1
|
Fernández-Arévalo U, Fuchs J, Boll M, Díaz E. Transcriptional regulation of the anaerobic 3-hydroxybenzoate degradation pathway in Aromatoleum sp. CIB. Microbiol Res 2024; 288:127882. [PMID: 39216330 DOI: 10.1016/j.micres.2024.127882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/31/2024] [Accepted: 08/17/2024] [Indexed: 09/04/2024]
Abstract
Phenolic compounds are commonly found in anoxic environments, where they serve as both carbon and energy sources for certain anaerobic bacteria. The anaerobic breakdown of m-cresol, catechol, and certain lignin-derived compounds yields the central intermediate 3-hydroxybenzoate/3-hydroxybenzoyl-CoA. In this study, we have characterized the transcription and regulation of the hbd genes responsible for the anaerobic degradation of 3-hydroxybenzoate in the β-proteobacterium Aromatoleum sp. CIB. The hbd cluster is organized in three catabolic operons and a regulatory hbdR gene that encodes a dimeric transcriptional regulator belonging to the TetR family. HbdR suppresses the activity of the three catabolic promoters (PhbdN, PhbdE and PhbdH) by binding to a conserved palindromic operator box (ATGAATGAN4TCATTCAT). 3-Hydroxybenzoyl-CoA, the initial intermediate of the 3-hydroxybenzoate degradation pathway, along with benzoyl-CoA, serve as effector molecules that bind to HbdR inducing the expression of the hbd genes. Moreover, the hbd genes are subject to additional regulation influenced by the presence of non-aromatic carbon sources (carbon catabolite repression), and their expression is induced in oxygen-deprived conditions by the AcpR transcriptional activator. The prevalence of the hbd cluster among members of the Aromatoleum/Thauera bacterial group, coupled with its association with mobile genetic elements, suggests acquisition through horizontal gene transfer. These findings significantly enhance our understanding of the regulatory mechanisms governing the hbd gene cluster in bacteria, paving the way for further exploration into the anaerobic utilization/valorization of phenolic compounds derived from lignin.
Collapse
Affiliation(s)
- Unai Fernández-Arévalo
- Department of Microbial and Plant Biotechnology, Centro de Investigaciones Biológicas Margarita Salas-CSIC, Madrid, Spain
| | - Jonathan Fuchs
- Faculty of Biology-Microbiology, University of Freiburg, Freiburg, Germany
| | - Matthias Boll
- Faculty of Biology-Microbiology, University of Freiburg, Freiburg, Germany
| | - Eduardo Díaz
- Department of Microbial and Plant Biotechnology, Centro de Investigaciones Biológicas Margarita Salas-CSIC, Madrid, Spain.
| |
Collapse
|
2
|
Alonso‐Fernandes E, Fernández‐Llamosas H, Cano I, Serrano‐Pelejero C, Castro L, Díaz E, Carmona M. Enhancing tellurite and selenite bioconversions by overexpressing a methyltransferase from
Aromatoleum
sp. CIB. Microb Biotechnol 2022; 16:915-930. [PMID: 36366868 PMCID: PMC10128142 DOI: 10.1111/1751-7915.14162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/21/2022] [Accepted: 10/09/2022] [Indexed: 11/13/2022] Open
Abstract
Pollution by metalloids, e.g., tellurite and selenite, is of serious environmental concern and, therefore, there is an increasing interest in searching for ecologically friendly solutions for their elimination. Some microorganisms are able to reduce toxic tellurite/selenite into less toxic elemental tellurium (Te) and selenium (Se). Here, we describe the use of the environmentally relevant β-proteobacterium Aromatoleum sp. CIB as a platform for tellurite elimination. Aromatoleum sp. CIB was shown to tolerate 0.2 and 0.5 mM tellurite at aerobic and anaerobic conditions, respectively. Furthermore, the CIB strain was able to reduce tellurite into elemental Te producing rod-shaped Te nanoparticles (TeNPs) of around 200 nm length. A search in the genome of Aromatoleum sp. CIB revealed the presence of a gene, AzCIB_0135, which encodes a new methyltransferase that methylates tellurite and also selenite. AzCIB_0135 orthologs are widely distributed in bacterial genomes. The overexpression of the AzCIB_0135 gene both in Escherichia coli and Aromatoleum sp. CIB speeds up tellurite and selenite removal, and it enhances the production of rod-shaped TeNPs and spherical Se nanoparticles (SeNPs), respectively. Thus, the overexpression of a methylase becomes a new genetic strategy to optimize bacterial catalysts for tellurite/selenite bioremediation and for the programmed biosynthesis of metallic nanoparticles of biotechnological interest.
