activity of O-77 cells was dependent on illumination, whereas a high intensity of light of 40 μmol m−2 s−1 suppressed the effects of illumination.
Collapse
Affiliation(s)
- Ki-Seok Yoon
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University.,Center for Small Molecule Energy, Kyushu University
| | - Nga T Nguyen
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University
| | - Kien Trung Tran
- Center for Small Molecule Energy, Kyushu University.,Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University
| | - Kohsei Tsuji
- Center for Small Molecule Energy, Kyushu University.,Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University
| | - Seiji Ogo
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University.,Center for Small Molecule Energy, Kyushu University.,Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University
| |
Collapse
|
6
|
Murik O, Oren N, Shotland Y, Raanan H, Treves H, Kedem I, Keren N, Hagemann M, Pade N, Kaplan A. What distinguishes cyanobacteria able to revive after desiccation from those that cannot: the genome aspect. Environ Microbiol 2016; 19:535-550. [PMID: 27501380 DOI: 10.1111/1462-2920.13486] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 08/04/2016] [Indexed: 01/15/2023]
Abstract
Filamentous cyanobacteria are the main founders and primary producers in biological desert soil crusts (BSCs) and are likely equipped to cope with one of the harshest environmental conditions on earth including daily hydration/dehydration cycles, high irradiance and extreme temperatures. Here, we resolved and report on the genome sequence of Leptolyngbya ohadii, an important constituent of the BSC. Comparative genomics identified a set of genes present in desiccation-tolerant but not in dehydration-sensitive cyanobacteria. RT qPCR analyses showed that the transcript abundance of many of them is upregulated during desiccation in L. ohadii. In addition, we identified genes where the orthologs detected in desiccation-tolerant cyanobacteria differs substantially from that found in desiccation-sensitive cells. We present two examples, treS and fbpA (encoding trehalose synthase and fructose 1,6-bisphosphate aldolase respectively) where, in addition to the orthologs present in the desiccation-sensitive strains, the resistant cyanobacteria also possess genes with different predicted structures. We show that in both cases the two orthologs are transcribed during controlled dehydration of L. ohadii and discuss the genetic basis for the acclimation of cyanobacteria to the desiccation conditions in desert BSC.
Collapse
Affiliation(s)
- Omer Murik
- Department of Plant and Environmental Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, 9190401, Israel
| | - Nadav Oren
- Department of Plant and Environmental Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, 9190401, Israel
| | - Yoram Shotland
- Department of Chemical Engineering, Shamoon College of Engineering, Beer Sheva, 84100, Israel
| | - Hagai Raanan
- Department of Plant and Environmental Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, 9190401, Israel
| | - Haim Treves
- Department of Plant and Environmental Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, 9190401, Israel
| | - Isaac Kedem
- Department of Plant and Environmental Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, 9190401, Israel
| | - Nir Keren
- Department of Plant and Environmental Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, 9190401, Israel
| | - Martin Hagemann
- Institut für Biowissenschaften, Abteilung Pflanzenphysiologie, Universität Rostock, A.-Einstein-Str. 3, Rostock, D-18059, Germany
| | - Nadin Pade
- Institut für Biowissenschaften, Abteilung Pflanzenphysiologie, Universität Rostock, A.-Einstein-Str. 3, Rostock, D-18059, Germany
| | - Aaron Kaplan
- Department of Plant and Environmental Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, 9190401, Israel
| |
Collapse
|
7
|
Cole JK, Hutchison JR, Renslow RS, Kim YM, Chrisler WB, Engelmann HE, Dohnalkova AC, Hu D, Metz TO, Fredrickson JK, Lindemann SR. Phototrophic biofilm assembly in microbial-mat-derived unicyanobacterial consortia: model systems for the study of autotroph-heterotroph interactions. Front Microbiol 2014; 5:109. [PMID: 24778628 PMCID: PMC3985010 DOI: 10.3389/fmicb.2014.00109] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Accepted: 03/04/2014] [Indexed: 11/24/2022] Open
Abstract
Microbial autotroph-heterotroph interactions influence biogeochemical cycles on a global scale, but the diversity and complexity of natural systems and their intractability to in situ manipulation make it challenging to elucidate the principles governing these interactions. The study of assembling phototrophic biofilm communities provides a robust means to identify such interactions and evaluate their contributions to the recruitment and maintenance of phylogenetic and functional diversity over time. To examine primary succession in phototrophic communities, we isolated two unicyanobacterial consortia from the microbial mat in Hot Lake, Washington, characterizing the membership and metabolic function of each consortium. We then analyzed the spatial structures and quantified the community compositions of their assembling biofilms. The consortia retained the same suite of heterotrophic species, identified as abundant members of the mat and assigned to Alphaproteobacteria, Gammaproteobacteria, and Bacteroidetes. Autotroph growth rates dominated early in assembly, yielding to increasing heterotroph growth rates late in succession. The two consortia exhibited similar assembly patterns, with increasing relative abundances of members from Bacteroidetes and Alphaproteobacteria concurrent with decreasing relative abundances of those from Gammaproteobacteria. Despite these similarities at higher taxonomic levels, the relative abundances of individual heterotrophic species were substantially different in the developing consortial biofilms. This suggests that, although similar niches are created by the cyanobacterial metabolisms, the resulting webs of autotroph-heterotroph and heterotroph-heterotroph interactions are specific to each primary producer. The relative simplicity and tractability of the Hot Lake unicyanobacterial consortia make them useful model systems for deciphering interspecies interactions and assembly principles relevant to natural microbial communities.
