1
|
Colman DR, Keller LM, Arteaga-Pozo E, Andrade-Barahona E, St Clair B, Shoemaker A, Cox A, Boyd ES. Covariation of hot spring geochemistry with microbial genomic diversity, function, and evolution. Nat Commun 2024; 15:7506. [PMID: 39209850 PMCID: PMC11362583 DOI: 10.1038/s41467-024-51841-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
The geosphere and the microbial biosphere have co-evolved for ~3.8 Ga, with many lines of evidence suggesting a hydrothermal habitat for life's origin. However, the extent that contemporary thermophiles and their hydrothermal habitats reflect those that likely existed on early Earth remains unknown. To address this knowledge gap, 64 geochemical analytes were measured and 1022 metagenome-assembled-genomes (MAGs) were generated from 34 chemosynthetic high-temperature springs in Yellowstone National Park and analysed alongside 444 MAGs from 35 published metagenomes. We used these data to evaluate co-variation in MAG taxonomy, metabolism, and phylogeny as a function of hot spring geochemistry. We found that cohorts of MAGs and their functions are discretely distributed across pH gradients that reflect different geochemical provinces. Acidic or circumneutral/alkaline springs harbor MAGs that branched later and are enriched in sulfur- and arsenic-based O2-dependent metabolic pathways that are inconsistent with early Earth conditions. In contrast, moderately acidic springs sourced by volcanic gas harbor earlier-branching MAGs that are enriched in anaerobic, gas-dependent metabolisms (e.g. H2, CO2, CH4 metabolism) that have been hypothesized to support early microbial life. Our results provide insight into the influence of redox state in the eco-evolutionary feedbacks between thermophiles and their habitats and suggest moderately acidic springs as early Earth analogs.
Collapse
Affiliation(s)
- Daniel R Colman
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA.
| | - Lisa M Keller
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Emilia Arteaga-Pozo
- Department of Chemistry and Geochemistry, Montana Technological University, Butte, MT, USA
| | - Eva Andrade-Barahona
- Department of Chemistry and Geochemistry, Montana Technological University, Butte, MT, USA
| | - Brian St Clair
- Department of Chemistry and Geochemistry, Montana Technological University, Butte, MT, USA
| | - Anna Shoemaker
- Department of Earth Sciences, Montana State University, Bozeman, MT, USA
| | - Alysia Cox
- Department of Chemistry and Geochemistry, Montana Technological University, Butte, MT, USA
| | - Eric S Boyd
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA.
| |
Collapse
|
2
|
Law SR, Mathes F, Paten AM, Alexandre PA, Regmi R, Reid C, Safarchi A, Shaktivesh S, Wang Y, Wilson A, Rice SA, Gupta VVSR. Life at the borderlands: microbiomes of interfaces critical to One Health. FEMS Microbiol Rev 2024; 48:fuae008. [PMID: 38425054 PMCID: PMC10977922 DOI: 10.1093/femsre/fuae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 02/12/2024] [Accepted: 02/27/2024] [Indexed: 03/02/2024] Open
Abstract
Microbiomes are foundational components of the environment that provide essential services relating to food security, carbon sequestration, human health, and the overall well-being of ecosystems. Microbiota exert their effects primarily through complex interactions at interfaces with their plant, animal, and human hosts, as well as within the soil environment. This review aims to explore the ecological, evolutionary, and molecular processes governing the establishment and function of microbiome-host relationships, specifically at interfaces critical to One Health-a transdisciplinary framework that recognizes that the health outcomes of people, animals, plants, and the environment are tightly interconnected. Within the context of One Health, the core principles underpinning microbiome assembly will be discussed in detail, including biofilm formation, microbial recruitment strategies, mechanisms of microbial attachment, community succession, and the effect these processes have on host function and health. Finally, this review will catalogue recent advances in microbiology and microbial ecology methods that can be used to profile microbial interfaces, with particular attention to multi-omic, advanced imaging, and modelling approaches. These technologies are essential for delineating the general and specific principles governing microbiome assembly and functions, mapping microbial interconnectivity across varying spatial and temporal scales, and for the establishment of predictive frameworks that will guide the development of targeted microbiome-interventions to deliver One Health outcomes.
Collapse
Affiliation(s)
- Simon R Law
- CSIRO MOSH-Future Science Platform, Australia
- CSIRO Agriculture and Food, Canberra, ACT 2601, Australia
| | - Falko Mathes
- CSIRO MOSH-Future Science Platform, Australia
- CSIRO Environment, Floreat, WA 6014, Australia
| | - Amy M Paten
- CSIRO MOSH-Future Science Platform, Australia
- CSIRO Environment, Canberra, ACT 2601, Australia
| | - Pamela A Alexandre
- CSIRO MOSH-Future Science Platform, Australia
- CSIRO Agriculture and Food, St Lucia, Qld 4072, Australia
| | - Roshan Regmi
- CSIRO MOSH-Future Science Platform, Australia
- CSIRO Agriculture and Food, Urrbrae, SA 5064, Australia
| | - Cameron Reid
- CSIRO MOSH-Future Science Platform, Australia
- CSIRO Environment, Urrbrae, SA 5064, Australia
| | - Azadeh Safarchi
- CSIRO MOSH-Future Science Platform, Australia
- CSIRO Health and Biosecurity, Westmead, NSW 2145, Australia
| | - Shaktivesh Shaktivesh
- CSIRO MOSH-Future Science Platform, Australia
- CSIRO Data 61, Clayton, Vic 3168, Australia
| | - Yanan Wang
- CSIRO MOSH-Future Science Platform, Australia
- CSIRO Health and Biosecurity, Adelaide SA 5000, Australia
| | - Annaleise Wilson
- CSIRO MOSH-Future Science Platform, Australia
- CSIRO Health and Biosecurity, Geelong, Vic 3220, Australia
| | - Scott A Rice
- CSIRO MOSH-Future Science Platform, Australia
- CSIRO Agriculture, and Food, Westmead, NSW 2145, Australia
| | - Vadakattu V S R Gupta
- CSIRO MOSH-Future Science Platform, Australia
- CSIRO Agriculture and Food, Urrbrae, SA 5064, Australia
| |
Collapse
|
3
|
Ota Y, Iguchi A, Nishijima M, Mukai R, Suzumura M, Yoshioka H, Suzuki A, Tsukasaki A, Aoyagi T, Hori T. Methane diffusion affects characteristics of benthic communities in and around microbial mat-covered sediments in the northeastern Japan sea. CHEMOSPHERE 2024; 349:140964. [PMID: 38128741 DOI: 10.1016/j.chemosphere.2023.140964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/17/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023]
Abstract
We investigated relationships between features of benthic macrofaunal communities and geochemical parameters in and around microbial mat-covered sediments associated with a methane seepage on Sakata Knoll in the eastern Japan Sea. A depression on top of the knoll corresponds to a gas-hydrate-bearing area with seepage of methane-rich fluid, and microbial mats cover the seafloor sediments. Sediment cores were collected at three sites for this study: one within a microbial mat, a second a few meters outside of the microbial mat, and a third from a reference site outside the gas-hydrate-bearing areas. Morphological analysis showed that the site inside the microbial mat had higher macrofaunal density and biomass compared with the other sites. 18S rRNA gene analysis showed that annelids were dominant in the surface sediment inside the microbial mat with the possible occurrence of microbial anaerobic oxidation of methane (AOM), whereas in the surface sediments outside the microbial mat and at the reference site the predominant species belonged to phylum Cercozoa. Morphological analysis also showed that the surface sediment inside the microbial mat noticeably favored annelids, with dorvilleid Ophryotrocha sp. and ampharetid Neosabellides sp. identified as major constituents. Statistical analysis showed that sulfidic sediment conditions with concentrations of H2S up to 121 μM resulting from AOM likely resulted in the predominance of annelids with tolerance to sulfide. Both the 18S rRNA genes and macrofaunal characteristics showed that benthic biodiversity among the three sites was greatest outside the microbial mat. The site outside the microbial mat may represent geochemical transition conditions, including a lower rate of upward methane gas-flow compared with the site inside the microbial mat. The high biodiversity there might result from the presence of species specifically suited to the transition zone as well as species also found in photosynthesis-based communities of the background environment.
Collapse
Affiliation(s)
- Yuki Ota
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Onogawa 16-1, Tsukuba, Ibaraki, 305-8561, Japan.
| | - Akira Iguchi
- Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), Higashi 1-1-1, Tsukuba, Ibaraki, 305-8567, Japan; Research Laboratory on Environmentally-Conscious Developments and Technologies [E-code], National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, 305-8567, Japan
| | - Miyuki Nishijima
- Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), Higashi 1-1-1, Tsukuba, Ibaraki, 305-8567, Japan
| | - Ryo Mukai
- Marine Biological Research Institute of Japan Co., Ltd, Yutaka-cho 4-3-16, Shinagawa, Tokyo, 142-0042, Japan
| | - Masahiro Suzumura
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Onogawa 16-1, Tsukuba, Ibaraki, 305-8561, Japan
| | - Hideyoshi Yoshioka
- Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), Higashi 1-1-1, Tsukuba, Ibaraki, 305-8567, Japan
| | - Atsushi Suzuki
- Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), Higashi 1-1-1, Tsukuba, Ibaraki, 305-8567, Japan; Research Laboratory on Environmentally-Conscious Developments and Technologies [E-code], National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, 305-8567, Japan
| | - Ayumi Tsukasaki
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Onogawa 16-1, Tsukuba, Ibaraki, 305-8561, Japan
| | - Tomo Aoyagi
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Onogawa 16-1, Tsukuba, Ibaraki, 305-8561, Japan
| | - Tomoyuki Hori
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Onogawa 16-1, Tsukuba, Ibaraki, 305-8561, Japan
| |
Collapse
|
4
|
Weeks K, Trembath-Reichert E, Boyer G, Fecteau K, Howells A, De Martini F, Gile GH, Shock EL. Characterization of microbiomic and geochemical compositions across the photosynthetic fringe. Front Microbiol 2023; 14:1176606. [PMID: 37187542 PMCID: PMC10178925 DOI: 10.3389/fmicb.2023.1176606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023] Open
Abstract
Hot spring outflow channels provide geochemical gradients that are reflected in microbial community compositions. In many hot spring outflows, there is a distinct visual demarcation as the community transitions from predominantly chemotrophs to having visible pigments from phototrophs. It has been hypothesized that this transition to phototrophy, known as the photosynthetic fringe, is a result of the pH, temperature, and/or sulfide concentration gradients in the hot spring outflows. Here, we explicitly evaluated the predictive capability of geochemistry in determining the location of the photosynthetic fringe in hot spring outflows. A total of 46 samples were taken from 12 hot spring outflows in Yellowstone National Park that spanned pH values from 1.9 to 9.0 and temperatures from 28.9 to 92.2°C. Sampling locations were selected to be equidistant in geochemical space above and below the photosynthetic fringe based on linear discriminant analysis. Although pH, temperature, and total sulfide concentrations have all previously been cited as determining factors for microbial community composition, total sulfide did not correlate with microbial community composition with statistical significance in non-metric multidimensional scaling. In contrast, pH, temperature, ammonia, dissolved organic carbon, dissolved inorganic carbon, and dissolved oxygen did correlate with the microbial community composition with statistical significance. Additionally, there was observed statistical significance between beta diversity and the relative position to the photosynthetic fringe with sites above the photosynthetic fringe being significantly different from those at or below the photosynthetic fringe according to canonical correspondence analysis. However, in combination, the geochemical parameters considered in this study only accounted for 35% of the variation in microbial community composition determined by redundancy analysis. In co-occurrence network analyses, each clique correlated with either pH and/or temperature, whereas sulfide concentrations only correlated with individual nodes. These results indicate that there is a complex interplay between geochemical variables and the position of the photosynthetic fringe that cannot be fully explained by statistical correlations with the individual geochemical variables included in this study.
Collapse
Affiliation(s)
- Katelyn Weeks
- School of Molecular Sciences, Arizona State University, Tempe, AZ, United States
| | | | - Grayson Boyer
- School of Molecular Sciences, Arizona State University, Tempe, AZ, United States
| | - Kristopher Fecteau
- School of Molecular Sciences, Arizona State University, Tempe, AZ, United States
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ, United States
| | - Alta Howells
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
- NASA Postdoctoral Program Fellow at NASA Ames Research Center, Moffett Field, CA, United States
| | - Francesca De Martini
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
- Department of Life Sciences, Mesa Community College, Mesa, AZ, United States
| | - Gillian H. Gile
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Everett L. Shock
- School of Molecular Sciences, Arizona State University, Tempe, AZ, United States
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
5
|
Twing KI, Ward LM, Kane ZK, Sanders A, Price RE, Pendleton HL, Giovannelli D, Brazelton WJ, McGlynn SE. Microbial ecology of a shallow alkaline hydrothermal vent: Strýtan Hydrothermal Field, Eyjafördur, northern Iceland. Front Microbiol 2022; 13:960335. [PMID: 36466646 PMCID: PMC9713835 DOI: 10.3389/fmicb.2022.960335] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/05/2022] [Indexed: 10/20/2023] Open
Abstract
Strýtan Hydrothermal Field (SHF) is a submarine system located in Eyjafördur in northern Iceland composed of two main vents: Big Strýtan and Arnarnesstrýtan. The vents are shallow, ranging from 16 to 70 m water depth, and vent high pH (up to 10.2), moderate temperature (T max ∼70°C), anoxic, fresh fluids elevated in dissolved silica, with slightly elevated concentrations of hydrogen and methane. In contrast to other alkaline hydrothermal vents, SHF is unique because it is hosted in basalt and therefore the high pH is not created by serpentinization. While previous studies have assessed the geology and geochemistry of this site, the microbial diversity of SHF has not been explored in detail. Here we present a microbial diversity survey of the actively venting fluids and chimneys from Big Strýtan and Arnarnesstrýtan, using 16S rRNA gene amplicon sequencing. Community members from the vent fluids are mostly aerobic heterotrophic bacteria; however, within the chimneys oxic, low oxygen, and anoxic habitats could be distinguished, where taxa putatively capable of acetogenesis, sulfur-cycling, and hydrogen metabolism were observed. Very few archaea were observed in the samples. The inhabitants of SHF are more similar to terrestrial hot spring samples than other marine sites. It has been hypothesized that life on Earth (and elsewhere in the solar system) could have originated in an alkaline hydrothermal system, however all other studied alkaline submarine hydrothermal systems to date are fueled by serpentinization. SHF adds to our understandings of hydrothermal vents in relationship to microbial diversity, evolution, and possibly the origin of life.
