1
|
Sulfate differentially stimulates but is not respired by diverse anaerobic methanotrophic archaea. THE ISME JOURNAL 2022; 16:168-177. [PMID: 34285362 PMCID: PMC8692474 DOI: 10.1038/s41396-021-01047-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 02/07/2023]
Abstract
Sulfate-coupled anaerobic oxidation of methane (AOM) is a major methane sink in marine sediments. Multiple lineages of anaerobic methanotrophic archaea (ANME) often coexist in sediments and catalyze this process syntrophically with sulfate-reducing bacteria (SRB), but the potential differences in ANME ecophysiology and mechanisms of syntrophy remain unresolved. A humic acid analog, anthraquinone 2,6-disulfonate (AQDS), could decouple archaeal methanotrophy from bacterial sulfate reduction and serve as the terminal electron acceptor for AOM (AQDS-coupled AOM). Here in sediment microcosm experiments, we examined variations in physiological response between two co-occurring ANME-2 families (ANME-2a and ANME-2c) and tested the hypothesis of sulfate respiration by ANME-2. Sulfate concentrations as low as 100 µM increased AQDS-coupled AOM nearly 2-fold matching the rates of sulfate-coupled AOM. However, the SRB partners remained inactive in microcosms with sulfate and AQDS and neither ANME-2 families respired sulfate, as shown by their cellular sulfur contents and anabolic activities measured using nanoscale secondary ion mass spectrometry. ANME-2a anabolic activity was significantly higher than ANME-2c, suggesting that ANME-2a was primarily responsible for the observed sulfate stimulation of AQDS-coupled AOM. Comparative transcriptomics showed significant upregulation of ANME-2a transcripts linked to multiple ABC transporters and downregulation of central carbon metabolism during AQDS-coupled AOM compared to sulfate-coupled AOM. Surprisingly, genes involved in sulfur anabolism were not differentially expressed during AQDS-coupled AOM with and without sulfate amendment. Collectively, this data indicates that ANME-2 archaea are incapable of respiring sulfate, but sulfate availability differentially stimulates the growth and AOM activity of different ANME lineages.
Collapse
|
2
|
Abstract
Background The protein kinase Target Of Rapamycin (TOR) is a nexus for the regulation of eukaryotic cell growth. TOR assembles into one of two distinct signalling complexes, TOR complex 1 (TORC1) and TORC2 (mTORC1/2 in mammals), with a set of largely non-overlapping protein partners. (m)TORC1 activation occurs in response to a series of stimuli relevant to cell growth, including nutrient availability, growth factor signals and stress, and regulates much of the cell's biosynthetic activity, from proteins to lipids, and recycling through autophagy. mTORC1 regulation is of great therapeutic significance, since in humans many of these signalling complexes, alongside subunits of mTORC1 itself, are implicated in a wide variety of pathophysiologies, including multiple types of cancer, neurological disorders, neurodegenerative diseases and metabolic disorders including diabetes. Methodology Recent years have seen numerous structures determined of (m)TOR, which have provided mechanistic insight into (m)TORC1 activation in particular, however the integration of cellular signals occurs upstream of the kinase and remains incompletely understood. Here we have collected and analysed in detail as many as possible of the molecular and structural studies which have shed light on (m)TORC1 repression, activation and signal integration. Conclusions A molecular understanding of this signal integration pathway is required to understand how (m)TORC1 activation is reconciled with the many diverse and contradictory stimuli affecting cell growth. We discuss the current level of molecular understanding of the upstream components of the (m)TORC1 signalling pathway, recent progress on this key biochemical frontier, and the future studies necessary to establish a mechanistic understanding of this master-switch for eukaryotic cell growth.