Collapse
Affiliation(s)
- Elena Alonso‐Fernandes
- Microbial and Plant Biotechnology Department Centro de Investigaciones Biológicas Margarita Salas‐CSIC Madrid Spain
| | - Helga Fernández‐Llamosas
- Microbial and Plant Biotechnology Department Centro de Investigaciones Biológicas Margarita Salas‐CSIC Madrid Spain
| | - Irene Cano
- Microbial and Plant Biotechnology Department Centro de Investigaciones Biológicas Margarita Salas‐CSIC Madrid Spain
| | - Cristina Serrano‐Pelejero
- Microbial and Plant Biotechnology Department Centro de Investigaciones Biológicas Margarita Salas‐CSIC Madrid Spain
| | - Laura Castro
- Department of Material Science and Metallurgical Engineering, Facultad de Químicas Universidad Complutense de Madrid Madrid Spain
| | - Eduardo Díaz
- Microbial and Plant Biotechnology Department Centro de Investigaciones Biológicas Margarita Salas‐CSIC Madrid Spain
| | - Manuel Carmona
- Microbial and Plant Biotechnology Department Centro de Investigaciones Biológicas Margarita Salas‐CSIC Madrid Spain
| |
Collapse
|
3
|
Fernández-Llamosas H, Ibero J, Thijs S, Imperato V, Vangronsveld J, Díaz E, Carmona M. Enhancing the Rice Seedlings Growth Promotion Abilities of Azoarcus sp. CIB by Heterologous Expression of ACC Deaminase to Improve Performance of Plants Exposed to Cadmium Stress. Microorganisms 2020; 8:E1453. [PMID: 32971998 PMCID: PMC7564240 DOI: 10.3390/microorganisms8091453] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 09/18/2020] [Accepted: 09/20/2020] [Indexed: 02/04/2023] Open
Abstract
Environmental pollutants can generate stress in plants causing increased ethylene production that leads to the inhibition of plant growth. Ethylene production by the stressed plant may be lowered by Plant Growth-Promoting Bacteria (PGPB) that metabolizes the immediate precursor of ethylene 1-aminocyclopropane-1-carboxylate (ACC). Thus, engineering PGPB with ACC deaminase activity can be a promising alternative to mitigate the harmful effects of pollutants and thus enhance plant production. Here we show that the aromatics-degrading and metal-resistant Azoarcus sp. CIB behaves as a PGP-bacterium when colonizing rice as an endophyte, showing a 30% increment in plant weight compared to non-inoculated plants. The cloning and expression of an acdS gene led to a recombinant strain, Azoarcus sp. CIB (pSEVA237acdS), possessing significant ACC deaminase activity (6716 nmol mg-1 h-1), constituting the first PGPB of the Rhodocyclaceae family equipped with this PGP trait. The recombinant CIB strain acquired the ability to protect inoculated rice plants from the stress induced by cadmium (Cd) exposure and to increase the Cd concentration in rice seedlings. The observed decrease of the levels of reactive oxygen species levels in rice roots confirms such a protective effect. The broad-host-range pSEVA237acdS plasmid paves the way to engineer PGPB with ACC deaminase activity to improve the growth of plants that might face stress conditions.
Collapse
Affiliation(s)
- Helga Fernández-Llamosas
- Microbial and Plant Biotechnology Department, Centro de Investigaciones Biológicas-CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain; (H.F.-L.); (J.I.); (E.D.)
| | - Juan Ibero
- Microbial and Plant Biotechnology Department, Centro de Investigaciones Biológicas-CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain; (H.F.-L.); (J.I.); (E.D.)
| | - Sofie Thijs
- Department of Environmental Biology, Centre for Environmental Sciences, Hasselt University, 3590 Diepenbeek, Belgium; (S.T.); (V.I.); (J.V.)
| | - Valeria Imperato
- Department of Environmental Biology, Centre for Environmental Sciences, Hasselt University, 3590 Diepenbeek, Belgium; (S.T.); (V.I.); (J.V.)
| | - Jaco Vangronsveld
- Department of Environmental Biology, Centre for Environmental Sciences, Hasselt University, 3590 Diepenbeek, Belgium; (S.T.); (V.I.); (J.V.)