Collapse
Affiliation(s)
- Katrina I. Twing
- School of Biological Sciences, The University of Utah, Salt Lake City, UT, United States
- Department of Microbiology, Weber State University, Ogden, UT, United States
| | - L. M. Ward
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan
- Department of Geosciences, Smith College, Northampton, MA, United States
| | - Zachary K. Kane
- Department of Microbiology, Weber State University, Ogden, UT, United States
| | - Alexa Sanders
- Department of Microbiology, Weber State University, Ogden, UT, United States
| | - Roy Edward Price
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, United States
| | - H. Lizethe Pendleton
- School of Biological Sciences, The University of Utah, Salt Lake City, UT, United States
| | - Donato Giovannelli
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan
- Department of Biology, University of Naples “Federico II”, Naples, Italy
| | - William J. Brazelton
- School of Biological Sciences, The University of Utah, Salt Lake City, UT, United States
| | - Shawn E. McGlynn
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan
- Center for Sustainable Resource Science, RIKEN, Saitama, Japan
| |
Collapse
|
6
|
Ecological Dichotomies Arise in Microbial Communities Due to Mixing of Deep Hydrothermal Waters and Atmospheric Gas in a Circumneutral Hot Spring. Appl Environ Microbiol 2021; 87:e0159821. [PMID: 34586901 PMCID: PMC8579995 DOI: 10.1128/aem.01598-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Little is known of how the confluence of subsurface and surface processes influences the assembly and habitability of hydrothermal ecosystems. To address this knowledge gap, the geochemical and microbial composition of a high-temperature, circumneutral hot spring in Yellowstone National Park was examined to identify the sources of solutes and their effect on the ecology of microbial inhabitants. Metagenomic analysis showed that populations comprising planktonic and sediment communities are archaeal dominated, are dependent on chemical energy (chemosynthetic), share little overlap in their taxonomic composition, and are differentiated by their inferred use of/tolerance to oxygen and mode of carbon metabolism. The planktonic community is dominated by putative aerobic/aerotolerant autotrophs, while the taxonomic composition of the sediment community is more evenly distributed and comprised of anaerobic heterotrophs. These observations are interpreted to reflect sourcing of the spring by anoxic, organic carbon-limited subsurface hydrothermal fluids and ingassing of atmospheric oxygen that selects for aerobic/aerotolerant organisms that have autotrophic capabilities in the water column. Autotrophy and consumption of oxygen by the planktonic community may influence the assembly of the anaerobic and heterotrophic sediment community. Support for this inference comes from higher estimated rates of genome replication in planktonic populations than sediment populations, indicating faster growth in planktonic populations. Collectively, these observations provide new insight into how mixing of subsurface waters and atmospheric oxygen create dichotomy in the ecology of hot spring communities and suggest that planktonic and sediment communities may have been less differentiated taxonomically and functionally prior to the rise of oxygen at ∼2.4 billion years ago (Gya). IMPORTANCE Understanding the source and availability of energy capable of supporting life in hydrothermal environments is central to predicting the ecology of microbial life on early Earth when volcanic activity was more widespread. Little is known of the substrates supporting microbial life in circumneutral to alkaline springs, despite their relevance to early Earth habitats. Using metagenomic and informatics approaches, water column and sediment habitats in a representative circumneutral hot spring in Yellowstone were shown to be dichotomous, with the former largely hosting aerobic/aerotolerant autotrophs and the latter primarily hosting anaerobic heterotrophs. This dichotomy is attributed to influx of atmospheric oxygen into anoxic deep hydrothermal spring waters. These results indicate that the ecology of microorganisms in circumneutral alkaline springs sourced by deep hydrothermal fluids was different prior to the rise of atmospheric oxygen ∼2.4 Gya, with planktonic and sediment communities likely to be less differentiated than contemporary circumneutral hot springs.
Collapse
|
7
|
Sistiaga A, Husain F, Uribelarrea D, Martín-Perea DM, Ferland T, Freeman KH, Diez-Martín F, Baquedano E, Mabulla A, Domínguez-Rodrigo M, Summons RE. Microbial biomarkers reveal a hydrothermally active landscape at Olduvai Gorge at the dawn of the Acheulean, 1.7 Ma. Proc Natl Acad Sci U S A 2020; 117:24720-24728. [PMID: 32934140 PMCID: PMC7547214 DOI: 10.1073/pnas.2004532117] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Landscape-scale reconstructions of ancient environments within the cradle of humanity may reveal insights into the relationship between early hominins and the changing resources around them. Many studies of Olduvai Gorge during Pliocene-Pleistocene times have revealed the presence of precession-driven wet-dry cycles atop a general aridification trend, though may underestimate the impact of local-scale conditions on early hominins, who likely experienced a varied and more dynamic landscape. Fossil lipid biomarkers from ancient plants and microbes encode information about their surroundings via their molecular structures and composition, and thus can shed light on past environments. Here, we employ fossil lipid biomarkers to study the paleolandscape at Olduvai Gorge at the emergence of the Acheulean technology, 1.7 Ma, through the Lower Augitic Sandstones layer. In the context of the expansion of savanna grasslands, our results represent a resource-rich mosaic ecosystem populated by groundwater-fed rivers, aquatic plants, angiosperm shrublands, and edible plants. Evidence of a geothermally active landscape is reported via an unusual biomarker distribution consistent with the presence of hydrothermal features seen today at Yellowstone National Park. The study of hydrothermalism in ancient settings and its impact on hominin evolution has not been addressed before, although the association of thermal springs in the proximity of archaeological sites documented here can also be found at other localities. The hydrothermal features and resources present at Olduvai Gorge may have allowed early hominins to thermally process edible plants and meat, supporting the possibility of a prefire stage of human evolution.
Collapse
Affiliation(s)
- Ainara Sistiaga
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139;
- GLOBE Institute, University of Copenhagen, 1350 Copenhagen, Denmark
| | - Fatima Husain
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - David Uribelarrea
- Institute of Evolution in Africa (IDEA), University of Alcalá, 28010, Madrid, Spain
- Geodynamics, Stratigraphy and Palaeontology Department, Complutense University of Madrid, 28040 Madrid, Spain
| | - David M Martín-Perea
- Institute of Evolution in Africa (IDEA), University of Alcalá, 28010, Madrid, Spain
- Geodynamics, Stratigraphy and Palaeontology Department, Complutense University of Madrid, 28040 Madrid, Spain
- Paleobiology Department, National Natural Sciences Museum, Consejo Superior de Investigaciones Científicas, 28006 Madrid, Spain
| | - Troy Ferland
- Department of Geosciences, The Pennsylvania State University, University Park, PA 16802
| | - Katherine H Freeman
- Department of Geosciences, The Pennsylvania State University, University Park, PA 16802
| | - Fernando Diez-Martín
- Department of Prehistory and Archaeology, Universidad de Valladolid, 47002 Valladolid, Spain
| | | | - Audax Mabulla
- Department of Archaeology and Heritage Studies, University of Dar es Salaam, 35050 Dar es Salaam, Tanzania
| | - Manuel Domínguez-Rodrigo
- Institute of Evolution in Africa (IDEA), University of Alcalá, 28010, Madrid, Spain
- Department of Philosophy and History (Area of Prehistory), University of Alcalá, 28801 Alcalá de Henares, Spain
| | - Roger E Summons
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139
| |
Collapse
|
8
|
Podar PT, Yang Z, Björnsdóttir SH, Podar M. Comparative Analysis of Microbial Diversity Across Temperature Gradients in Hot Springs From Yellowstone and Iceland. Front Microbiol 2020; 11:1625. [PMID: 32760379 PMCID: PMC7372906 DOI: 10.3389/fmicb.2020.01625] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 06/22/2020] [Indexed: 11/21/2022] Open
Abstract
Geothermal hot springs are a natural setting to study microbial adaptation to a wide range of temperatures reaching up to boiling. Temperature gradients lead to distinct microbial communities that inhabit their optimum niches. We sampled three alkaline, high temperature (80-100°C) hot springs in Yellowstone and Iceland that had cooling outflows and whose microbial communities had not been studied previously. The microbial composition in sediments and mats was determined by DNA sequencing of rRNA gene amplicons. Over three dozen phyla of Archaea and Bacteria were identified, representing over 1700 distinct organisms. We observed a significant non-linear reduction in the number of microbial taxa as the temperature increased from warm (38°C) to boiling. At high taxonomic levels, the community structure was similar between the Yellowstone and Iceland hot springs. We identified potential endemism at the genus level, especially in thermophilic phototrophs, which may have been potentially driven by distinct environmental conditions and dispersal limitations.
Collapse
Affiliation(s)
- Peter T. Podar
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Zamin Yang
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | | | - Mircea Podar
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| |
Collapse
|
9
|
Microbiome and ecology of a hot spring-microbialite system on the Trans-Himalayan Plateau. Sci Rep 2020; 10:5917. [PMID: 32246033 PMCID: PMC7125080 DOI: 10.1038/s41598-020-62797-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 03/17/2020] [Indexed: 11/30/2022] Open
Abstract
Little is known about life in the boron-rich hot springs of Trans-Himalayas. Here, we explore the geomicrobiology of a 4438-m-high spring which emanates ~70 °C-water from a boratic microbialite called Shivlinga. Due to low atmospheric pressure, the vent-water is close to boiling point so can entropically destabilize biomacromolecular systems. Starting from the vent, Shivlinga’s geomicrobiology was revealed along the thermal gradients of an outflow-channel and a progressively-drying mineral matrix that has no running water; ecosystem constraints were then considered in relation to those of entropically comparable environments. The spring-water chemistry and sinter mineralogy were dominated by borates, sodium, thiosulfate, sulfate, sulfite, sulfide, bicarbonate, and other macromolecule-stabilizing (kosmotropic) substances. Microbial diversity was high along both of the hydrothermal gradients. Bacteria, Eukarya and Archaea constituted >98%, ~1% and <1% of Shivlinga’s microbiome, respectively. Temperature constrained the biodiversity at ~50 °C and ~60 °C, but not below 46 °C. Along each thermal gradient, in the vent-to-apron trajectory, communities were dominated by Aquificae/Deinococcus-Thermus, then Chlorobi/Chloroflexi/Cyanobacteria, and finally Bacteroidetes/Proteobacteria/Firmicutes. Interestingly, sites of >45 °C were inhabited by phylogenetic relatives of taxa for which laboratory growth is not known at >45 °C. Shivlinga’s geomicrobiology highlights the possibility that the system’s kosmotrope-dominated chemistry mitigates against the biomacromolecule-disordering effects of its thermal water.
Collapse
|
10
|
Boyer GM, Schubotz F, Summons RE, Woods J, Shock EL. Carbon Oxidation State in Microbial Polar Lipids Suggests Adaptation to Hot Spring Temperature and Redox Gradients. Front Microbiol 2020; 11:229. [PMID: 32153529 PMCID: PMC7044123 DOI: 10.3389/fmicb.2020.00229] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 01/31/2020] [Indexed: 12/18/2022] Open
Abstract
The influence of oxidation-reduction (redox) potential on the expression of biomolecules is a topic of ongoing exploration in geobiology. In this study, we investigate the novel possibility that structures and compositions of lipids produced by microbial communities are sensitive to environmental redox conditions. We extracted lipids from microbial biomass collected along the thermal and redox gradients of four alkaline hot springs in Yellowstone National Park (YNP) and investigated patterns in the average oxidation state of carbon (ZC), a metric calculated from the chemical formulae of lipid structures. Carbon in intact polar lipids (IPLs) and their alkyl chains becomes more oxidized (higher ZC) with increasing distance from each of the four hot spring sources. This coincides with decreased water temperature and increased concentrations of oxidized inorganic solutes, such as dissolved oxygen, sulfate, and nitrate. Carbon in IPLs is most reduced (lowest ZC) in the hot, reduced conditions upstream, with abundance-weighted ZC values between −1.68 and −1.56. These values increase gradually downstream to around −1.36 to −1.33 in microbial communities living between 29.0 and 38.1°C. This near-linear increase in ZC can be attributed to a shift from ether-linked to ester-linked alkyl chains, a decrease in average aliphatic carbons per chain (nC), an increase in average degree of unsaturation per chain (nUnsat), and increased cyclization in tetraether lipids. The ZC of lipid headgroups and backbones did not change significantly downstream. Expression of lipids with relatively reduced carbon under reduced conditions and oxidized lipids under oxidized conditions may indicate microbial adaptation across environmental gradients in temperature and electron donor/acceptor supply.
Collapse
Affiliation(s)
- Grayson M Boyer
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ, United States
| | - Florence Schubotz
- MARUM and Department of Geosciences, University of Bremen, Bremen, Germany
| | - Roger E Summons
- Department of Earth, Atmospheric and Planetary Science, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Jade Woods
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Everett L Shock
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ, United States.,School of Molecular Sciences, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
11
|
Spieck E, Spohn M, Wendt K, Bock E, Shively J, Frank J, Indenbirken D, Alawi M, Lücker S, Hüpeden J. Extremophilic nitrite-oxidizing Chloroflexi from Yellowstone hot springs. THE ISME JOURNAL 2020; 14:364-379. [PMID: 31624340 PMCID: PMC6976673 DOI: 10.1038/s41396-019-0530-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 08/03/2019] [Accepted: 09/06/2019] [Indexed: 12/21/2022]
Abstract
Nitrifying microorganisms occur across a wide temperature range from 4 to 84 °C and previous studies in geothermal systems revealed their activity under extreme conditions. Archaea were detected to be responsible for the first step of nitrification, but it is still a challenging issue to clarify the identity of heat-tolerant nitrite oxidizers. In a long-term cultivation approach, we inoculated mineral media containing ammonium and nitrite as substrates with biofilms and sediments of two hot springs in Yellowstone National Park (USA). The nitrifying consortia obtained at 70 °C consisted mostly of novel Chloroflexi as revealed by metagenomic sequencing. Among these, two deep-branching novel Chloroflexi were identified as putative nitrite-oxidizing bacteria (NOB) by the presence of nitrite oxidoreductase encoding genes in their genomes. Stoichiometric oxidation of nitrite to nitrate occurred under lithoautotrophic conditions, but was stimulated by organic matter. Both NOB candidates survived long periods of starvation and the more abundant one formed miniaturized cells and was heat resistant. This detection of novel thermophilic NOB exemplifies our still incomplete knowledge of nitrification, and indicates that nitrite oxidation might be an ancient and wide-spread form of energy conservation.
Collapse
Affiliation(s)
- Eva Spieck
- Department of Microbiology and Biotechnology, Universität Hamburg, Hamburg, Germany.
| | - Michael Spohn
- Technology Platform Next Generation Sequencing, Heinrich Pette Institut, Hamburg, Germany
| | - Katja Wendt
- Department of Microbiology and Biotechnology, Universität Hamburg, Hamburg, Germany
| | - Eberhard Bock
- Department of Microbiology and Biotechnology, Universität Hamburg, Hamburg, Germany
| | - Jessup Shively
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC, USA
| | - Jeroen Frank
- Department of Microbiology, IWWR, Radboud University, Nijmegen, The Netherlands
- Soehngen Institute of Anaerobic Microbiology, Radboud University, Nijmegen, The Netherlands
| | - Daniela Indenbirken
- Technology Platform Next Generation Sequencing, Heinrich Pette Institut, Hamburg, Germany
| | - Malik Alawi
- Bioinformatics Core, University Medical-Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sebastian Lücker
- Department of Microbiology, IWWR, Radboud University, Nijmegen, The Netherlands
| | - Jennifer Hüpeden
- Department of Microbiology and Biotechnology, Universität Hamburg, Hamburg, Germany
| |
Collapse
|
12
|
Martinez JN, Nishihara A, Lichtenberg M, Trampe E, Kawai S, Tank M, Kühl M, Hanada S, Thiel V. Vertical Distribution and Diversity of Phototrophic Bacteria within a Hot Spring Microbial Mat (Nakabusa Hot Springs, Japan). Microbes Environ 2019; 34:374-387. [PMID: 31685759 PMCID: PMC6934398 DOI: 10.1264/jsme2.me19047] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Phototrophic microbial mats are assemblages of vertically layered microbial populations dominated by photosynthetic microorganisms. In order to elucidate the vertical distribution and diversity of phototrophic microorganisms in a hot spring-associated microbial mat in Nakabusa (Japan), we analyzed the 16S rRNA gene amplicon sequences of the microbial mat separated into five depth horizons, and correlated them with microsensor measurements of O2 and spectral scalar irradiance. A stable core community and high diversity of phototrophic organisms dominated by the filamentous anoxygenic phototrophs, Roseiflexus castenholzii and Chloroflexus aggregans were identified together with the spectral signatures of bacteriochlorophylls (BChls) a and c absorption in all mat layers. In the upper mat layers, a high abundance of cyanobacteria (Thermosynechococcus sp.) correlated with strong spectral signatures of chlorophyll a and phycobiliprotein absorption near the surface in a zone of high O2 concentrations during the day. Deeper mat layers were dominated by uncultured chemotrophic Chlorobi such as the novel putatively sulfate-reducing “Ca. Thermonerobacter sp.”, which showed increasing abundance with depth correlating with low O2 in these layers enabling anaerobic metabolism. Oxygen tolerance and requirements for the novel phototroph “Ca. Chloroanaerofilum sp.” and the uncultured chemotrophic Armatimonadetes member type OS-L detected in Nakabusa hot springs, Japan appeared to differ from previously suggested lifestyles for close relatives identified in hot springs in Yellowstone National Park, USA. The present study identified various microenvironmental gradients and niche differentiation enabling the co-existence of diverse chlorophototrophs in metabolically diverse communities in hot springs.