Collapse
Affiliation(s)
- Kailash Ramlaul
- Section of Structural Biology, Department of Medicine, Imperial College London, SW7 2AZ, UK
| | - Christopher H S Aylett
- Section of Structural Biology, Department of Medicine, Imperial College London, SW7 2AZ, UK
| |
Collapse
|
3
|
Albers P, Weytjens B, De Mot R, Marchal K, Springael D. Molecular processes underlying synergistic linuron mineralization in a triple-species bacterial consortium biofilm revealed by differential transcriptomics. Microbiologyopen 2018; 7:e00559. [PMID: 29314727 PMCID: PMC5911999 DOI: 10.1002/mbo3.559] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Accepted: 10/16/2017] [Indexed: 01/28/2023] Open
Abstract
The proteobacteria Variovorax sp. WDL1, Comamonas testosteroni WDL7, and Hyphomicrobium sulfonivorans WDL6 compose a triple‐species consortium that synergistically degrades and grows on the phenylurea herbicide linuron. To acquire a better insight into the interactions between the consortium members and the underlying molecular mechanisms, we compared the transcriptomes of the key biodegrading strains WDL7 and WDL1 grown as biofilms in either isolation or consortium conditions by differential RNAseq analysis. Differentially expressed pathways and cellular systems were inferred using the network‐based algorithm PheNetic. Coculturing affected mainly metabolism in WDL1. Significantly enhanced expression of hylA encoding linuron hydrolase was observed. Moreover, differential expression of several pathways involved in carbohydrate, amino acid, nitrogen, and sulfur metabolism was observed indicating that WDL1 gains carbon and energy from linuron indirectly by consuming excretion products from WDL7 and/or WDL6. Moreover, in consortium conditions, WDL1 showed a pronounced stress response and overexpression of cell to cell interaction systems such as quorum sensing, contact‐dependent inhibition, and Type VI secretion. Since the latter two systems can mediate interference competition, it prompts the question if synergistic linuron degradation is the result of true adaptive cooperation or rather a facultative interaction between bacteria that coincidentally occupy complementary metabolic niches.
Collapse
Affiliation(s)
- Pieter Albers
- Division of Soil and Water Management, Department of Earth and Environmental Sciences, KU Leuven, Leuven, Belgium
| | - Bram Weytjens
- Department of Microbial and Molecular Systems, Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium.,Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium.,Department of Information Technology, IDLab, IMEC, Ghent University, Gent, Belgium.,Bioinformatics Institute Ghent, Gent, Belgium
| | - René De Mot
- Department of Microbial and Molecular Systems, Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
| | - Kathleen Marchal
- Department of Microbial and Molecular Systems, Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium.,Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium.,Department of Information Technology, IDLab, IMEC, Ghent University, Gent, Belgium.,Bioinformatics Institute Ghent, Gent, Belgium
| | - Dirk Springael
- Division of Soil and Water Management, Department of Earth and Environmental Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
4
|
Beliaev AS, Romine MF, Serres M, Bernstein HC, Linggi BE, Markillie LM, Isern NG, Chrisler WB, Kucek LA, Hill EA, Pinchuk GE, Bryant DA, Wiley HS, Fredrickson JK, Konopka A. Inference of interactions in cyanobacterial-heterotrophic co-cultures via transcriptome sequencing. ISME JOURNAL 2014; 8:2243-55. [PMID: 24781900 DOI: 10.1038/ismej.2014.69] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 03/20/2014] [Accepted: 03/24/2014] [Indexed: 11/10/2022]
Abstract
We used deep sequencing technology to identify transcriptional adaptation of the euryhaline unicellular cyanobacterium Synechococcus sp. PCC 7002 and the marine facultative aerobe Shewanella putrefaciens W3-18-1 to growth in a co-culture and infer the effect of carbon flux distributions on photoautotroph-heterotroph interactions. The overall transcriptome response of both organisms to co-cultivation was shaped by their respective physiologies and growth constraints. Carbon limitation resulted in the expansion of metabolic capacities, which was manifested through the transcriptional upregulation of transport and catabolic pathways. Although growth coupling occurred via lactate oxidation or secretion of photosynthetically fixed carbon, there was evidence of specific metabolic interactions between the two organisms. These hypothesized interactions were inferred from the excretion of specific amino acids (for example, alanine and methionine) by the cyanobacterium, which correlated with the downregulation of the corresponding biosynthetic machinery in Shewanella W3-18-1. In addition, the broad and consistent decrease of mRNA levels for many Fe-regulated Synechococcus 7002 genes during co-cultivation may indicate increased Fe availability as well as more facile and energy-efficient mechanisms for Fe acquisition by the cyanobacterium. Furthermore, evidence pointed at potentially novel interactions between oxygenic photoautotrophs and heterotrophs related to the oxidative stress response as transcriptional patterns suggested that Synechococcus 7002 rather than Shewanella W3-18-1 provided scavenging functions for reactive oxygen species under co-culture conditions. This study provides an initial insight into the complexity of photoautotrophic-heterotrophic interactions and brings new perspectives of their role in the robustness and stability of the association.