- Department of Plant Physiology, Faculty of Biology and Biotechnology, Maria Skłodowska-Curie University, 20-0033 Lublin, Poland
| | - Eduardo Díaz
- Microbial and Plant Biotechnology Department, Centro de Investigaciones Biológicas-CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain; (H.F.-L.); (J.I.); (E.D.)
| | - Manuel Carmona
- Microbial and Plant Biotechnology Department, Centro de Investigaciones Biológicas-CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain; (H.F.-L.); (J.I.); (E.D.)
| |
Collapse
|
4
|
Sanz D, García JL, Díaz E. Expanding the current knowledge and biotechnological applications of the oxygen-independent ortho-phthalate degradation pathway. Environ Microbiol 2020; 22:3478-3493. [PMID: 32510798 DOI: 10.1111/1462-2920.15119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/31/2020] [Accepted: 06/03/2020] [Indexed: 11/29/2022]
Abstract
ortho-Phthalate derives from industrially produced phthalate esters, which are massively used as plasticizers and constitute major emerging environmental pollutants. The pht pathway for the anaerobic bacterial biodegradation of o-phthalate involves its activation to phthaloyl-CoA followed by decarboxylation to benzoyl-CoA. Here, we have explored further the pht peripheral pathway in denitrifying bacteria and shown that it requires also an active transport system for o-phthalate uptake that belongs to the poorly characterized class of TAXI-TRAP transporters. The construction of a fully functional pht cassette combining both catabolic and transport genes allowed to expand the o-phthalate degradation ecological trait to heterologous hosts. Unexpectedly, the pht cassette also allowed the aerobic conversion of o-phthalate to benzoyl-CoA when coupled to a functional box central pathway. Hence, the pht pathway may constitute an evolutionary acquisition for o-phthalate degradation by bacteria that thrive either in anoxic environments or in environments that face oxygen limitations and that rely on benzoyl-CoA, rather than on catecholic central intermediates, for the aerobic catabolism of aromatic compounds. Finally, the recombinant pht cassette was used both to screen for functional aerobic box pathways in bacteria and to engineer recombinant biocatalysts for o-phthalate bioconversion into sustainable bioplastics, e.g., polyhydroxybutyrate, in plastic recycling industrial processes.
Collapse
Affiliation(s)
- David Sanz
- Department of Microbial and Plant Biotechnology, Centro de Investigaciones Biológicas Margarita Salas-CSIC, Madrid, Spain
| | - José L García
- Department of Microbial and Plant Biotechnology, Centro de Investigaciones Biológicas Margarita Salas-CSIC, Madrid, Spain
| | - Eduardo Díaz
- Department of Microbial and Plant Biotechnology, Centro de Investigaciones Biológicas Margarita Salas-CSIC, Madrid, Spain
| |
Collapse
|
5
|
Durante-Rodríguez G, Fernández-Llamosas H, Alonso-Fernandes E, Fernández-Muñiz MN, Muñoz-Olivas R, Díaz E, Carmona M. ArxA From Azoarcus sp. CIB, an Anaerobic Arsenite Oxidase From an Obligate Heterotrophic and Mesophilic Bacterium. Front Microbiol 2019; 10:1699. [PMID: 31417512 PMCID: PMC6683785 DOI: 10.3389/fmicb.2019.01699] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 07/10/2019] [Indexed: 11/13/2022] Open
Abstract
Arsenic is a toxic element widely distributed in nature, but numerous bacteria are able to resist its toxicity mainly through the ars genes encoding an arsenate reductase and an arsenite efflux pump. Some “arsenotrophic” bacteria are also able to use arsenite as energy supplier during autotrophic growth by coupling anaerobic arsenite oxidation via the arx gene products to nitrate respiration or photosynthesis. Here, we have demonstrated that Azoarcus sp. CIB, a facultative anaerobic β-proteobacterium, is able to resist arsenic oxyanions both under aerobic and anaerobic conditions. Genome mining, gene expression, and mutagenesis studies revealed the presence of a genomic island that harbors the ars and arx clusters involved in arsenic resistance in strain CIB. Orthologous ars clusters are widely distributed in the genomes of sequenced Azoarcus strains. Interestingly, genetic and metabolic approaches showed that the arx cluster of the CIB strain encodes an anaerobic arsenite oxidase also involved in the use of arsenite as energy source. Hence, Azoarcus sp. CIB represents the prototype of an obligate heterotrophic bacterium able to use arsenite as an extra-energy source for anaerobic cell growth. The arsenic island of strain CIB supports the notion that metabolic and energetic skills can be gained by genetic mobile elements.