Collapse
Affiliation(s)
- Joval N Martinez
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University.,Department of Natural Sciences, College of Arts and Sciences, University of St. La Salle
| | - Arisa Nishihara
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University.,Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)
| | - Mads Lichtenberg
- Marine Biological Section, Department of Biology, University of Copenhagen
| | - Erik Trampe
- Marine Biological Section, Department of Biology, University of Copenhagen
| | - Shigeru Kawai
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University
| | - Marcus Tank
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University
| | - Michael Kühl
- Marine Biological Section, Department of Biology, University of Copenhagen
| | - Satoshi Hanada
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University
| | - Vera Thiel
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University
| |
Collapse
|
13
|
Momper L, Hu E, Moore KR, Skoog EJ, Tyler M, Evans AJ, Bosak T. Metabolic versatility in a modern lineage of cyanobacteria from terrestrial hot springs. Free Radic Biol Med 2019; 140:224-232. [PMID: 31163257 DOI: 10.1016/j.freeradbiomed.2019.05.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 05/14/2019] [Accepted: 05/31/2019] [Indexed: 01/23/2023]
Abstract
The extent of oxygenated environments on the early Earth was much lower than today, and cyanobacteria were critical players in Earth's shift from widespread anoxia to oxygenated surface environments. Extant cyanobacteria that aggregate into cones, tufts and ridges are used to understand the long record of photosynthesis and microbe-mineral interactions during times when oxygen was much lower, i.e., the Archean and the Proterozoic. To better understand the metabolic versatility and physiological properties of these organisms, we examined publicly available genomes of cyanobacteria from modern terrestrial hydrothermal systems and a newly sequenced genome of a cyanobacterium isolated from conical and ridged microbialites that grow in occasionally sulfidic hydrothermal springs in Yellowstone National Park, USA. Phylogenomic analyses reveal that cyanobacteria from globally distributed terrestrial and shallow marine hydrothermal systems form a monophyletic clade within the Cyanobacteria phylum. Comparative genomics of this clade reveals the genetic capacity for oxygenic photosynthesis that uses photosystems I and II, and anoxygenic photosynthesis that uses a putative sulfide quinone reductase to oxidize sulfide and bypass photosystem II. Surprisingly large proportions of the newly sequenced genome from Yellowstone National Park are also dedicated to secondary metabolite production (15.1-15.6%), of which ∼6% can be attributed to antibiotic production and resistance genes. All this may be advantageous to benthic, mat-forming photosynthesizers that have to compete for light and nutrients in sporadically or permanently sulfidic environments, and may have also improved the tolerance of ancient counterparts of these cyanobacteria to sulfidic conditions in benthic communities that colonized the coastal margins in the Archean and the Proterozoic.
Collapse
Affiliation(s)
- Lily Momper
- Department of Earth, Atmospheric & Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Eileen Hu
- Department of Earth, Atmospheric & Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Kelsey R Moore
- Department of Earth, Atmospheric & Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Emilie J Skoog
- Department of Earth, Atmospheric & Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| | - Madeline Tyler
- College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, OR, USA
| | - Alexander J Evans
- Department of Earth, Environmental and Planetary Sciences, Brown University, Providence, RI, USA
| | - Tanja Bosak
- Department of Earth, Atmospheric & Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
14
|
Nishihara A, Matsuura K, Tank M, McGlynn SE, Thiel V, Haruta S. Nitrogenase Activity in Thermophilic Chemolithoautotrophic Bacteria in the Phylum Aquificae Isolated under Nitrogen-Fixing Conditions from Nakabusa Hot Springs. Microbes Environ 2018; 33:394-401. [PMID: 30473565 PMCID: PMC6307999 DOI: 10.1264/jsme2.me18041] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The phylum Aquificae comprises chemolithoautotrophic thermophilic to hyperthermophilic bacteria, in which the nitrogenase reductase gene (nifH) has been reported. However, nitrogen-fixing activity has not yet been demonstrated in members of this deeply branching bacterial phylum. We isolated two thermophilic diazotrophic strains from chemosynthetic microbial communities in slightly alkaline hot springs (≥70°C) in Nakabusa, Nagano Prefecture, Japan. A phylogenetic analysis based on 16S rRNA genes identified these strains as members of the genus Hydrogenobacter within Aquificae. Their NifH sequences showed 96.5 and 97.4% amino acid sequence identities to that from Hydrogenobacter thermophilus TK-6. Nitrogenase activity, measured by acetylene reduction, was confirmed in both strains at 70°C. These novel strains grew under semi-aerobic conditions by using CO2 as the sole carbon source and N2 as the sole nitrogen source in media containing hydrogen and/or thiosulfate. To the best of our knowledge, this is the first demonstration of active nitrogen fixation in thermophilic bacteria at 70°C and in the phylum Aquificae.
Collapse
Affiliation(s)
- Arisa Nishihara
- Department of Biological Sciences, Tokyo Metropolitan University
| | - Katsumi Matsuura
- Department of Biological Sciences, Tokyo Metropolitan University
| | - Marcus Tank
- Department of Biological Sciences, Tokyo Metropolitan University
| | - Shawn E McGlynn
- Department of Biological Sciences, Tokyo Metropolitan University.,Earth-Life Science Institute, Tokyo Institute of Technology.,Biofunctional Catalyst Research Team, RIKEN Center for Sustainable Resource Science.,Blue Marble Space Institute of Science
| | - Vera Thiel
- Department of Biological Sciences, Tokyo Metropolitan University
| | - Shin Haruta
- Department of Biological Sciences, Tokyo Metropolitan University
| |
Collapse
|
15
|
Tang J, Liang Y, Jiang D, Li L, Luo Y, Shah MMR, Daroch M. Temperature-controlled thermophilic bacterial communities in hot springs of western Sichuan, China. BMC Microbiol 2018; 18:134. [PMID: 30332987 PMCID: PMC6191902 DOI: 10.1186/s12866-018-1271-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 09/27/2018] [Indexed: 12/13/2022] Open
Abstract
Background Ganzi Prefecture in Western China is situated geographically at the transition regions between Tibetan Plateau and Sichuan Basin in a highly tectonically active boundary area between the India and Eurasia plates. The region hosts various hot springs that span a wide range of temperature from 30 to 98 °C and are located at high altitude (up to 4200 m above sea level) in the region of large geothermal anomalies and active Xianshuihe slip-fault that has been active since Holocene. The site represents a biodiversity reservoir for thermophiles, yet their diversity and relationship to geochemical parameters are largely unknown. In the present work, bacterial diversity and community structure in 14 hot springs of Ganzi were investigated using Illumina MiSeq sequencing. Results Bacterial community compositions were evidently distinct among the 14 hot springs, and the bacterial communities in hot springs were majorly abundant in phyla Aquificae, Cyanobacteria and Proteobacteria. Both clustering and PCoA analysis suggested the existence of four bacterial community patterns in these hot springs. Temperature contributed to shaping bacterial community structure of hot springs as revealed by correlation analysis. Abundant unassigned-genus sequences detected in this study strongly implied the presence of novel genera or genetic resources in these hot springs. Conclusion The diversity of hot springs of Ganzi prefecture in Western Sichuan, China is evidently shaped by temperature. Interestingly disproportionally abundant unassigned-genus sequences detected in this study show indicate potential of novel genera or phylotypes. We hypothesize that frequent earthquakes and rapidly changing environment might have contributed to evolution of these potentially new lineages. Overall, this study provided first insight into the bacterial diversity of hot springs located in Western Sichuan, China and its comparison with other similar communities worldwide. Electronic supplementary material The online version of this article (10.1186/s12866-018-1271-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jie Tang
- School of Pharmacy and Bioengineering, Chengdu University, Chengdu, 610106, China
| | - Yuanmei Liang
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Dong Jiang
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Liheng Li
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Yifan Luo
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Md Mahfuzur R Shah
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Maurycy Daroch
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
| |
Collapse
|
16
|
Cousins CR, Fogel M, Bowden R, Crawford I, Boyce A, Cockell C, Gunn M. Biogeochemical probing of microbial communities in a basalt-hosted hot spring at Kverkfjöll volcano, Iceland. GEOBIOLOGY 2018; 16:507-521. [PMID: 29856116 DOI: 10.1111/gbi.12291] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 04/24/2018] [Indexed: 06/08/2023]
Abstract
We investigated bacterial and archaeal communities along an ice-fed surficial hot spring at Kverkfjöll volcano-a partially ice-covered basaltic volcano at Vatnajökull glacier, Iceland, using biomolecular (16S rRNA, apsA, mcrA, amoA, nifH genes) and stable isotope techniques. The hot spring environment is characterized by high temperatures and low dissolved oxygen concentrations at the source (68°C and <1 mg/L (±0.1%)) changing to lower temperatures and higher dissolved oxygen downstream (34.7°C and 5.9 mg/L), with sulfate the dominant anion (225 mg/L at the source). Sediments are comprised of detrital basalt, low-temperature alteration phases and pyrite, with <0.4 wt. % total organic carbon (TOC). 16S rRNA gene profiles reveal that organisms affiliated with Hydrogenobaculum (54%-87% bacterial population) and Thermoproteales (35%-63% archaeal population) dominate the micro-oxic hot spring source, while sulfur-oxidizing archaea (Sulfolobales, 57%-82%), and putative sulfur-oxidizing and heterotrophic bacterial groups dominate oxic downstream environments. The δ13 Corg (‰ V-PDB) values for sediment TOC and microbial biomass range from -9.4‰ at the spring's source decreasing to -12.6‰ downstream. A reverse effect isotope fractionation of ~3‰ between sediment sulfide (δ34 S ~0‰) and dissolved water sulfate (δ34 S +3.2‰), and δ18 O values of ~ -5.3‰ suggest pyrite forms abiogenically from volcanic sulfide, followed by abiogenic and microbial oxidation. These environments represent an unexplored surficial geothermal environment analogous to transient volcanogenic habitats during putative "snowball Earth" scenarios and volcano-ice geothermal environments on Mars.
Collapse
Affiliation(s)
- Claire R Cousins
- School of Earth and Environmental Science, University of St Andrews, St Andrews, UK
| | - Marilyn Fogel
- Department of Earth Sciences, University of California Riverside, Riverside, California
| | - Roxane Bowden
- Geophysical Laboratory, Carnegie Institution of Washington, Washington, District of Columbia
| | | | | | - Charles Cockell
- School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| | | |
Collapse
|
17
|
Hua ZS, Qu YN, Zhu Q, Zhou EM, Qi YL, Yin YR, Rao YZ, Tian Y, Li YX, Liu L, Castelle CJ, Hedlund BP, Shu WS, Knight R, Li WJ. Genomic inference of the metabolism and evolution of the archaeal phylum Aigarchaeota. Nat Commun 2018; 9:2832. [PMID: 30026532 PMCID: PMC6053391 DOI: 10.1038/s41467-018-05284-4] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 06/13/2018] [Indexed: 12/30/2022] Open
Abstract
Microbes of the phylum Aigarchaeota are widely distributed in geothermal environments, but their physiological and ecological roles are poorly understood. Here we analyze six Aigarchaeota metagenomic bins from two circumneutral hot springs in Tengchong, China, to reveal that they are either strict or facultative anaerobes, and most are chemolithotrophs that can perform sulfide oxidation. Applying comparative genomics to the Thaumarchaeota and Aigarchaeota, we find that they both originated from thermal habitats, sharing 1154 genes with their common ancestor. Horizontal gene transfer played a crucial role in shaping genetic diversity of Aigarchaeota and led to functional partitioning and ecological divergence among sympatric microbes, as several key functional innovations were endowed by Bacteria, including dissimilatory sulfite reduction and possibly carbon monoxide oxidation. Our study expands our knowledge of the possible ecological roles of the Aigarchaeota and clarifies their evolutionary relationship to their sister lineage Thaumarchaeota.
Collapse
Affiliation(s)
- Zheng-Shuang Hua
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, 510275, Guangzhou, China
| | - Yan-Ni Qu
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, 510275, Guangzhou, China
| | - Qiyun Zhu
- Department of Pediatrics, University of California San Diego, La Jolla, CA, 92093, USA
| | - En-Min Zhou
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, 510275, Guangzhou, China
| | - Yan-Ling Qi
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, 510275, Guangzhou, China
| | - Yi-Rui Yin
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, 510275, Guangzhou, China
| | - Yang-Zhi Rao
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, 510275, Guangzhou, China
| | - Ye Tian
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, 510275, Guangzhou, China
| | - Yu-Xian Li
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, 510275, Guangzhou, China
| | - Lan Liu
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, 510275, Guangzhou, China
| | - Cindy J Castelle
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Brian P Hedlund
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, 89154, USA.,Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, Las Vegas, NV, 89154, USA
| | - Wen-Sheng Shu
- School of Life Sciences, South China Normal University, 510631, Guangzhou, China
| | - Rob Knight
- Department of Pediatrics, University of California San Diego, La Jolla, CA, 92093, USA.,Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA, 92093, USA.,Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, 92093, USA
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, 510275, Guangzhou, China. .,College of Fisheries, Henan Normal University, 453007, Xinxiang, China.
| |
Collapse
|
18
|
Kraus EA, Beeler SR, Mors RA, Floyd JG, Stamps BW, Nunn HS, Stevenson BS, Johnson HA, Shapiro RS, Loyd SJ, Spear JR, Corsetti FA. Microscale Biosignatures and Abiotic Mineral Authigenesis in Little Hot Creek, California. Front Microbiol 2018; 9:997. [PMID: 29887837 PMCID: PMC5981138 DOI: 10.3389/fmicb.2018.00997] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 04/27/2018] [Indexed: 11/13/2022] Open
Abstract
Hot spring environments can create physical and chemical gradients favorable for unique microbial life. They can also include authigenic mineral precipitates that may preserve signs of biological activity on Earth and possibly other planets. The abiogenic or biogenic origins of such precipitates can be difficult to discern, therefore a better understanding of mineral formation processes is critical for the accurate interpretation of biosignatures from hot springs. Little Hot Creek (LHC) is a hot spring complex located in the Long Valley Caldera, California, that contains mineral precipitates composed of a carbonate base (largely submerged) topped by amorphous silica (largely emergent). The precipitates occur in close association with microbial mats and biofilms. Geological, geochemical, and microbiological data are consistent with mineral formation via degassing and evaporation rather than direct microbial involvement. However, the microfabric of the silica portion is stromatolitic in nature (i.e., wavy and finely laminated), suggesting that abiogenic mineralization has the potential to preserve textural biosignatures. Although geochemical and petrographic evidence suggests the calcite base was precipitated via abiogenic processes, endolithic microbial communities modified the structure of the calcite crystals, producing a textural biosignature. Our results reveal that even when mineral precipitation is largely abiogenic, the potential to preserve biosignatures in hot spring settings is high. The features found in the LHC structures may provide insight into the biogenicity of ancient Earth and extraterrestrial rocks.