Collapse
Affiliation(s)
- Jessica K Cole
- Biological Sciences Division, Fundamental and Computational Sciences Directorate, Pacific Northwest National Laboratory Richland, WA, USA
| | - Janine R Hutchison
- Chemical, Biological, and Physical Sciences Division, National Security Directorate, Pacific Northwest National Laboratory Richland, WA, USA
| | - Ryan S Renslow
- Scientific Resources Division, William R. Wiley Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory Richland, WA, USA
| | - Young-Mo Kim
- Biological Sciences Division, Fundamental and Computational Sciences Directorate, Pacific Northwest National Laboratory Richland, WA, USA
| | - William B Chrisler
- Biological Sciences Division, Fundamental and Computational Sciences Directorate, Pacific Northwest National Laboratory Richland, WA, USA
| | - Heather E Engelmann
- Chemical, Biological, and Physical Sciences Division, National Security Directorate, Pacific Northwest National Laboratory Richland, WA, USA
| | - Alice C Dohnalkova
- Scientific Resources Division, William R. Wiley Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory Richland, WA, USA
| | - Dehong Hu
- Scientific Resources Division, William R. Wiley Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory Richland, WA, USA
| | - Thomas O Metz
- Biological Sciences Division, Fundamental and Computational Sciences Directorate, Pacific Northwest National Laboratory Richland, WA, USA
| | - Jim K Fredrickson
- Biological Sciences Division, Fundamental and Computational Sciences Directorate, Pacific Northwest National Laboratory Richland, WA, USA
| | - Stephen R Lindemann
- Biological Sciences Division, Fundamental and Computational Sciences Directorate, Pacific Northwest National Laboratory Richland, WA, USA
| |
Collapse
|
8
|
Tang KH, Tang YJ, Blankenship RE. Carbon metabolic pathways in phototrophic bacteria and their broader evolutionary implications. Front Microbiol 2011; 2:165. [PMID: 21866228 PMCID: PMC3149686 DOI: 10.3389/fmicb.2011.00165] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Accepted: 07/18/2011] [Indexed: 11/19/2022] Open
Abstract
Photosynthesis is the biological process that converts solar energy to biomass, bio-products, and biofuel. It is the only major natural solar energy storage mechanism on Earth. To satisfy the increased demand for sustainable energy sources and identify the mechanism of photosynthetic carbon assimilation, which is one of the bottlenecks in photosynthesis, it is essential to understand the process of solar energy storage and associated carbon metabolism in photosynthetic organisms. Researchers have employed physiological studies, microbiological chemistry, enzyme assays, genome sequencing, transcriptomics, and (13)C-based metabolomics/fluxomics to investigate central carbon metabolism and enzymes that operate in phototrophs. In this report, we review diverse CO(2) assimilation pathways, acetate assimilation, carbohydrate catabolism, the tricarboxylic acid cycle and some key, and/or unconventional enzymes in central carbon metabolism of phototrophic microorganisms. We also discuss the reducing equivalent flow during photoautotrophic and photoheterotrophic growth, evolutionary links in the central carbon metabolic network, and correlations between photosynthetic and non-photosynthetic organisms. Considering the metabolic versatility in these fascinating and diverse photosynthetic bacteria, many essential questions in their central carbon metabolism still remain to be addressed.
Collapse
Affiliation(s)
- Kuo-Hsiang Tang
- Department of Biology, Washington University in St. LouisSt. Louis, MO, USA
- Department of Chemistry, Washington University in St. LouisSt. Louis, MO, USA
| | - Yinjie J. Tang
- Department of Energy, Environment, and Chemical Engineering, Washington University in St. LouisSt. Louis, MO, USA
| | - Robert Eugene Blankenship
- Department of Biology, Washington University in St. LouisSt. Louis, MO, USA
- Department of Chemistry, Washington University in St. LouisSt. Louis, MO, USA
| |
Collapse
|