Collapse
Affiliation(s)
| | | | - Elena Alonso-Fernandes
- Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas-CSIC, Madrid, Spain
| | | | - Riansares Muñoz-Olivas
- Departamento de Química Analítica, Facultad de Químicas, Universidad Complutense Madrid, Madrid, Spain
| | - Eduardo Díaz
- Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas-CSIC, Madrid, Spain
| | - Manuel Carmona
- Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas-CSIC, Madrid, Spain
| |
Collapse
|
6
|
A Novel Redox-Sensing Histidine Kinase That Controls Carbon Catabolite Repression in Azoarcus sp. CIB. mBio 2019; 10:mBio.00059-19. [PMID: 30967457 PMCID: PMC6456745 DOI: 10.1128/mbio.00059-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have identified and characterized the AccS multidomain sensor kinase that mediates the activation of the AccR master regulator involved in carbon catabolite repression (CCR) of the anaerobic catabolism of aromatic compounds in Azoarcus sp. CIB. A truncated AccS protein that contains only the soluble C-terminal autokinase module (AccS') accounts for the succinate-dependent CCR control. In vitro assays with purified AccS' revealed its autophosphorylation, phosphotransfer from AccS'∼P to the Asp60 residue of AccR, and the phosphatase activity toward its phosphorylated response regulator, indicating that the equilibrium between the kinase and phosphatase activities of AccS' may control the phosphorylation state of the AccR transcriptional regulator. Oxidized quinones, e.g., ubiquinone 0 and menadione, switched the AccS' autokinase activity off, and three conserved Cys residues, which are not essential for catalysis, are involved in such inhibition. Thiol oxidation by quinones caused a change in the oligomeric state of the AccS' dimer resulting in the formation of an inactive monomer. This thiol-based redox switch is tuned by the cellular energy state, which can change depending on the carbon source that the cells are using. This work expands the functional diversity of redox-sensitive sensor kinases, showing that they can control new bacterial processes such as CCR of the anaerobic catabolism of aromatic compounds. The AccSR two-component system is conserved in the genomes of some betaproteobacteria, where it might play a more general role in controlling the global metabolic state according to carbon availability.IMPORTANCE Two-component signal transduction systems comprise a sensor histidine kinase and its cognate response regulator, and some have evolved to sense and convert redox signals into regulatory outputs that allow bacteria to adapt to the altered redox environment. The work presented here expands knowledge of the functional diversity of redox-sensing kinases to control carbon catabolite repression (CCR), a phenomenon that allows the selective assimilation of a preferred compound among a mixture of several carbon sources. The newly characterized AccS sensor kinase is responsible for the phosphorylation and activation of the AccR master regulator involved in CCR of the anaerobic degradation of aromatic compounds in the betaproteobacterium Azoarcus sp. CIB. AccS seems to have a thiol-based redox switch that is modulated by the redox state of the quinone pool. The AccSR system is conserved in several betaproteobacteria, where it might play a more general role controlling their global metabolic state.
Collapse
|
7
|
Qian HX, Liao RZ. QM/MM Study of Tungsten-Dependent Benzoyl-Coenzyme A Reductase: Rationalization of Regioselectivity and Predication of W vs Mo Selectivity. Inorg Chem 2018; 57:10667-10678. [DOI: 10.1021/acs.inorgchem.8b01328] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hui-Xia Qian
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Rong-Zhen Liao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
8
|
Tiedt O, Fuchs J, Eisenreich W, Boll M. A catalytically versatile benzoyl-CoA reductase, key enzyme in the degradation of methyl- and halobenzoates in denitrifying bacteria. J Biol Chem 2018; 293:10264-10274. [PMID: 29769313 DOI: 10.1074/jbc.ra118.003329] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 05/15/2018] [Indexed: 12/22/2022] Open
Abstract
Class I benzoyl-CoA (BzCoA) reductases (BCRs) are key enzymes in the anaerobic degradation of aromatic compounds. They catalyze the ATP-dependent reduction of the central BzCoA intermediate and analogues of it to conjugated cyclic 1,5-dienoyl-CoAs probably by a radical-based, Birch-like reduction mechanism. Discovered in 1995, the enzyme from the denitrifying bacterium Thauera aromatica (BCRTar) has so far remained the only isolated and biochemically accessible BCR, mainly because BCRs are extremely labile, and their heterologous production has largely failed so far. Here, we describe a platform for the heterologous expression of the four structural genes encoding a designated 3-methylbenzoyl-CoA reductase from the related denitrifying species Thauera chlorobenzoica (MBRTcl) in Escherichia coli This reductase represents the prototype of a distinct subclass of ATP-dependent BCRs that were proposed to be involved in the degradation of methyl-substituted BzCoA analogues. The recombinant MBRTcl had an αβγδ-subunit architecture, contained three low-potential [4Fe-4S] clusters, and was highly oxygen-labile. It catalyzed the ATP-dependent reductive dearomatization of BzCoA with 2.3-2.8 ATPs hydrolyzed per two electrons transferred and preferentially dearomatized methyl- and chloro-substituted analogues in meta- and para-positions. NMR analyses revealed that 3-methylbenzoyl-CoA is regioselectively reduced to 3-methyl-1,5-dienoyl-CoA. The unprecedented reductive dechlorination of 4-chloro-BzCoA to BzCoA probably via HCl elimination from a reduced intermediate allowed for the previously unreported growth of T. chlorobenzoica on 4-chlorobenzoate. The heterologous expression platform established in this work enables the production, isolation, and characterization of bacterial and archaeal BCR and BCR-like radical enzymes, for many of which the function has remained unknown.