Collapse
Affiliation(s)
- Emily A Kraus
- Geo- Environmental- Microbiology Laboratory, Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO, United States
| | - Scott R Beeler
- Department of Earth and Planetary Sciences, Washington University in St. Louis, St. Louis, MO, United States
| | - R Agustin Mors
- Laboratorio de Paleobiología y Geomicrobiología Experimental, Centro de Investigaciones en Ciencias de la Tierra (CONICET-UNC), Córdoba, Argentina
| | - James G Floyd
- Department of Microbiology and Plant Biology, The University of Oklahoma, Norman, OK, United States
| | | | - Blake W Stamps
- Geo- Environmental- Microbiology Laboratory, Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO, United States
| | - Heather S Nunn
- Department of Microbiology and Plant Biology, The University of Oklahoma, Norman, OK, United States
| | - Bradley S Stevenson
- Department of Microbiology and Plant Biology, The University of Oklahoma, Norman, OK, United States
| | - Hope A Johnson
- Department of Biological Sciences, California State University, Fullerton, Fullerton, CA, United States
| | - Russell S Shapiro
- Geological and Environmental Sciences, California State University, Chico, Chico, CA, United States
| | - Sean J Loyd
- Department of Geological Sciences, California State University, Fullerton, Fullerton, CA, United States
| | - John R Spear
- Geo- Environmental- Microbiology Laboratory, Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO, United States
| | - Frank A Corsetti
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
19
|
Nishihara A, Haruta S, McGlynn SE, Thiel V, Matsuura K. Nitrogen Fixation in Thermophilic Chemosynthetic Microbial Communities Depending on Hydrogen, Sulfate, and Carbon Dioxide. Microbes Environ 2018; 33:10-18. [PMID: 29367473 PMCID: PMC5877335 DOI: 10.1264/jsme2.me17134] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 10/28/2017] [Indexed: 12/20/2022] Open
Abstract
The activity of nitrogen fixation measured by acetylene reduction was examined in chemosynthetic microbial mats at 72-75°C in slightly-alkaline sulfidic hot springs in Nakabusa, Japan. Nitrogenase activity markedly varied from sampling to sampling. Nitrogenase activity did not correlate with methane production, but was detected in samples showing methane production levels less than the maximum amount, indicating a possible redox dependency of nitrogenase activity. Nitrogenase activity was not affected by 2-bromo-ethane sulfonate, an inhibitor of methanogenesis. However, it was inhibited by the addition of molybdate, an inhibitor of sulfate reduction and sulfur disproportionation, suggesting the involvement of sulfate-reducing or sulfur-disproportionating organisms. Nitrogenase activity was affected by different O2 concentrations in the gas phase, again supporting the hypothesis of a redox potential dependency, and was decreased by the dispersion of mats with a homogenizer. The loss of activity that occurred from dispersion was partially recovered by the addition of H2, sulfate, and carbon dioxide. These results suggested that the observed activity of nitrogen fixation was related to chemoautotrophic sulfate reducers, and fixation may be active in a limited range of ambient redox potential. Since thermophilic chemosynthetic communities may resemble ancient microbial communities before the appearance of photosynthesis, the present results may be useful when considering the ancient nitrogen cycle on earth.
Collapse
Affiliation(s)
- Arisa Nishihara
- Department of Biological Sciences, Tokyo Metropolitan UniversityMinami-Osawa, Hachioji, Tokyo 192–0397Japan
| | - Shin Haruta
- Department of Biological Sciences, Tokyo Metropolitan UniversityMinami-Osawa, Hachioji, Tokyo 192–0397Japan
| | - Shawn E. McGlynn
- Department of Biological Sciences, Tokyo Metropolitan UniversityMinami-Osawa, Hachioji, Tokyo 192–0397Japan
- Earth-Life Science Institute, Tokyo Institute of TechnologyOokayama, Meguro-ku, Tokyo 152–8551Japan
- Biofunctional Catalyst Research Team, RIKEN Center for Sustainable Resource ScienceWako-shi 351–0198Japan
- Blue Marble Space Institute of ScienceSeattle, WA 98145–1561USA
| | - Vera Thiel
- Department of Biological Sciences, Tokyo Metropolitan UniversityMinami-Osawa, Hachioji, Tokyo 192–0397Japan
| | - Katsumi Matsuura
- Department of Biological Sciences, Tokyo Metropolitan UniversityMinami-Osawa, Hachioji, Tokyo 192–0397Japan
| |
Collapse
|
20
|
Becraft ED, Dodsworth JA, Murugapiran SK, Thomas SC, Ohlsson JI, Stepanauskas R, Hedlund BP, Swingley WD. Genomic Comparison of Two Family-Level Groups of the Uncultivated NAG1 Archaeal Lineage from Chemically and Geographically Disparate Hot Springs. Front Microbiol 2017; 8:2082. [PMID: 29163388 PMCID: PMC5671600 DOI: 10.3389/fmicb.2017.02082] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 10/11/2017] [Indexed: 11/13/2022] Open
Abstract
Recent progress based on single-cell genomics and metagenomic investigations of archaea in a variety of extreme environments has led to significant advances in our understanding of the diversity, evolution, and metabolic potential of archaea, yet the vast majority of archaeal diversity remains undersampled. In this work, we coordinated single-cell genomics with metagenomics in order to construct a near-complete genome from a deeply branching uncultivated archaeal lineage sampled from Great Boiling Spring (GBS) in the U.S. Great Basin, Nevada. This taxon is distantly related (distinct families) to an archaeal genome, designated "Novel Archaeal Group 1" (NAG1), which was extracted from a metagenome recovered from an acidic iron spring in Yellowstone National Park (YNP). We compared the metabolic predictions of the NAG1 lineage to better understand how these archaea could inhabit such chemically distinct environments. Similar to the NAG1 population previously studied in YNP, the NAG1 population from GBS is predicted to utilize proteins as a primary carbon source, ferment simple carbon sources, and use oxygen as a terminal electron acceptor under oxic conditions. However, GBS NAG1 populations contained distinct genes involved in central carbon metabolism and electron transfer, including nitrite reductase, which could confer the ability to reduce nitrite under anaerobic conditions. Despite inhabiting chemically distinct environments with large variations in pH, GBS NAG1 populations shared many core genomic and metabolic features with the archaeon identified from YNP, yet were able to carve out a distinct niche at GBS.
Collapse
Affiliation(s)
- Eric D Becraft
- Department of Biological Sciences, Northern Illinois University, DeKalb, IL, United States.,Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, United States
| | - Jeremy A Dodsworth
- Department of Biology, California State University, San Bernardino, San Bernardino, CA, United States.,School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, United States
| | - Senthil K Murugapiran
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, United States.,MetaGénoPolis, Institut National de la Recherche Agronomique (INRA), Université Paris-Saclay, Jouy-en-Josas, France
| | - Scott C Thomas
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, United States
| | - J Ingemar Ohlsson
- Department of Biological Sciences, Northern Illinois University, DeKalb, IL, United States
| | | | - Brian P Hedlund
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, United States.,Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas, Las Vegas, NV, United States
| | - Wesley D Swingley
- Department of Biological Sciences, Northern Illinois University, DeKalb, IL, United States
| |
Collapse
|
21
|
Fuchsman CA, Collins RE, Rocap G, Brazelton WJ. Effect of the environment on horizontal gene transfer between bacteria and archaea. PeerJ 2017; 5:e3865. [PMID: 28975058 PMCID: PMC5624296 DOI: 10.7717/peerj.3865] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 09/08/2017] [Indexed: 01/24/2023] Open
Abstract
Background Horizontal gene transfer, the transfer and incorporation of genetic material between different species of organisms, has an important but poorly quantified role in the adaptation of microbes to their environment. Previous work has shown that genome size and the number of horizontally transferred genes are strongly correlated. Here we consider how genome size confuses the quantification of horizontal gene transfer because the number of genes an organism accumulates over time depends on its evolutionary history and ecological context (e.g., the nutrient regime for which it is adapted). Results We investigated horizontal gene transfer between archaea and bacteria by first counting reciprocal BLAST hits among 448 bacterial and 57 archaeal genomes to find shared genes. Then we used the DarkHorse algorithm, a probability-based, lineage-weighted method (Podell & Gaasterland, 2007), to identify potential horizontally transferred genes among these shared genes. By removing the effect of genome size in the bacteria, we have identified bacteria with unusually large numbers of shared genes with archaea for their genome size. Interestingly, archaea and bacteria that live in anaerobic and/or high temperature conditions are more likely to share unusually large numbers of genes. However, high salt was not found to significantly affect the numbers of shared genes. Numbers of shared (genome size-corrected, reciprocal BLAST hits) and transferred genes (identified by DarkHorse) were strongly correlated. Thus archaea and bacteria that live in anaerobic and/or high temperature conditions are more likely to share horizontally transferred genes. These horizontally transferred genes are over-represented by genes involved in energy conversion as well as the transport and metabolism of inorganic ions and amino acids. Conclusions Anaerobic and thermophilic bacteria share unusually large numbers of genes with archaea. This is mainly due to horizontal gene transfer of genes from the archaea to the bacteria. In general, these transfers are from archaea that live in similar oxygen and temperature conditions as the bacteria that receive the genes. Potential hotspots of horizontal gene transfer between archaea and bacteria include hot springs, marine sediments, and oil wells. Cold spots for horizontal transfer included dilute, aerobic, mesophilic environments such as marine and freshwater surface waters.
Collapse
Affiliation(s)
- Clara A Fuchsman
- School of Oceanography, University of Washington, Seattle, WA, United States of America
| | - Roy Eric Collins
- School of Oceanography, University of Washington, Seattle, WA, United States of America.,College of Fisheries and Ocean Sciences, University of Alaska-Fairbanks, Fairbanks, AK, United States of America
| | - Gabrielle Rocap
- School of Oceanography, University of Washington, Seattle, WA, United States of America
| | - William J Brazelton
- School of Oceanography, University of Washington, Seattle, WA, United States of America.,Department of Biology, University of Utah, Salt Lake City, UT, United States of America
| |
Collapse
|
22
|
Jiang X, Takacs-Vesbach CD. Microbial community analysis of pH 4 thermal springs in Yellowstone National Park. Extremophiles 2016; 21:135-152. [PMID: 27807621 DOI: 10.1007/s00792-016-0889-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Accepted: 10/20/2016] [Indexed: 02/01/2023]
Abstract
The pH of the majority of thermal springs in Yellowstone National Park (YNP) is from 1 to 3 and 6 to 10; relatively few springs (~5%) have a pH range of 4-5. We used 16S rRNA gene pyrosequencing to investigate microbial communities sampled from four pH 4 thermal springs collected from four regions of YNP that differed in their fluid temperature and geochemistry. Our results revealed that the composition of bacterial communities varied among the sites, despite sharing similar pH values. The taxonomic composition and metabolic functional potential of the site with the lowest temperature (55 °C), a thermal spring from the Seven Mile Hole (SMH) area, were further investigated using shotgun metagenome sequencing. The taxonomic classification, based on 372 Mbp of unassembled metagenomic reads, indicated that this community included a high proportion of Chloroflexi, Bacteroidetes, Proteobacteria, and Firmicutes. Functional comparison with other YNP thermal spring metagenomes indicated that the SMH metagenome was enriched in genes related to energy production and conversion, transcription, and carbohydrate transport. Analysis of genes involved in nitrogen metabolism revealed assimilatory and dissimilatory nitrate reduction pathways, whereas the majority of genes involved in sulfur metabolism were related to the reduction of sulfate to adenylylsulfate, sulfite, and H2S. Given that pH 4 thermal springs are relatively less common in YNP and thermal areas worldwide, they may harbor novel microbiota and the communities that inhabit them deserve further investigation.
Collapse
Affiliation(s)
- Xiaoben Jiang
- Department of Biology, MSC03 2020 1UNM, University of New Mexico, Albuquerque, NM, 87131, USA
| | | |
Collapse
|
23
|
Geesey GG, Barkay T, King S. Microbes in mercury-enriched geothermal springs in western North America. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 569-570:321-331. [PMID: 27344121 DOI: 10.1016/j.scitotenv.2016.06.080] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 06/11/2016] [Accepted: 06/12/2016] [Indexed: 06/06/2023]
Abstract
Because geothermal environments contain mercury (Hg) from natural sources, microorganisms that evolved in these systems have likely adapted to this element. Knowledge of the interactions between microorganisms and Hg in geothermal systems may assist in understanding the long-term evolution of microbial adaptation to Hg with relevance to other environments where Hg is introduced from anthropogenic sources. A number of microbiological studies with supporting geochemistry have been conducted in geothermal systems across western North America. Approximately 1 in 5 study sites include measurements of Hg. Of all prokaryotic taxa reported across sites with microbiological and accompanying physicochemical data, 42% have been detected at sites in which Hg was measured. Genes specifying Hg reduction and detoxification by microorganisms were detected in a number of hot springs across the region. Archaeal-like sequences, representing two crenarchaeal orders and one order each of the Euryarchaeota and Thaumarchaeota, dominated in metagenomes' MerA (the mercuric reductase protein) inventories, while bacterial homologs were mostly found in one deeply sequenced metagenome. MerA homologs were more frequently found in metagenomes of microbial communities in acidic springs than in circumneutral or high pH geothermal systems, possibly reflecting higher bioavailability of Hg under acidic conditions. MerA homologs were found in hot springs prokaryotic isolates affiliated with Bacteria and Archaea taxa. Acidic sites with high Hg concentrations contain more of Archaea than Bacteria taxa, while the reverse appears to be the case in circumneutral and high pH sites with high Hg concentrations. However, MerA was detected in only a small fraction of the Archaea and Bacteria taxa inhabiting sites containing Hg. Nevertheless, the presence of MerA homologs and their distribution patterns in systems, in which Hg has yet to be measured, demonstrates the potential for detoxification by Hg reduction in these geothermal systems, particularly the low pH springs that are dominated by Archaea.