Collapse
Affiliation(s)
- Alexander S Beliaev
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Margie F Romine
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Margrethe Serres
- Josephine Bay Paul Center, Marine Biological Laboratory, Woods Hole, MA, USA
| | - Hans C Bernstein
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Bryan E Linggi
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Lye M Markillie
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Nancy G Isern
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - William B Chrisler
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Leo A Kucek
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Eric A Hill
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Grigoriy E Pinchuk
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Donald A Bryant
- 1] Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA [2] Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, USA
| | - H Steven Wiley
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Jim K Fredrickson
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Allan Konopka
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| |
Collapse
|
5
|
Metabolic analysis of Chlorobium chlorochromatii CaD3 reveals clues of the symbiosis in 'Chlorochromatium aggregatum'. ISME JOURNAL 2013; 8:991-8. [PMID: 24285361 DOI: 10.1038/ismej.2013.207] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 09/25/2013] [Accepted: 10/07/2013] [Indexed: 11/08/2022]
Abstract
A symbiotic association occurs in 'Chlorochromatium aggregatum', a phototrophic consortium integrated by two species of phylogenetically distant bacteria composed by the green-sulfur Chlorobium chlorochromatii CaD3 epibiont that surrounds a central β-proteobacterium. The non-motile chlorobia can perform nitrogen and carbon fixation, using sulfide as electron donors for anoxygenic photosynthesis. The consortium can move due to the flagella present in the central β-protobacterium. Although Chl. chlorochromatii CaD3 is never found as free-living bacteria in nature, previous transcriptomic and proteomic studies have revealed that there are differential transcription patterns between the symbiotic and free-living status of Chl. chlorocromatii CaD3 when grown in laboratory conditions. The differences occur mainly in genes encoding the enzymatic reactions involved in nitrogen and amino acid metabolism. We performed a metabolic reconstruction of Chl. chlorochromatii CaD3 and an in silico analysis of its amino acid metabolism using an elementary flux modes approach (EFM). Our study suggests that in symbiosis, Chl. chlorochromatii CaD3 is under limited nitrogen conditions where the GS/GOGAT (glutamine synthetase/glutamate synthetase) pathway is actively assimilating ammonia obtained via N2 fixation. In contrast, when free-living, Chl. chlorochromatii CaD3 is in a condition of nitrogen excess and ammonia is assimilated by the alanine dehydrogenase (AlaDH) pathway. We postulate that 'Chlorochromatium aggregatum' originated from a parasitic interaction where the N2 fixation capacity of the chlorobia would be enhanced by injection of 2-oxoglutarate from the β-proteobacterium via the periplasm. This consortium would have the advantage of motility, which is fundamental to a phototrophic bacterium, and the syntrophy of nitrogen and carbon sources.
Collapse
|
6
|
Liu Z, Müller J, Li T, Alvey RM, Vogl K, Frigaard NU, Rockwell NC, Boyd ES, Tomsho LP, Schuster SC, Henke P, Rohde M, Overmann J, Bryant DA. Genomic analysis reveals key aspects of prokaryotic symbiosis in the phototrophic consortium "Chlorochromatium aggregatum". Genome Biol 2013; 14:R127. [PMID: 24267588 PMCID: PMC4053972 DOI: 10.1186/gb-2013-14-11-r127] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 11/22/2013] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND 'Chlorochromatium aggregatum' is a phototrophic consortium, a symbiosis that may represent the highest degree of mutual interdependence between two unrelated bacteria not associated with a eukaryotic host. 'Chlorochromatium aggregatum' is a motile, barrel-shaped aggregate formed from a single cell of 'Candidatus Symbiobacter mobilis", a polarly flagellated, non-pigmented, heterotrophic bacterium, which is surrounded by approximately 15 epibiont cells of Chlorobium chlorochromatii, a non-motile photolithoautotrophic green sulfur bacterium. RESULTS We analyzed the complete genome sequences of both organisms to understand the basis for this symbiosis. Chl. chlorochromatii has acquired relatively few symbiosis-specific genes; most acquired genes are predicted to modify the cell wall or function in cell-cell adhesion. In striking contrast, 'Ca. S. mobilis' appears to have undergone massive gene loss, is probably no longer capable of independent growth, and thus may only reproduce when consortia divide. A detailed model for the energetic and metabolic bases of the dependency of 'Ca. S. mobilis' on Chl. chlorochromatii is described. CONCLUSIONS Genomic analyses suggest that three types of interactions lead to a highly sophisticated relationship between these two organisms. Firstly, extensive metabolic exchange, involving carbon, nitrogen, and sulfur sources as well as vitamins, occurs from the epibiont to the central bacterium. Secondly, 'Ca. S. mobilis' can sense and move towards light and sulfide, resources that only directly benefit the epibiont. Thirdly, electron cycling mechanisms, particularly those mediated by quinones and potentially involving shared protonmotive force, could provide an important basis for energy exchange in this and other symbiotic relationships.