Collapse
Affiliation(s)
- Oliver Tiedt
- From the Fakultät für Biologie-Mikrobiologie, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany and
| | - Jonathan Fuchs
- From the Fakultät für Biologie-Mikrobiologie, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany and
| | - Wolfgang Eisenreich
- Lehrstuhl für Biochemie, Technische Universität München, 85747 Garching, Germany
| | - Matthias Boll
- From the Fakultät für Biologie-Mikrobiologie, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany and
| |
Collapse
|
9
|
Blázquez B, Carmona M, Díaz E. Transcriptional Regulation of the Peripheral Pathway for the Anaerobic Catabolism of Toluene and m-Xylene in Azoarcus sp. CIB. Front Microbiol 2018; 9:506. [PMID: 29623071 PMCID: PMC5874301 DOI: 10.3389/fmicb.2018.00506] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 03/06/2018] [Indexed: 11/17/2022] Open
Abstract
Alkylbenzenes, such as toluene and m-xylene, are an important class of contaminant hydrocarbons that are widespread and tend to accumulate in subsurface anoxic environments. The peripheral pathway for the anaerobic oxidation of toluene in bacteria consists of an initial activation catalyzed by a benzylsuccinate synthase (encoded by bss genes), and a subsequent modified β-oxidation of benzylsuccinate to benzoyl-CoA and succinyl-CoA (encoded by bbs genes). We have shown here that the bss and bbs genes, which are located within an integrative and conjugative element, are essential for anaerobic degradation of toluene but also for m-xylene oxidation in the denitrifying beta-proteobacterium Azoarcus sp. CIB. New insights into the transcriptional organization and regulation of a complete gene cluster for anaerobic catabolism of toluene/m-xylene in a single bacterial strain are presented. The bss and bbs genes are transcriptionally coupled into two large convergent catabolic operons driven by the PbssD and PbbsA promoters, respectively, whose expression is inducible when cells grow anaerobically in toluene or m-xylene. An adjacent tdiSR operon driven by the PtdiS promoter encodes a putative two-component regulatory system. TdiR behaves as a transcriptional activator of the PbssD, PbbsA, and PtdiS promoters, being benzylsuccinate/(3-methyl)benzylsuccinate, rather than toluene/m-xylene, the inducers that may trigger the TdiS-mediated activation of TdiR. In addition to the TdiSR-based specific control, the expression of the bss and bbs genes in Azoarcus sp. CIB is under an overimposed regulation that depends on certain environmental factors, such as the presence/absence of oxygen or the availability of preferred carbon sources (catabolite repression). This work paves the way for future strategies toward the reliable assessment of microbial activity in toluene/m-xylene contaminated environments.