Collapse
Affiliation(s)
- Gill G Geesey
- Department of Microbiology and Immunology, Thermal Biology Institute, Montana State University, Bozeman, MT 59717-3520, USA.
| | - Tamar Barkay
- Department of Biochemistry and Microbiology, Graduate Program in Ecology and Evolution, Rutgers University, New Brunswick, NJ 08901-8525, USA.
| | - Sue King
- 2908 3rd Avenue North, Great Falls, MT 59401, USA.
| |
Collapse
|
24
|
Thiel V, Wood JM, Olsen MT, Tank M, Klatt CG, Ward DM, Bryant DA. The Dark Side of the Mushroom Spring Microbial Mat: Life in the Shadow of Chlorophototrophs. I. Microbial Diversity Based on 16S rRNA Gene Amplicons and Metagenomic Sequencing. Front Microbiol 2016; 7:919. [PMID: 27379049 PMCID: PMC4911352 DOI: 10.3389/fmicb.2016.00919] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 05/27/2016] [Indexed: 11/13/2022] Open
Abstract
Microbial-mat communities in the effluent channels of Octopus and Mushroom Springs within the Lower Geyser Basin at Yellowstone National Park have been studied for nearly 50 years. The emphasis has mostly focused on the chlorophototrophic bacterial organisms of the phyla Cyanobacteria and Chloroflexi. In contrast, the diversity and metabolic functions of the heterotrophic community in the microoxic/anoxic region of the mat are not well understood. In this study we analyzed the orange-colored undermat of the microbial community of Mushroom Spring using metagenomic and rRNA-amplicon (iTag) analyses. Our analyses disclosed a highly diverse community exhibiting a high degree of unevenness, strongly dominated by a single taxon, the filamentous anoxygenic phototroph, Roseiflexus spp. The second most abundant organisms belonged to the Thermotogae, which have been hypothesized to be a major source of H2 from fermentation that could enable photomixotrophic metabolism by Chloroflexus and Roseiflexus spp. Other abundant organisms include two members of the Armatimonadetes (OP10); Thermocrinis sp.; and phototrophic and heterotrophic members of the Chloroflexi. Further, an Atribacteria (OP9/JS1) member; a sulfate-reducing Thermodesulfovibrio sp.; a Planctomycetes member; a member of the EM3 group tentatively affiliated with the Thermotogae, as well as a putative member of the Arminicenantes (OP8) represented ≥1% of the reads. Archaea were not abundant in the iTag analysis, and no metagenomic bin representing an archaeon was identified. A high microdiversity of 16S rRNA gene sequences was identified for the dominant taxon, Roseiflexus spp. Previous studies demonstrated that highly similar Synechococcus variants in the upper layer of the mats represent ecological species populations with specific ecological adaptations. This study suggests that similar putative ecotypes specifically adapted to different niches occur within the undermat community, particularly for Roseiflexus spp.
Collapse
Affiliation(s)
- Vera Thiel
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University University Park, PA, USA
| | - Jason M Wood
- Department of Land Resources and Environmental Sciences, Montana State University Bozeman, MT, USA
| | - Millie T Olsen
- Department of Land Resources and Environmental Sciences, Montana State University Bozeman, MT, USA
| | - Marcus Tank
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University University Park, PA, USA
| | - Christian G Klatt
- Department of Land Resources and Environmental Sciences, Montana State UniversityBozeman, MT, USA; Agricultural Research Service, United States Department of Agriculture, University of MinnesotaSaint Paul, MN, USA
| | - David M Ward
- Department of Land Resources and Environmental Sciences, Montana State University Bozeman, MT, USA
| | - Donald A Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State UniversityUniversity Park, PA, USA; Department of Chemistry and Biochemistry, Montana State UniversityBozeman, MT, USA
| |
Collapse
|
25
|
Colman DR, Feyhl-Buska J, Robinson KJ, Fecteau KM, Xu H, Shock EL, Boyd ES. Ecological differentiation in planktonic and sediment-associated chemotrophic microbial populations in Yellowstone hot springs. FEMS Microbiol Ecol 2016; 92:fiw137. [PMID: 27306555 DOI: 10.1093/femsec/fiw137] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/12/2016] [Indexed: 01/29/2023] Open
Abstract
Chemosynthetic sediment and planktonic community composition and sizes, aqueous geochemistry and sediment mineralogy were determined in 15 non-photosynthetic hot springs in Yellowstone National Park (YNP). These data were used to evaluate the hypothesis that differences in the availability of dissolved or mineral substrates in the bulk fluids or sediments within springs coincides with ecologically differentiated microbial communities and their populations. Planktonic and sediment-associated communities exhibited differing ecological characteristics including community sizes, evenness and richness. pH and temperature influenced microbial community composition among springs, but within-spring partitioning of taxa into sediment or planktonic communities was widespread, statistically supported (P < 0.05) and could be best explained by the inferred metabolic strategies of the partitioned taxa. Microaerophilic genera of the Aquificales predominated in many of the planktonic communities. In contrast, taxa capable of mineral-based metabolism such as S(o) oxidation/reduction or Fe-oxide reduction predominated in sediment communities. These results indicate that ecological differentiation within thermal spring habitats is common across a range of spring geochemistry and is influenced by the availability of dissolved nutrients and minerals that can be used in metabolism.
Collapse
Affiliation(s)
- Daniel R Colman
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
| | - Jayme Feyhl-Buska
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
| | - Kirtland J Robinson
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, USA
| | | | - Huifang Xu
- Department of Geosciences, University of Wisconsin, Madison, WI 53706, USA NASA Astrobiology Institute, Mountain View, CA 94035, USA School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287, USA
| | - Everett L Shock
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, USA NASA Astrobiology Institute, Mountain View, CA 94035, USA School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287, USA
| | - Eric S Boyd
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA NASA Astrobiology Institute, Mountain View, CA 94035, USA School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
26
|
Jay ZJ, Beam JP, Kozubal MA, Jennings RD, Rusch DB, Inskeep WP. The distribution, diversity and function of predominant Thermoproteales in high-temperature environments of Yellowstone National Park. Environ Microbiol 2016; 18:4755-4769. [PMID: 27130276 DOI: 10.1111/1462-2920.13366] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 04/25/2016] [Indexed: 12/01/2022]
Abstract
High-temperature environments (> 70°C) contain diverse and abundant members of the crenarchaeal order Thermoproteales. However, a comprehensive study of the distribution and function of diverse members of this group across different habitat types has not been conducted. Consequently, the goals of this study were to determine the distribution of different Thermoproteales genera across geochemically distinct geothermal habitats of Yellowstone National Park, and to identify key functional attributes of major genera that correlate with environmental parameters. Curated sequence assemblies belonging to five genera were characterized in replicate samples of 11 high-temperature communities ranging in pH from 3 to 9. Thermocladium, Vulcanisaeta and Caldivirga spp. were the primary Thermoproteales populations present in low pH (pH < 5) habitats, whereas Thermoproteus populations were found in mildly-acidic (pH 5-6) sulfur sediments, and Pyrobaculum populations were confined to higher pH (pH > 6) sulfur sediments and/or filamentous 'streamer' communities. Metabolic reconstruction and comparative genomics among assemblies show that these populations are primarily chemoorganotrophs that utilize different electron acceptors depending on geochemical conditions. The presence of potential CO2 fixation pathways in some Thermoproteales populations appears to be linked with NiFe hydrogenases, which combined with high levels of H2 in many sulfidic systems, may provide the energy required to fix inorganic C.
Collapse
Affiliation(s)
- Zackary J Jay
- Department of Land Resources and Environmental Sciences and Thermal Biology Institute, Montana State University, Bozeman, MT, 59175-3120, USA
| | - Jacob P Beam
- Department of Land Resources and Environmental Sciences and Thermal Biology Institute, Montana State University, Bozeman, MT, 59175-3120, USA
| | - Mark A Kozubal
- Department of Land Resources and Environmental Sciences and Thermal Biology Institute, Montana State University, Bozeman, MT, 59175-3120, USA
| | - Ryan deM Jennings
- Department of Land Resources and Environmental Sciences and Thermal Biology Institute, Montana State University, Bozeman, MT, 59175-3120, USA
| | - Douglas B Rusch
- Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN, USA
| | - William P Inskeep
- Department of Land Resources and Environmental Sciences and Thermal Biology Institute, Montana State University, Bozeman, MT, 59175-3120, USA
| |
Collapse
|
27
|
Benedek T, Táncsics A, Szabó I, Farkas M, Szoboszlay S, Fábián K, Maróti G, Kriszt B. Polyphasic analysis of an Azoarcus-Leptothrix-dominated bacterial biofilm developed on stainless steel surface in a gasoline-contaminated hypoxic groundwater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:9019-9035. [PMID: 26825521 DOI: 10.1007/s11356-016-6128-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 01/18/2016] [Indexed: 06/05/2023]
Abstract
Pump and treat systems are widely used for hydrocarbon-contaminated groundwater remediation. Although biofouling (formation of clogging biofilms on pump surfaces) is a common problem in these systems, scarce information is available regarding the phylogenetic and functional complexity of such biofilms. Extensive information about the taxa and species as well as metabolic potential of a bacterial biofilm developed on the stainless steel surface of a pump submerged in a gasoline-contaminated hypoxic groundwater is presented. Results shed light on a complex network of interconnected hydrocarbon-degrading chemoorganotrophic and chemolitotrophic bacteria. It was found that besides the well-known hydrocarbon-degrading aerobic/facultative anaerobic biofilm-forming organisms (e.g., Azoarcus, Leptothrix, Acidovorax, Thauera, Pseudomonas, etc.), representatives of Fe(2+)-and Mn(2+)-oxidizing (Thiobacillus, Sideroxydans, Gallionella, Rhodopseudomonas, etc.) as well as of Fe(3+)- and Mn(4+)-respiring (Rhodoferax, Geobacter, Magnetospirillum, Sulfurimonas, etc.) bacteria were present in the biofilm. The predominance of β-Proteobacteria within the biofilm bacterial community in phylogenetic and functional point of view was revealed. Investigation of meta-cleavage dioxygenase and benzylsuccinate synthase (bssA) genes indicated that within the biofilm, Azoarcus, Leptothrix, Zoogloea, and Thauera species are most probably involved in intrinsic biodegradation of aromatic hydrocarbons. Polyphasic analysis of the biofilm shed light on the fact that subsurface microbial accretions might be reservoirs of novel putatively hydrocarbon-degrading bacterial species. Moreover, clogging biofilms besides their detrimental effects might supplement the efficiency of pump and treat systems.
Collapse
Affiliation(s)
- Tibor Benedek
- Regional University Center of Excellence in Environmental Industry, Szent István University, Páter K. u. 1, Gödöllő, 2100, Hungary
| | - András Táncsics
- Regional University Center of Excellence in Environmental Industry, Szent István University, Páter K. u. 1, Gödöllő, 2100, Hungary.
| | - István Szabó
- Department of Environmental Safety and Ecotoxicology, Szent István University, Páter K. u. 1, Gödöllő, 2100, Hungary
| | - Milán Farkas
- Department of Environmental Safety and Ecotoxicology, Szent István University, Páter K. u. 1, Gödöllő, 2100, Hungary
| | - Sándor Szoboszlay
- Department of Environmental Safety and Ecotoxicology, Szent István University, Páter K. u. 1, Gödöllő, 2100, Hungary
| | - Krisztina Fábián
- Department of Environmental Safety and Ecotoxicology, Szent István University, Páter K. u. 1, Gödöllő, 2100, Hungary
| | - Gergely Maróti
- Institute of Biochemistry, Biological Research Center of the Hungarian Academy of Sciences, Temesvári krt. 62., Szeged, 6726, Hungary
| | - Balázs Kriszt
- Department of Environmental Safety and Ecotoxicology, Szent István University, Páter K. u. 1, Gödöllő, 2100, Hungary
| |
Collapse
|
28
|
Microbial communities and arsenic biogeochemistry at the outflow of an alkaline sulfide-rich hot spring. Sci Rep 2016; 6:25262. [PMID: 27126380 PMCID: PMC4850476 DOI: 10.1038/srep25262] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 03/21/2016] [Indexed: 02/03/2023] Open
Abstract
Alkaline sulfide-rich hot springs provide a unique environment for microbial community and arsenic (As) biogeochemistry. In this study, a representative alkaline sulfide-rich hot spring, Zimeiquan in the Tengchong geothermal area, was chosen to study arsenic geochemistry and microbial community using Illumina MiSeq sequencing. Over 0.26 million 16S rRNA sequence reads were obtained from 5-paired parallel water and sediment samples along the hot spring’s outflow channel. High ratios of As(V)/AsSum (total combined arsenate and arsenite concentrations) (0.59–0.78), coupled with high sulfide (up to 5.87 mg/L), were present in the hot spring’s pools, which suggested As(III) oxidation occurred. Along the outflow channel, AsSum increased from 5.45 to 13.86 μmol/L, and the combined sulfide and sulfate concentrations increased from 292.02 to 364.28 μmol/L. These increases were primarily attributed to thioarsenic transformation. Temperature, sulfide, As and dissolved oxygen significantly shaped the microbial communities between not only the pools and downstream samples, but also water and sediment samples. Results implied that the upstream Thermocrinis was responsible for the transformation of thioarsenic to As(III) and the downstream Thermus contributed to derived As(III) oxidation. This study improves our understanding of microbially-mediated As transformation in alkaline sulfide-rich hot springs.
Collapse
|
29
|
Colman DR, Jay ZJ, Inskeep WP, Jennings RD, Maas KR, Rusch DB, Takacs-Vesbach CD. Novel, Deep-Branching Heterotrophic Bacterial Populations Recovered from Thermal Spring Metagenomes. Front Microbiol 2016; 7:304. [PMID: 27014227 PMCID: PMC4791363 DOI: 10.3389/fmicb.2016.00304] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Accepted: 02/24/2016] [Indexed: 11/24/2022] Open
Abstract
Thermal spring ecosystems are a valuable resource for the discovery of novel hyperthermophilic Bacteria and Archaea, and harbor deeply-branching lineages that provide insight regarding the nature of early microbial life. We characterized bacterial populations in two circumneutral (pH ~8) Yellowstone National Park thermal (T ~80°C) spring filamentous “streamer” communities using random metagenomic DNA sequence to investigate the metabolic potential of these novel populations. Four de novo assemblies representing three abundant, deeply-branching bacterial phylotypes were recovered. Analysis of conserved phylogenetic marker genes indicated that two of the phylotypes represent separate groups of an uncharacterized phylum (for which we propose the candidate phylum name “Pyropristinus”). The third new phylotype falls within the proposed Calescamantes phylum. Metabolic reconstructions of the “Pyropristinus” and Calescamantes populations showed that these organisms appear to be chemoorganoheterotrophs and have the genomic potential for aerobic respiration and oxidative phosphorylation via archaeal-like V-type, and bacterial F-type ATPases, respectively. A survey of similar phylotypes (>97% nt identity) within 16S rRNA gene datasets suggest that the newly described organisms are restricted to terrestrial thermal springs ranging from 70 to 90°C and pH values of ~7–9. The characterization of these lineages is important for understanding the diversity of deeply-branching bacterial phyla, and their functional role in high-temperature circumneutral “streamer” communities.