Collapse
Affiliation(s)
- Zhenfeng Liu
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
- Current address: Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Johannes Müller
- Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Inhoffenstraße 7B, 38124, Braunschweig, Germany
| | - Tao Li
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
- Current address: Algal Genomics Research Group, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Richard M Alvey
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
- Current address: Department of Biology, Chaminade University, Honolulu, HI 96816, USA
| | - Kajetan Vogl
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Niels-Ulrik Frigaard
- Section for Marine Biology, Department of Biology, University of Copenhagen, Strandpromenaden 5 3000, Helsingør, Denmark
| | - Nathan C Rockwell
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| | - Eric S Boyd
- Department of Microbiology, Montana State University, Bozeman, MT 59717, USA
| | - Lynn P Tomsho
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Stephan C Schuster
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Petra Henke
- Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Inhoffenstraße 7B, 38124, Braunschweig, Germany
| | - Manfred Rohde
- Helmholtz-Zentrum für Infektionsforschung, 38124 Braunschweig, Germany
| | - Jörg Overmann
- Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Inhoffenstraße 7B, 38124, Braunschweig, Germany
| | - Donald A Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Microbiology, Montana State University, Bozeman, MT 59717, USA
| |
Collapse
|
7
|
Eddie BJ, Hanson TE. Chlorobaculum tepidum TLS displays a complex transcriptional response to sulfide addition. J Bacteriol 2013; 195:399-408. [PMID: 23161024 PMCID: PMC3553837 DOI: 10.1128/jb.01342-12] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 11/08/2012] [Indexed: 11/20/2022] Open
Abstract
Chlorobaculum tepidum is a green sulfur bacterium (GSB) that is a model system for phototrophic sulfur oxidation. Despite over 2 decades of research, conspicuous gaps exist in our understanding of its electron donor metabolism and regulation. RNA sequencing (RNA-seq) was used to provide a global picture of the C. tepidum transcriptome during growth on thiosulfate as the sole electron donor and at time points following the addition of sulfide to such a culture. Following sulfide addition, 121 to 150 protein-coding genes displayed significant changes in expression depending upon the time point. These changes included a rapid decrease in expression of thiosulfate and elemental sulfur oxidation genes. Genes and gene loci with increased expression included CT1087, encoding a sulfide:quinone oxidoreductase required for growth in high sulfide concentrations; a polysulfide reductase-like complex operon, psrABC (CT0496 to CT0494); and, surprisingly, a large cluster of genes involved in iron acquisition. Finally, two genes that are conserved as a cassette in anaerobic bacteria and archaea, CT1276 and CT1277, displayed a strong increase in expression. The CT1277 gene product contains a DNA-binding domain, suggesting a role for it in sulfide-dependent gene expression changes.
Collapse
Affiliation(s)
- Brian J Eddie
- College of Earth, Ocean, and Environment and Delaware Biotechnology Institute, University of Delaware, Newark, DE, USA
| | | |
Collapse
|
8
|
Bapteste E, Bouchard F, Burian RM. Philosophy and evolution: minding the gap between evolutionary patterns and tree-like patterns. Methods Mol Biol 2012; 856:81-110. [PMID: 22399456 DOI: 10.1007/978-1-61779-585-5_4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Ever since Darwin, the familiar genealogical pattern known as the Tree of Life (TOL) has been prominent in evolutionary thinking and has dominated not only systematics, but also the analysis of the units of evolution. However, recent findings indicate that the evolution of DNA, especially in prokaryotes and such DNA vehicles as viruses and plasmids, does not follow a unique tree-like pattern. Because evolutionary patterns track a greater range of processes than those captured in genealogies, genealogical patterns are in fact only a subset of a broader set of evolutionary patterns. This fact suggests that evolutionists who focus exclusively on genealogical patterns are blocked from providing a significant range of genuine evolutionary explanations. Consequently, we highlight challenges to tree-based approaches, and point the way toward more appropriate methods to study evolution (although we do not present them in technical detail). We argue that there is significant benefit in adopting wider range of models, evolutionary representations, and evolutionary explanations, based on an analysis of the full range of evolutionary processes. We introduce an ecosystem orientation into evolutionary thinking that highlights the importance of "type 1 coalitions" (functionally related units with genetic exchanges, aka "friends with genetic benefits"), "type 2 coalitions" (functionally related units without genetic exchanges), "communal interactions," and "emergent evolutionary properties." On this basis, we seek to promote the study of (especially prokaryotic) evolution with dynamic evolutionary networks, which are less constrained than the TOL, and to provide new ways to analyze an expanded range of evolutionary units (genetic modules, recombined genes, plasmids, phages and prokaryotic genomes, pangenomes, microbial communities) and evolutionary processes. Finally, we discuss some of the conceptual and practical questions raised by such network-based representation.