Collapse
Affiliation(s)
- Daniel R Colman
- Department of Biology, University of New Mexico Albuquerque, NM, USA
| | - Zackary J Jay
- Thermal Biology Institute and Department of Land Resources and Environmental Sciences, Montana State University Bozeman, MT, USA
| | - William P Inskeep
- Thermal Biology Institute and Department of Land Resources and Environmental Sciences, Montana State University Bozeman, MT, USA
| | - Ryan deM Jennings
- Thermal Biology Institute and Department of Land Resources and Environmental Sciences, Montana State University Bozeman, MT, USA
| | - Kendra R Maas
- Department of Biology, University of New Mexico Albuquerque, NM, USA
| | - Douglas B Rusch
- Center for Genomics and Bioinformatics, Indiana University Bloomington, IN, USA
| | | |
Collapse
|
30
|
Beam JP, Jay ZJ, Schmid MC, Rusch DB, Romine MF, M Jennings RD, Kozubal MA, Tringe SG, Wagner M, Inskeep WP. Ecophysiology of an uncultivated lineage of Aigarchaeota from an oxic, hot spring filamentous 'streamer' community. THE ISME JOURNAL 2016; 10:210-24. [PMID: 26140529 PMCID: PMC4681859 DOI: 10.1038/ismej.2015.83] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Revised: 04/09/2015] [Accepted: 04/17/2015] [Indexed: 12/22/2022]
Abstract
The candidate archaeal phylum 'Aigarchaeota' contains microorganisms from terrestrial and subsurface geothermal ecosystems. The phylogeny and metabolic potential of Aigarchaeota has been deduced from several recent single-cell amplified genomes; however, a detailed description of their metabolic potential and in situ transcriptional activity is absent. Here, we report a comprehensive metatranscriptome-based reconstruction of the in situ metabolism of Aigarchaeota in an oxic, hot spring filamentous 'streamer' community. Fluorescence in situ hybridization showed that these newly discovered Aigarchaeota are filamentous, which is consistent with the presence and transcription of an actin-encoding gene. Aigarchaeota filaments are intricately associated with other community members, which include both bacteria (for example, filamentous Thermocrinis spp.) and archaea. Metabolic reconstruction of genomic and metatranscriptomic data suggests that this aigarchaeon is an aerobic, chemoorganoheterotroph with autotrophic potential. A heme copper oxidase complex was identified in the environmental genome assembly and highly transcribed in situ. Potential electron donors include acetate, fatty acids, amino acids, sugars and aromatic compounds, which may originate from extracellular polymeric substances produced by other microorganisms shown to exist in close proximity and/or autochthonous dissolved organic carbon (OC). Transcripts related to genes specific to each of these potential electron donors were identified, indicating that this aigarchaeon likely utilizes several OC substrates. Characterized members of this lineage cannot synthesize heme, and other cofactors and vitamins de novo, which suggests auxotrophy. We propose the name Candidatus 'Calditenuis aerorheumensis' for this aigarchaeon, which describes its filamentous morphology and its primary electron acceptor, oxygen.
Collapse
Affiliation(s)
- Jacob P Beam
- Thermal Biology Institute and Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, MT, USA
| | - Zackary J Jay
- Thermal Biology Institute and Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, MT, USA
| | - Markus C Schmid
- Divison of Microbial Ecology, University of Vienna, Vienna, Austria
| | - Douglas B Rusch
- Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN, USA
| | | | - Ryan de M Jennings
- Thermal Biology Institute and Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, MT, USA
| | - Mark A Kozubal
- Thermal Biology Institute and Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, MT, USA
- Sustainable Bioproducts LLC, Bozeman, MT, USA
| | | | - Michael Wagner
- Divison of Microbial Ecology, University of Vienna, Vienna, Austria
| | - William P Inskeep
- Thermal Biology Institute and Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, MT, USA
- Pacific Northwest National Laboratory, Richland, WA, USA
| |
Collapse
|
31
|
Single-Cell-Genomics-Facilitated Read Binning of Candidate Phylum EM19 Genomes from Geothermal Spring Metagenomes. Appl Environ Microbiol 2015; 82:992-1003. [PMID: 26637598 DOI: 10.1128/aem.03140-15] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 11/12/2015] [Indexed: 12/17/2022] Open
Abstract
The vast majority of microbial life remains uncatalogued due to the inability to cultivate these organisms in the laboratory. This "microbial dark matter" represents a substantial portion of the tree of life and of the populations that contribute to chemical cycling in many ecosystems. In this work, we leveraged an existing single-cell genomic data set representing the candidate bacterial phylum "Calescamantes" (EM19) to calibrate machine learning algorithms and define metagenomic bins directly from pyrosequencing reads derived from Great Boiling Spring in the U.S. Great Basin. Compared to other assembly-based methods, taxonomic binning with a read-based machine learning approach yielded final assemblies with the highest predicted genome completeness of any method tested. Read-first binning subsequently was used to extract Calescamantes bins from all metagenomes with abundant Calescamantes populations, including metagenomes from Octopus Spring and Bison Pool in Yellowstone National Park and Gongxiaoshe Spring in Yunnan Province, China. Metabolic reconstruction suggests that Calescamantes are heterotrophic, facultative anaerobes, which can utilize oxidized nitrogen sources as terminal electron acceptors for respiration in the absence of oxygen and use proteins as their primary carbon source. Despite their phylogenetic divergence, the geographically separate Calescamantes populations were highly similar in their predicted metabolic capabilities and core gene content, respiring O2, or oxidized nitrogen species for energy conservation in distant but chemically similar hot springs.
Collapse
|
32
|
Dodsworth JA, Ong JC, Williams AJ, Dohnalkova AC, Hedlund BP. Thermocrinis jamiesonii sp. nov., a thiosulfate-oxidizing, autotropic thermophile isolated from a geothermal spring. Int J Syst Evol Microbiol 2015; 65:4769-4775. [PMID: 26419502 DOI: 10.1099/ijsem.0.000647] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
An obligately thermophilic, chemolithotrophic, microaerophilic bacterium, designated strain GBS1T, was isolated from the water column of Great Boiling Spring, Nevada, USA. Thiosulfate was required for growth. Although capable of autotrophy, growth of GBS1T was enhanced in the presence of acetate, peptone or Casamino acids. Growth occurred at 70-85 °C with an optimum at 80 °C, at pH 6.50-7.75 with an optimum at pH 7.25, with 0.5-8 % oxygen with an optimum at 1-2 % and with ≤ 200 mM NaCl. The doubling time under optimal growth conditions was 1.3 h, with a final mean cell density of 6.2 ± 0.5 × 107 cells ml- 1. Non-motile, rod-shaped cells 1.4-2.4 × 0.4-0.6 μm in size occurred singly or in pairs. The major cellular fatty acids (>5 % of the total) were C20 : 1ω9c, C18 : 0, C16 : 0 and C20 : 0. Phylogenetic analysis of the GBS1T 16S rRNA gene sequence indicated an affiliation with Thermocrinis ruber and other species of the genus Thermocrinis, but determination of 16S rRNA gene sequence similarity ( ≤ 97.10 %) and in silico estimated DNA-DNA hybridization values ( ≤ 18.4 %) with the type strains of recognized Thermocrinis species indicate that the novel strain is distinct from described species. Based on phenotypic, genotypic and phylogenetic characteristics, a novel species, Thermocrinis jamiesonii sp. nov., is proposed, with GBS1T ( = JCM 19133T = DSM 27162T) as the type strain.
Collapse
Affiliation(s)
- Jeremy A Dodsworth
- Department of Biology, California State University, San Bernardino, CA 92407, USA.,School of Life Sciences, University of Nevada, Las Vegas, NV 89154, USA
| | - John C Ong
- School of Life Sciences, University of Nevada, Las Vegas, NV 89154, USA
| | - Amanda J Williams
- School of Life Sciences, University of Nevada, Las Vegas, NV 89154, USA
| | - Alice C Dohnalkova
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Brian P Hedlund
- School of Life Sciences, University of Nevada, Las Vegas, NV 89154, USA
| |
Collapse
|
33
|
Pyrobaculum yellowstonensis Strain WP30 Respires on Elemental Sulfur and/or Arsenate in Circumneutral Sulfidic Geothermal Sediments of Yellowstone National Park. Appl Environ Microbiol 2015; 81:5907-16. [PMID: 26092468 DOI: 10.1128/aem.01095-15] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 06/16/2015] [Indexed: 11/20/2022] Open
Abstract
Thermoproteales (phylum Crenarchaeota) populations are abundant in high-temperature (>70°C) environments of Yellowstone National Park (YNP) and are important in mediating the biogeochemical cycles of sulfur, arsenic, and carbon. The objectives of this study were to determine the specific physiological attributes of the isolate Pyrobaculum yellowstonensis strain WP30, which was obtained from an elemental sulfur sediment (Joseph's Coat Hot Spring [JCHS], 80°C, pH 6.1, 135 μM As) and relate this organism to geochemical processes occurring in situ. Strain WP30 is a chemoorganoheterotroph and requires elemental sulfur and/or arsenate as an electron acceptor. Growth in the presence of elemental sulfur and arsenate resulted in the formation of thioarsenates and polysulfides. The complete genome of this organism was sequenced (1.99 Mb, 58% G+C content), revealing numerous metabolic pathways for the degradation of carbohydrates, amino acids, and lipids. Multiple dimethyl sulfoxide-molybdopterin (DMSO-MPT) oxidoreductase genes, which are implicated in the reduction of sulfur and arsenic, were identified. Pathways for the de novo synthesis of nearly all required cofactors and metabolites were identified. The comparative genomics of P. yellowstonensis and the assembled metagenome sequence from JCHS showed that this organism is highly related (∼95% average nucleotide sequence identity) to in situ populations. The physiological attributes and metabolic capabilities of P. yellowstonensis provide an important foundation for developing an understanding of the distribution and function of these populations in YNP.
Collapse
|
34
|
Schubotz F, Hays LE, Meyer-Dombard DR, Gillespie A, Shock EL, Summons RE. Stable isotope labeling confirms mixotrophic nature of streamer biofilm communities at alkaline hot springs. Front Microbiol 2015; 6:42. [PMID: 25699032 PMCID: PMC4318418 DOI: 10.3389/fmicb.2015.00042] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Accepted: 01/12/2015] [Indexed: 11/29/2022] Open
Abstract
Streamer biofilm communities (SBC) are often observed within chemosynthetic zones of Yellowstone hot spring outflow channels, where temperatures exceed those conducive to photosynthesis. Nearest the hydrothermal source (75-88°C) SBC comprise thermophilic Archaea and Bacteria, often mixed communities including Desulfurococcales and uncultured Crenarchaeota, as well as Aquificae and Thermus, each carrying diagnostic membrane lipid biomarkers. We tested the hypothesis that SBC can alternate their metabolism between autotrophy and heterotrophy depending on substrate availability. Feeding experiments were performed at two alkaline hot springs in Yellowstone National Park: Octopus Spring and "Bison Pool," using various (13)C-labeled substrates (bicarbonate, formate, acetate, and glucose) to determine the relative uptake of these different carbon sources. Highest (13)C uptake, at both sites, was from acetate into almost all bacterial fatty acids, particularly into methyl-branched C15, C17 and C19 fatty acids that are diagnostic for Thermus/Meiothermus, and some Firmicutes as well as into universally common C16:0 and C18:0 fatty acids. (13)C-glucose showed a similar, but a 10-30 times lower uptake across most fatty acids. (13)C-bicarbonate uptake, signifying the presence of autotrophic communities was only significant at "Bison Pool" and was observed predominantly in non-specific saturated C16, C18, C20, and C22 fatty acids. Incorporation of (13)C-formate occurred only at very low rates at "Bison Pool" and was almost undetectable at Octopus Spring, suggesting that formate is not an important carbon source for SBC. (13)C-uptake into archaeal lipids occurred predominantly with (13)C-acetate, suggesting also that archaeal communities at both springs have primarily heterotrophic carbon assimilation pathways. We hypothesize that these communities are energy-limited and predominantly nurtured by input of exogenous organic material, with only a small fraction being sustained by autotrophic growth.
Collapse
Affiliation(s)
- Florence Schubotz
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of TechnologyCambridge, MA, USA
| | - Lindsay E. Hays
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of TechnologyCambridge, MA, USA
| | - D'Arcy R. Meyer-Dombard
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of TechnologyCambridge, MA, USA
- Department of Earth and Environmental Sciences, University of Illinois at ChicagoChicago, IL, USA
| | - Aimee Gillespie
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of TechnologyCambridge, MA, USA
| | - Everett L. Shock
- School of Earth and Planetary Sciences, Arizona State UniversityTempe, AZ, USA
- Department of Chemistry and Biochemistry, Arizona State UniversityTempe, AZ, USA
| | - Roger E. Summons
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of TechnologyCambridge, MA, USA
| |
Collapse
|
35
|
Meyer-Dombard DR, Woycheese KM, Yargıçoğlu EN, Cardace D, Shock EL, Güleçal-Pektas Y, Temel M. High pH microbial ecosystems in a newly discovered, ephemeral, serpentinizing fluid seep at Yanartaş (Chimera), Turkey. Front Microbiol 2015; 5:723. [PMID: 25646094 PMCID: PMC4298219 DOI: 10.3389/fmicb.2014.00723] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 12/02/2014] [Indexed: 12/29/2022] Open
Abstract
Gas seeps emanating from Yanartaş (Chimera), Turkey, have been documented for thousands of years. Active serpentinization produces hydrogen and a range of carbon gases that may provide fuel for life. Here we report a newly discovered, ephemeral fluid seep emanating from a small gas vent at Yanartaş. Fluids and biofilms were sampled at the source and points downstream. We describe site conditions, and provide microbiological data in the form of enrichment cultures, Scanning electron microscopy (SEM), carbon and nitrogen isotopic composition of solids, and PCR screens of nitrogen cycle genes. Source fluids are pH 11.95, with a Ca:Mg of ~200, and sediments under the ignited gas seep measure 60°C. Collectively, these data suggest the fluid is the product of active serpentinization at depth. Source sediments are primarily calcite and alteration products (chlorite and montmorillonite). Downstream, biofilms are mixed with montmorillonite. SEM shows biofilms distributed homogeneously with carbonates. Organic carbon accounts for 60% of the total carbon at the source, decreasing downstream to <15% as inorganic carbon precipitates. δ13C ratios of the organic carbon fraction of solids are depleted (−25 to −28‰) relative to the carbonates (−11 to −20‰). We conclude that heterotrophic processes are dominant throughout the surface ecosystem, and carbon fixation may be key down channel. δ15N ratios ~3‰, and absence of nifH in extracted DNA suggest that nitrogen fixation is not occurring in sediments. However, the presence of narG and nirS at most locations and in enrichments indicates genomic potential for nitrate and nitrite reduction. This small seep with shallow run-off is likely ephemeral, but abundant preserved microterracettes in the outflow and the surrounding area suggest it has been present for some time. This site and others like it present an opportunity for investigations of preserved deep biosphere signatures, and subsurface-surface interactions.
Collapse
Affiliation(s)
- D'Arcy R Meyer-Dombard
- Department of Earth and Environmental Sciences, University of Illinois at Chicago Chicago, IL, USA
| | - Kristin M Woycheese
- Department of Earth and Environmental Sciences, University of Illinois at Chicago Chicago, IL, USA
| | - Erin N Yargıçoğlu
- Department of Earth and Environmental Sciences, University of Illinois at Chicago Chicago, IL, USA
| | - Dawn Cardace
- Department of Geosciences, University of Rhode Island Kingston, RI, USA
| | - Everett L Shock
- School of Earth and Space Exploration, Arizona State University Tempe, AZ, USA ; Department of Chemistry and Biochemistry, Arizona State University Tempe, AZ, USA
| | | | - Mustafa Temel
- Department of Freshwater Biology, Istanbul University Istanbul, Turkey
| |
Collapse
|
36
|
Karimi A, Karig D, Kumar A, Ardekani AM. Interplay of physical mechanisms and biofilm processes: review of microfluidic methods. LAB ON A CHIP 2015; 15:23-42. [PMID: 25385289 PMCID: PMC4261921 DOI: 10.1039/c4lc01095g] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Bacteria in natural and artificial environments often reside in self-organized, integrated communities known as biofilms. Biofilms are highly structured entities consisting of bacterial cells embedded in a matrix of self-produced extracellular polymeric substances (EPS). The EPS matrix acts like a biological 'glue' enabling microbes to adhere to and colonize a wide range of surfaces. Once integrated into biofilms, bacterial cells can withstand various forms of stress such as antibiotics, hydrodynamic shear and other environmental challenges. Because of this, biofilms of pathogenic bacteria can be a significant health hazard often leading to recurrent infections. Biofilms can also lead to clogging and material degradation; on the other hand they are an integral part of various environmental processes such as carbon sequestration and nitrogen cycles. There are several determinants of biofilm morphology and dynamics, including the genotypic and phenotypic states of constituent cells and various environmental conditions. Here, we present an overview of the role of relevant physical processes in biofilm formation, including propulsion mechanisms, hydrodynamic effects, and transport of quorum sensing signals. We also provide a survey of microfluidic techniques utilized to unravel the associated physical mechanisms. Further, we discuss the future research areas for exploring new ways to extend the scope of the microfluidic approach in biofilm studies.
Collapse
Affiliation(s)
- A. Karimi
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA 02115
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| | - D. Karig
- Research and Exploratory Development Department, Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723
| | - A. Kumar
- Department of Mechanical Engineering, University of Alberta, Edmonton, Canada AB T6G 2G8
| | - A. M. Ardekani
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
37
|
Rozanov AS, Bryanskaya AV, Malup TK, Meshcheryakova IA, Lazareva EV, Taran OP, Ivanisenko TV, Ivanisenko VA, Zhmodik SM, Kolchanov NA, Peltek SE. Molecular analysis of the benthos microbial community in Zavarzin thermal spring (Uzon Caldera, Kamchatka, Russia). BMC Genomics 2014; 15 Suppl 12:S12. [PMID: 25563397 PMCID: PMC4303939 DOI: 10.1186/1471-2164-15-s12-s12] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background Geothermal areas are of great interest for the study of microbial communities. The results of such investigations can be used in a variety of fields (ecology, microbiology, medicine) to answer fundamental questions, as well as those with practical benefits. Uzon caldera is located in the Uzon-Geyser depression that is situated in the centre of the Karym-Semyachin region of the East Kamchatka graben-synclinorium. The microbial communities of Zavarzin spring are well studied; however, its benthic microbial mat has not been previously described. Results Pyrosequencing of the V3 region of the 16S rRNA gene was used to study the benthic microbial community of the Zavarzin thermal spring (Uzon Caldera, Kamchatka). The community is dominated by bacteria (>95% of all sequences), including thermophilic, chemoorganotrophic Caldiserica (33.0%) and Dictyoglomi (24.8%). The benthic community and the previously examined planktonic community of Zavarzin spring have qualitatively similar, but quantitatively different, compositions. Conclusions In this study, we performed a metagenomic analysis of the benthic microbial mat of Zavarzin spring. We compared this benthic community to microbial communities found in the water and of an integral probe consisting of water and bottom sediments. Various phylogenetic groups of microorganisms, including potentially new ones, represent the full-fledged trophic system of Zavarzin. A thorough geochemical study of the spring was performed.
Collapse
|
38
|
Magnabosco C, Tekere M, Lau MCY, Linage B, Kuloyo O, Erasmus M, Cason E, van Heerden E, Borgonie G, Kieft TL, Olivier J, Onstott TC. Comparisons of the composition and biogeographic distribution of the bacterial communities occupying South African thermal springs with those inhabiting deep subsurface fracture water. Front Microbiol 2014; 5:679. [PMID: 25566203 PMCID: PMC4269199 DOI: 10.3389/fmicb.2014.00679] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Accepted: 11/20/2014] [Indexed: 02/01/2023] Open
Abstract
South Africa has numerous thermal springs that represent topographically driven meteoric water migrating along major fracture zones. The temperature (40-70°C) and pH (8-9) of the thermal springs in the Limpopo Province are very similar to those of the low salinity fracture water encountered in the South African mines at depths ranging from 1.0 to 3.1 km. The major cation and anion composition of these thermal springs are very similar to that of the deep fracture water with the exception of the dissolved inorganic carbon and dissolved O2, both of which are typically higher in the springs than in the deep fracture water. The in situ biological relatedness of such thermal springs and the subsurface fracture fluids that feed them has not previously been evaluated. In this study, we evaluated the microbial diversity of six thermal spring and six subsurface sites in South Africa using high-throughput sequencing of 16S rRNA gene hypervariable regions. Proteobacteria were identified as the dominant phylum within both subsurface and thermal spring environments, but only one genera, Rheinheimera, was identified among all samples. Using Morisita similarity indices as a metric for pairwise comparisons between sites, we found that the communities of thermal springs are highly distinct from subsurface datasets. Although the Limpopo thermal springs do not appear to provide a new window for viewing subsurface bacterial communities, we report that the taxonomic compositions of the subsurface sites studied are more similar than previous results would indicate and provide evidence that the microbial communities sampled at depth are more correlated to subsurface conditions than geographical distance.
Collapse
Affiliation(s)
- Cara Magnabosco
- Department of Geosciences, Princeton UniversityPrinceton, NJ, USA
| | - Memory Tekere
- Department of Environmental Sciences, School of Agriculture and Environmental Sciences, University of South AfricaFlorida, South Africa
| | - Maggie C. Y. Lau
- Department of Geosciences, Princeton UniversityPrinceton, NJ, USA
| | - Borja Linage
- Department of Microbial, Biochemical and Food Biotechnology, University of the Free StateBloemfontein, South Africa
| | - Olukayode Kuloyo
- Department of Microbial, Biochemical and Food Biotechnology, University of the Free StateBloemfontein, South Africa
| | - Mariana Erasmus
- Department of Microbial, Biochemical and Food Biotechnology, University of the Free StateBloemfontein, South Africa
| | - Errol Cason
- Department of Microbial, Biochemical and Food Biotechnology, University of the Free StateBloemfontein, South Africa
| | - Esta van Heerden
- Department of Microbial, Biochemical and Food Biotechnology, University of the Free StateBloemfontein, South Africa
| | | | - Thomas L. Kieft
- Biology Department, New Mexico Institute of Mining and TechnologySocorro, NM, USA
| | - Jana Olivier
- Department of Environmental Sciences, School of Agriculture and Environmental Sciences, University of South AfricaFlorida, South Africa
| | | |
Collapse
|
39
|
Formation and post-formation dynamics of bacterial biofilm streamers as highly viscous liquid jets. Sci Rep 2014; 4:7126. [PMID: 25410423 PMCID: PMC4237988 DOI: 10.1038/srep07126] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 10/30/2014] [Indexed: 11/09/2022] Open
Abstract
It has been recently reported that in presence of low Reynolds number (Re ≪ 1) transport, preformed bacterial biofilms, several hours after their formation, may degenerate in form of filamentous structures, known as streamers. In this work, we explain that such streamers form as the highly viscous liquid states of the intrinsically viscoelastic biofilms. Such “viscous liquid” state can be hypothesized by noting that the time of appearance of the streamers is substantially larger than the viscoelastic relaxation time scale of the biofilms, and this appearance is explained by the inability of a viscous liquid to withstand external shear. Further, by identifying the post formation dynamics of the streamers as that of a viscous liquid jet in a surrounding flow field, we can interpret several unexplained issues associated with the post-formation dynamics of streamers, such as the clogging of the flow passage or the exponential time growth of streamer dimensions. Overall our manuscript provides a biophysical basis for understanding the evolution of biofilm streamers in creeping flows.
Collapse
|
40
|
Geochemistry and microbial ecology in alkaline hot springs of Ambitle Island, Papua New Guinea. Extremophiles 2014; 18:763-78. [DOI: 10.1007/s00792-014-0657-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2013] [Accepted: 05/18/2014] [Indexed: 11/30/2022]
|
41
|
Briggs BR, Brodie EL, Tom LM, Dong H, Jiang H, Huang Q, Wang S, Hou W, Wu G, Huang L, Hedlund BP, Zhang C, Dijkstra P, Hungate BA. Seasonal patterns in microbial communities inhabiting the hot springs of Tengchong, Yunnan Province, China. Environ Microbiol 2013; 16:1579-91. [PMID: 24148100 DOI: 10.1111/1462-2920.12311] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 10/08/2013] [Indexed: 11/30/2022]
Abstract
Studies focusing on seasonal dynamics of microbial communities in terrestrial and marine environments are common; however, little is known about seasonal dynamics in high-temperature environments. Thus, our objective was to document the seasonal dynamics of both the physicochemical conditions and the microbial communities inhabiting hot springs in Tengchong County, Yunnan Province, China. The PhyloChip microarray detected 4882 operational taxonomic units (OTUs) within 79 bacterial phylum-level groups and 113 OTUs within 20 archaeal phylum-level groups, which are additional 54 bacterial phyla and 11 archaeal phyla to those that were previously described using pyrosequencing. Monsoon samples (June 2011) showed increased concentrations of potassium, total organic carbon, ammonium, calcium, sodium and total nitrogen, and decreased ferrous iron relative to the dry season (January 2011). At the same time, the highly ordered microbial communities present in January gave way to poorly ordered communities in June, characterized by higher richness of Bacteria, including microbes related to mesophiles. These seasonal changes in geochemistry and community structure are likely due to high rainfall influx during the monsoon season and indicate that seasonal dynamics occurs in high-temperature environments experiencing significant changes in seasonal recharge. Thus, geothermal environments are not isolated from the surrounding environment and seasonality affects microbial ecology.
Collapse
Affiliation(s)
- Brandon R Briggs
- Department of Geology and Environmental Earth Science, Miami University, Oxford, OH, 45056, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Schubotz F, Meyer-Dombard DR, Bradley AS, Fredricks HF, Hinrichs KU, Shock EL, Summons RE. Spatial and temporal variability of biomarkers and microbial diversity reveal metabolic and community flexibility in Streamer Biofilm Communities in the Lower Geyser Basin, Yellowstone National Park. GEOBIOLOGY 2013; 11:549-569. [PMID: 23981055 DOI: 10.1111/gbi.12051] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 07/19/2013] [Indexed: 06/02/2023]
Abstract
Detailed analysis of 16S rRNA and intact polar lipids (IPLs) from streamer biofilm communities (SBCs), collected from geochemically similar hot springs in the Lower Geyser Basin, Yellowstone National Park, shows good agreement and affirm that IPLs can be used as reliable markers for the microbial constituents of SBCs. Uncultured Crenarchaea are prominent in SBS, and their IPLs contain both glycosidic and mixed glyco-phospho head groups with tetraether cores, having 0-4 rings. Archaeal IPL contributions increase with increasing temperature and comprise up to one-fourth of the total IPL inventory at >84 °C. At elevated temperatures, bacterial IPLs contain abundant glycosidic glycerol diether lipids. Diether and diacylglycerol (DAG) lipids with aminopentanetetrol and phosphatidylinositol head groups were identified as lipids diagnostic of Aquificales, while DAG glycolipids and glyco-phospholipids containing N-acetylgycosamine as head group were assigned to members of the Thermales. With decreasing temperature and concomitant changes in water chemistry, IPLs typical of phototrophic bacteria, such as mono-, diglycosyl, and sulfoquinovosyl DAG, which are specific for cyanobacteria, increase in abundance, consistent with genomic data from the same samples. Compound-specific stable carbon isotope analysis of IPL breakdown products reveals a large isotopic diversity among SBCs in different hot springs. At two of the hot springs, 'Bison Pool' and Flat Cone, lipids derived from Aquificales are enriched in (13) C relative to biomass and approach values close to dissolved inorganic carbon (DIC) (approximately 0‰), consistent with fractionation during autotrophic carbon fixation via the reversed tricarboxylic acid pathway. At a third site, Octopus Spring, the same Aquificales-diagnostic lipids are 10‰ depleted relative to biomass and resemble stable carbon isotope values of dissolved organic carbon (DOC), indicative of heterotrophy. Other bacterial and archaeal lipids show a similar variance, with values resembling the DIC or DOC pool or a mixture thereof. This variance cannot be explained by hot spring chemistry or temperature alone, but instead, we argue that intermittent input of exogenous organic carbon can result in metabolic shifts of the chemotrophic communities from autotrophy to heterotrophy and vice versa.
Collapse
MESH Headings
- Archaea/classification
- Archaea/genetics
- Bacteria/classification
- Bacteria/genetics
- Biofilms
- Biota
- Cluster Analysis
- DNA, Archaeal/chemistry
- DNA, Archaeal/genetics
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Ribosomal/chemistry
- DNA, Ribosomal/genetics
- Genes, rRNA
- Hot Springs/microbiology
- Lipids/analysis
- Molecular Sequence Data
- Phylogeny
- RNA, Archaeal/genetics
- RNA, Bacterial/genetics
- RNA, Ribosomal, 16S/genetics
- Sequence Analysis, DNA
- Sequence Homology, Nucleic Acid
- Temperature
- United States
Collapse
Affiliation(s)
- F Schubotz
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Dick JM, Shock EL. A metastable equilibrium model for the relative abundances of microbial phyla in a hot spring. PLoS One 2013; 8:e72395. [PMID: 24023738 PMCID: PMC3759468 DOI: 10.1371/journal.pone.0072395] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Accepted: 07/10/2013] [Indexed: 11/29/2022] Open
Abstract
Many studies link the compositions of microbial communities to their environments, but the energetics of organism-specific biomass synthesis as a function of geochemical variables have rarely been assessed. We describe a thermodynamic model that integrates geochemical and metagenomic data for biofilms sampled at five sites along a thermal and chemical gradient in the outflow channel of the hot spring known as “Bison Pool” in Yellowstone National Park. The relative abundances of major phyla in individual communities sampled along the outflow channel are modeled by computing metastable equilibrium among model proteins with amino acid compositions derived from metagenomic sequences. Geochemical conditions are represented by temperature and activities of basis species, including pH and oxidation-reduction potential quantified as the activity of dissolved hydrogen. By adjusting the activity of hydrogen, the model can be tuned to closely approximate the relative abundances of the phyla observed in the community profiles generated from BLAST assignments. The findings reveal an inverse relationship between the energy demand to form the proteins at equal thermodynamic activities and the abundance of phyla in the community. The distance from metastable equilibrium of the communities, assessed using an equation derived from energetic considerations that is also consistent with the information-theoretic entropy change, decreases along the outflow channel. Specific divergences from metastable equilibrium, such as an underprediction of the relative abundances of phototrophic organisms at lower temperatures, can be explained by considering additional sources of energy and/or differences in growth efficiency. Although the metabolisms used by many members of these communities are driven by chemical disequilibria, the results support the possibility that higher-level patterns of chemotrophic microbial ecosystems are shaped by metastable equilibrium states that depend on both the composition of biomass and the environmental conditions.