Collapse
|
9
|
Müller J, Overmann J. Close Interspecies Interactions between Prokaryotes from Sulfureous Environments. Front Microbiol 2011; 2:146. [PMID: 21779277 PMCID: PMC3132602 DOI: 10.3389/fmicb.2011.00146] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Accepted: 06/20/2011] [Indexed: 11/13/2022] Open
Abstract
Green sulfur bacteria are obligate photolithoautotrophs that require highly reducing conditions for growth and can utilize only a very limited number of carbon substrates. These bacteria thus inhabit a very narrow ecologic niche. However, several green sulfur bacteria have overcome the limits of immobility by entering into a symbiosis with motile Betaproteobacteria in a type of multicellular association termed phototrophic consortia. One of these consortia, "Chlorochromatium aggregatum," has recently been established as the first culturable model system to elucidate the molecular basis of this symbiotic interaction. It consists of 12-20 green sulfur bacteria epibionts surrounding a central, chemoheterotrophic betaproteobacterium in a highly ordered fashion. Recent genomic, transcriptomic, and proteomic studies of "C. aggregatum" and its epibiont provide insights into the molecular basis and the origin of the stable association between the two very distantly related bacteria. While numerous genes of central metabolic pathways are upregulated during the specific symbiosis and hence involved in the interaction, only a limited number of unique putative symbiosis genes have been detected in the epibiont. Green sulfur bacteria therefore are preadapted to a symbiotic lifestyle. The metabolic coupling between the bacterial partners appears to involve amino acids and highly specific ultrastructures at the contact sites between the cells. Similarly, the interaction in the equally well studied archaeal consortia consisting of Nanoarchaeum equitans and its host Ignicoccus hospitalis is based on the transfer of amino acids while lacking the highly specialized contact sites observed in phototrophic consortia.
Collapse
Affiliation(s)
- Johannes Müller
- Bereich Mikrobiologie, Department Biologie I, Ludwig-Maximilians-Universität München Planegg-Martinsried, Germany
| | | |
Collapse
|
10
|
Overmann J. The phototrophic consortium "Chlorochromatium aggregatum" - a model for bacterial heterologous multicellularity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 675:15-29. [PMID: 20532733 DOI: 10.1007/978-1-4419-1528-3_2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Phototrophic consortia currently represent the most highly developed interspecific association between prokaryotes and consist of green sulfur bacterial epibionts which surround a central, motile, chemotrophic bacterium. Several independent experimental findings indicate that a rapid signal transfer occurs between the epibionts and the central bacterium. First, the cell division of the partner bacteria occurs in a highly coordinated fashion. Second, consortia accumulate scotophobotactically in the light, whereby the central bacterium confers motility to the consortium and the epibionts act as light sensors. Third, the organic carbon uptake of the central bacterium seems to be controlled by the epibiont. A decade ago, a laboratory culture of the phototrophic consortium "Chlorochromatium aggregatum" could be established and maintained. Using "C. aggregatum," recent genomic, transcriptomic, and proteomic studies have started to unravel the molecular basis of prokaryotic heterologous multicellularity in this model system.
Collapse
Affiliation(s)
- Jörg Overmann
- Bereich Mikrobiologie, Department Biologie I, Ludwig-Maximilians-Universität München, Grosshadernerstrasse 2-4, D-82152, Planegg-Martinsried, Germany.
| |
Collapse
|