Collapse
Affiliation(s)
- Jeffrey M. Dick
- Department of Chemistry and Department of Applied Geology, Curtin University, Perth, Western Australia, Australia
- * E-mail:
| | - Everett L. Shock
- School of Earth and Space Exploration and Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona, United States of America
| |
Collapse
|
44
|
Hou W, Wang S, Dong H, Jiang H, Briggs BR, Peacock JP, Huang Q, Huang L, Wu G, Zhi X, Li W, Dodsworth JA, Hedlund BP, Zhang C, Hartnett HE, Dijkstra P, Hungate BA. A comprehensive census of microbial diversity in hot springs of Tengchong, Yunnan Province China using 16S rRNA gene pyrosequencing. PLoS One 2013; 8:e53350. [PMID: 23326417 PMCID: PMC3541193 DOI: 10.1371/journal.pone.0053350] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 11/27/2012] [Indexed: 11/23/2022] Open
Abstract
The Rehai and Ruidian geothermal fields, located in Tengchong County, Yunnan Province, China, host a variety of geochemically distinct hot springs. In this study, we report a comprehensive, cultivation-independent census of microbial communities in 37 samples collected from these geothermal fields, encompassing sites ranging in temperature from 55.1 to 93.6°C, in pH from 2.5 to 9.4, and in mineralogy from silicates in Rehai to carbonates in Ruidian. Richness was low in all samples, with 21–123 species-level OTUs detected. The bacterial phylum Aquificae or archaeal phylum Crenarchaeota were dominant in Rehai samples, yet the dominant taxa within those phyla depended on temperature, pH, and geochemistry. Rehai springs with low pH (2.5–2.6), high temperature (85.1–89.1°C), and high sulfur contents favored the crenarchaeal order Sulfolobales, whereas those with low pH (2.6–4.8) and cooler temperature (55.1–64.5°C) favored the Aquificae genus Hydrogenobaculum. Rehai springs with neutral-alkaline pH (7.2–9.4) and high temperature (>80°C) with high concentrations of silica and salt ions (Na, K, and Cl) favored the Aquificae genus Hydrogenobacter and crenarchaeal orders Desulfurococcales and Thermoproteales. Desulfurococcales and Thermoproteales became predominant in springs with pH much higher than the optimum and even the maximum pH known for these orders. Ruidian water samples harbored a single Aquificae genus Hydrogenobacter, whereas microbial communities in Ruidian sediment samples were more diverse at the phylum level and distinctly different from those in Rehai and Ruidian water samples, with a higher abundance of uncultivated lineages, close relatives of the ammonia-oxidizing archaeon “Candidatus Nitrosocaldus yellowstonii”, and candidate division O1aA90 and OP1. These differences between Ruidian sediments and Rehai samples were likely caused by temperature, pH, and sediment mineralogy. The results of this study significantly expand the current understanding of the microbiology in Tengchong hot springs and provide a basis for comparison with other geothermal systems around the world.
Collapse
Affiliation(s)
- Weiguo Hou
- State Key Laboratory of Biogeology and Environmental Geology and Institute of Earth Sciences, China University of Geosciences, Beijing, China
| | - Shang Wang
- State Key Laboratory of Biogeology and Environmental Geology and Institute of Earth Sciences, China University of Geosciences, Beijing, China
| | - Hailiang Dong
- State Key Laboratory of Biogeology and Environmental Geology and Institute of Earth Sciences, China University of Geosciences, Beijing, China
- Department of Geology and Environmental Earth Science, Miami University, Oxford, Ohio, United States of America
- * E-mail:
| | - Hongchen Jiang
- State Key Laboratory of Biogeology and Environmental Geology and Institute of Earth Sciences, China University of Geosciences, Beijing, China
| | - Brandon R. Briggs
- Department of Geology and Environmental Earth Science, Miami University, Oxford, Ohio, United States of America
| | - Joseph P. Peacock
- School of Life Sciences, University of Nevada, Las Vegas, Nevada, United States of America
| | - Qiuyuan Huang
- Department of Geology and Environmental Earth Science, Miami University, Oxford, Ohio, United States of America
| | - Liuqin Huang
- State Key Laboratory of Biogeology and Environmental Geology and Institute of Earth Sciences, China University of Geosciences, Beijing, China
| | - Geng Wu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, Hubei Province, China
| | - Xiaoyang Zhi
- Key Laboratory of Microbial Diversity in Southwest China of Ministry of Education and Laboratory for Conservation and Utilization of Bio-resources of Yunnan Institute of Microbiology, Yunnan University, Kunming, Yunnan Province, China
| | - Wenjun Li
- Key Laboratory of Microbial Diversity in Southwest China of Ministry of Education and Laboratory for Conservation and Utilization of Bio-resources of Yunnan Institute of Microbiology, Yunnan University, Kunming, Yunnan Province, China
| | - Jeremy A. Dodsworth
- School of Life Sciences, University of Nevada, Las Vegas, Nevada, United States of America
| | - Brian P. Hedlund
- School of Life Sciences, University of Nevada, Las Vegas, Nevada, United States of America
| | - Chuanlun Zhang
- State Key Laboratory of Marine Geology, School of Ocean of Earth Sciences, Tongji University, Shanghai, China
- Department of Marine Sciences, the University of Georgia, Athens, Georgia, United States of America
| | - Hilairy E. Hartnett
- School of Earth and Space Exploration and Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona, United States of America
| | - Paul Dijkstra
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Bruce A. Hungate
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, United States of America
| |
Collapse
|
45
|
Cole JK, Peacock JP, Dodsworth JA, Williams AJ, Thompson DB, Dong H, Wu G, Hedlund BP. Sediment microbial communities in Great Boiling Spring are controlled by temperature and distinct from water communities. ISME JOURNAL 2012; 7:718-29. [PMID: 23235293 DOI: 10.1038/ismej.2012.157] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Great Boiling Spring is a large, circumneutral, geothermal spring in the US Great Basin. Twelve samples were collected from water and four different sediment sites on four different dates. Microbial community composition and diversity were assessed by PCR amplification of a portion of the small subunit rRNA gene using a universal primer set followed by pyrosequencing of the V8 region. Analysis of 164 178 quality-filtered pyrotags clearly distinguished sediment and water microbial communities. Water communities were extremely uneven and dominated by the bacterium Thermocrinis. Sediment microbial communities grouped according to temperature and sampling location, with a strong, negative, linear relationship between temperature and richness at all taxonomic levels. Two sediment locations, Site A (87-80 °C) and Site B (79 °C), were predominantly composed of single phylotypes of the bacterial lineage GAL35 (\[pmacr]=36.1%), Aeropyrum (\[pmacr]=16.6%), the archaeal lineage pSL4 (\[pmacr]=15.9%), the archaeal lineage NAG1 (\[pmacr]=10.6%) and Thermocrinis (\[pmacr]=7.6%). The ammonia-oxidizing archaeon 'Candidatus Nitrosocaldus' was relatively abundant in all sediment samples <82 °C (\[pmacr]=9.51%), delineating the upper temperature limit for chemolithotrophic ammonia oxidation in this spring. This study underscores the distinctness of water and sediment communities in GBS and the importance of temperature in driving microbial diversity, composition and, ultimately, the functioning of biogeochemical cycles.
Collapse
Affiliation(s)
- Jessica K Cole
- School of Life Sciences, University of Nevada, Las Vegas, NV, USA
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Song ZQ, Wang FP, Zhi XY, Chen JQ, Zhou EM, Liang F, Xiao X, Tang SK, Jiang HC, Zhang CL, Dong H, Li WJ. Bacterial and archaeal diversities in Yunnan and Tibetan hot springs, China. Environ Microbiol 2012; 15:1160-75. [PMID: 23126508 DOI: 10.1111/1462-2920.12025] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Revised: 09/17/2012] [Accepted: 10/09/2012] [Indexed: 11/27/2022]
Abstract
Thousands of hot springs are located in the north-eastern part of the Yunnan-Tibet geothermal zone, which is one of the most active geothermal areas in the world. However, a comprehensive and detailed understanding of microbial diversity in these hot springs is still lacking. In this study, bacterial and archaeal diversities were investigated in 16 hot springs (pH 3.2-8.6; temperature 47-96°C) in Yunnan Province and Tibet, China by using a barcoded 16S rRNA gene-pyrosequencing approach. Aquificae, Proteobacteria, Firmicutes, Deinococcus-Thermus and Bacteroidetes comprised the large portion of the bacterial communities in acidic hot springs. Non-acidic hot springs harboured more and variable bacterial phyla than acidic springs. Desulfurococcales and unclassified Crenarchaeota were the dominated groups in archaeal populations from most of the non-acidic hot springs; whereas, the archaeal community structure in acidic hot springs was simpler and characterized by Sulfolobales and Thermoplasmata. The phylogenetic analyses showed that Aquificae and Crenarchaeota were predominant in the investigated springs and possessed many phylogenetic lineages that have never been detected in other hot springs in the world. Thus findings from this study significantly improve our understanding of microbial diversity in terrestrial hot springs.
Collapse
Affiliation(s)
- Zhao-Qi Song
- Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education, Laboratory for Conservation and Utilization of Bio-resources, Yunnan Institute of Microbiology, Yunnan University, Kunming, 650091, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Bonilla-Rosso G, Peimbert M, Alcaraz LD, Hernández I, Eguiarte LE, Olmedo-Alvarez G, Souza V. Comparative metagenomics of two microbial mats at Cuatro Ciénegas Basin II: community structure and composition in oligotrophic environments. ASTROBIOLOGY 2012; 12:659-73. [PMID: 22920516 PMCID: PMC3426889 DOI: 10.1089/ast.2011.0724] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Microbial mats are self-sustained, functionally complex ecosystems that make good models for the understanding of past and present microbial ecosystems as well as putative extraterrestrial ecosystems. Ecological theory suggests that the composition of these communities might be affected by nutrient availability and disturbance frequency. We characterized two microbial mats from two contrasting environments in the oligotrophic Cuatro Ciénegas Basin: a permanent green pool and a red desiccation pond. We analyzed their taxonomic structure and composition by means of 16S rRNA clone libraries and metagenomics and inferred their metabolic role by the analysis of functional traits in the most abundant organisms. Both mats showed a high diversity with metabolically diverse members and strongly differed in structure and composition. The green mat had a higher species richness and evenness than the red mat, which was dominated by a lineage of Pseudomonas. Autotrophs were abundant in the green mat, and heterotrophs were abundant in the red mat. When comparing with other mats and stromatolites, we found that taxonomic composition was not shared at species level but at order level, which suggests environmental filtering for phylogenetically conserved functional traits with random selection of particular organisms. The highest diversity and composition similarity was observed among systems from stable environments, which suggests that disturbance regimes might affect diversity more strongly than nutrient availability, since oligotrophy does not appear to prevent the establishment of complex and diverse microbial mat communities. These results are discussed in light of the search for extraterrestrial life.
Collapse
Affiliation(s)
- Germán Bonilla-Rosso
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Coyoacán, México D.F., México
| | - Mariana Peimbert
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana, Cuajimalpa, Álvaro Obregón, México D.F., México
| | - Luis David Alcaraz
- Departamento de Genómica y Salud, Centro Superior de Investigación en Salud Pública, Valencia, España
| | - Ismael Hernández
- Departamento de Ingeniería Genética, Cinvestav, Campus Guanajuato, Irapuato, México
| | - Luis E. Eguiarte
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Coyoacán, México D.F., México
| | | | - Valeria Souza
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Coyoacán, México D.F., México
| |
Collapse
|
48
|
Swingley WD, Meyer-Dombard DR, Shock EL, Alsop EB, Falenski HD, Havig JR, Raymond J. Coordinating environmental genomics and geochemistry reveals metabolic transitions in a hot spring ecosystem. PLoS One 2012; 7:e38108. [PMID: 22675512 PMCID: PMC3367023 DOI: 10.1371/journal.pone.0038108] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Accepted: 05/02/2012] [Indexed: 11/18/2022] Open
Abstract
We have constructed a conceptual model of biogeochemical cycles and metabolic and microbial community shifts within a hot spring ecosystem via coordinated analysis of the “Bison Pool” (BP) Environmental Genome and a complementary contextual geochemical dataset of ∼75 geochemical parameters. 2,321 16S rRNA clones and 470 megabases of environmental sequence data were produced from biofilms at five sites along the outflow of BP, an alkaline hot spring in Sentinel Meadow (Lower Geyser Basin) of Yellowstone National Park. This channel acts as a >22 m gradient of decreasing temperature, increasing dissolved oxygen, and changing availability of biologically important chemical species, such as those containing nitrogen and sulfur. Microbial life at BP transitions from a 92°C chemotrophic streamer biofilm community in the BP source pool to a 56°C phototrophic mat community. We improved automated annotation of the BP environmental genomes using BLAST-based Markov clustering. We have also assigned environmental genome sequences to individual microbial community members by complementing traditional homology-based assignment with nucleotide word-usage algorithms, allowing more than 70% of all reads to be assigned to source organisms. This assignment yields high genome coverage in dominant community members, facilitating reconstruction of nearly complete metabolic profiles and in-depth analysis of the relation between geochemical and metabolic changes along the outflow. We show that changes in environmental conditions and energy availability are associated with dramatic shifts in microbial communities and metabolic function. We have also identified an organism constituting a novel phylum in a metabolic “transition” community, located physically between the chemotroph- and phototroph-dominated sites. The complementary analysis of biogeochemical and environmental genomic data from BP has allowed us to build ecosystem-based conceptual models for this hot spring, reconstructing whole metabolic networks in order to illuminate community roles in shaping and responding to geochemical variability.
Collapse
Affiliation(s)
- Wesley D. Swingley
- School of Natural Sciences, University of California Merced, Merced, California, United States of America
| | - D’Arcy R. Meyer-Dombard
- Department of Earth and Environmental Sciences, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Everett L. Shock
- School of Earth and Space Exploration, Arizona State University, Tempe, Arizona, United States of America
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona, United States of America
| | - Eric B. Alsop
- School of Earth and Space Exploration, Arizona State University, Tempe, Arizona, United States of America
| | - Heinz D. Falenski
- School of Earth and Space Exploration, Arizona State University, Tempe, Arizona, United States of America
| | - Jeff R. Havig
- School of Earth and Space Exploration, Arizona State University, Tempe, Arizona, United States of America
| | - Jason Raymond
- School of Earth and Space Exploration, Arizona State University, Tempe, Arizona, United States of America
- * E-mail:
| |
Collapse
|
49
|
Bacterial and archaeal diversity in two hot spring microbial mats from the geothermal region of Tengchong, China. Extremophiles 2012; 16:607-18. [DOI: 10.1007/s00792-012-0460-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Accepted: 05/03/2012] [Indexed: 11/25/2022]
|
50
|
Konopka A, Wilkins MJ. Application of meta-transcriptomics and -proteomics to analysis of in situ physiological state. Front Microbiol 2012; 3:184. [PMID: 22783237 PMCID: PMC3390588 DOI: 10.3389/fmicb.2012.00184] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Accepted: 05/03/2012] [Indexed: 12/30/2022] Open
Abstract
Analysis of the growth-limiting factor or environmental stressors affecting microbes in situ is of fundamental importance but analytically difficult. Microbes can reduce in situ limiting nutrient concentrations to sub-micromolar levels, and contaminated ecosystems may contain multiple stressors. The patterns of gene or protein expression by microbes in nature can be used to infer growth limitations, because they are regulated in response to environmental conditions. Experimental studies under controlled conditions in the laboratory provide the physiological underpinnings for developing these physiological indicators. Although regulatory networks may differ among specific microbes, there are some broad principles that can be applied, related to limiting nutrient acquisition, resource allocation, and stress responses. As technologies for transcriptomics and proteomics mature, the capacity to apply these approaches to complex microbial communities will accelerate. Global proteomics has the particular advantage that it reflects expressed catalytic activities. Furthermore, the high mass accuracy of some proteomic approaches allows mapping back to specific microbial strains. For example, at the Rifle IFRC field site in Western Colorado, the physiological status of Fe(III)-reducing populations has been tracked over time. Members of a “subsurface clade” within the Geobacter predominated during carbon amendment to the subsurface environment. At the functional level, proteomic identifications produced inferences regarding (i) temporal changes in anabolism and catabolism of acetate, (ii) the onset of N2 fixation when N became limiting, and (iii) expression of phosphate transporters during periods of intense growth. The application of these approaches in situ can lead to discovery of novel physiological adaptations.
Collapse
Affiliation(s)
- Allan Konopka
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | | |
Collapse
|