Collapse
Affiliation(s)
- Blas Blázquez
- Department of Microbial and Plant Biotechnology, Centro de Investigaciones Biológicas-Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Manuel Carmona
- Department of Microbial and Plant Biotechnology, Centro de Investigaciones Biológicas-Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Eduardo Díaz
- Department of Microbial and Plant Biotechnology, Centro de Investigaciones Biológicas-Consejo Superior de Investigaciones Científicas, Madrid, Spain
| |
Collapse
|
10
|
Tiedt O, Mergelsberg M, Eisenreich W, Boll M. Promiscuous Defluorinating Enoyl-CoA Hydratases/Hydrolases Allow for Complete Anaerobic Degradation of 2-Fluorobenzoate. Front Microbiol 2017; 8:2579. [PMID: 29312255 PMCID: PMC5742626 DOI: 10.3389/fmicb.2017.02579] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 12/11/2017] [Indexed: 01/20/2023] Open
Abstract
Biodegradation of the environmentally hazardous fluoroaromatics has mainly been associated with oxygenase-dependent defluorination reactions. Only very recently a novel mode of oxygen-independent defluorination was identified for the complete degradation of para-substituted fluoroaromatics in the denitrifying Thauera aromatica: a promiscuous class I benzoyl-coenzyme A (BzCoA) reductase (BCR) catalyzed the ATP-dependent defluorination of 4-F-BzCoA to BzCoA. Here, we studied the unknown enzymatic defluorination during the complete degradation of 2-F-benzoate to CO2 and HF. We demonstrate that after activation of 2-F-benzoate by a promiscuous AMP-forming benzoate-CoA ligase, the 2-F-BzCoA formed is subsequently dearomatized by BCR to a mixture of 2-F- and 6-F-cyclohexa-1,5-diene-1-carboxyl-CoA (2-F-/6-F-1,5-dienoyl-CoA). This finding indicates that BCR is not involved in C–F-bond cleavage during growth with 2-F-benzoate. Instead, we identified defluorination of the two isomers by enoyl-CoA hydratases/hydrolases involved in down-stream reactions of the BzCoA degradation pathway. (i) The 1,5-dienoyl-CoA hydratase hydrated the F-1,5-dienoyl-CoA isomers to a mixture of the stable 2-F-6-OH-1-enoyl-CoA and the unstable α-fluorohydrin 6-F-6-OH-1-enoyl-CoA; the latter spontaneously decomposed to HF and 6-oxo-cyclohex-1-enoyl-CoA (6-oxo-1-enoyl-CoA), a common intermediate of the BzCoA degradation pathway. (ii) 6-Oxo-1-enoyl-CoA hydrolase/hydratase catalyzed the defluorination of 2-F-6-OH-1-enoyl-CoA to 2-oxo-6-OH-1-enoyl-CoA and HF again via water addition to an F-enoyl-CoA functionality. Based on these in vitro results, we demonstrate a previously overseen capability of 2-F-benzoate degradation for many but not all tested facultatively and obligately anaerobic bacteria that degrade aromatic compounds via the BzCoA degradation pathway. In conclusion, the newly identified enzymatic defluorination by enoyl-CoA hydratases via α-fluorohydrin formation represents an abundant, physiologically relevant principle of enzymatic defluorination.
Collapse
Affiliation(s)
- Oliver Tiedt
- Faculty of Biology - Microbiology, Institute of Biology II, University of Freiburg, Freiburg, Germany
| | - Mario Mergelsberg
- Faculty of Biology - Microbiology, Institute of Biology II, University of Freiburg, Freiburg, Germany
| | | | - Matthias Boll
- Faculty of Biology - Microbiology, Institute of Biology II, University of Freiburg, Freiburg, Germany
| |
Collapse
|
11
|
Zamarro MT, Barragán MJL, Carmona M, García JL, Díaz E. Engineering a bzd cassette for the anaerobic bioconversion of aromatic compounds. Microb Biotechnol 2017; 10:1418-1425. [PMID: 28736925 PMCID: PMC5658619 DOI: 10.1111/1751-7915.12746] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 05/11/2017] [Accepted: 05/11/2017] [Indexed: 01/26/2023] Open
Abstract
Microorganisms able to degrade aromatic contaminants constitute potential valuable biocatalysts to deal with a significant reusable carbon fraction suitable for eco‐efficient valorization processes. Metabolic engineering of anaerobic pathways for degradation and recycling of aromatic compounds is an almost unexplored field. In this work, we present the construction of a functional bzd cassette encoding the benzoyl‐CoA central pathway for the anaerobic degradation of benzoate. The bzd cassette has been used to expand the ability of some denitrifying bacteria to use benzoate as sole carbon source under anaerobic conditions, and it paves the way for future pathway engineering of efficient anaerobic biodegraders of aromatic compounds whose degradation generates benzoyl‐CoA as central intermediate. Moreover, a recombinant Azoarcus sp. CIB strain harbouring the bzd cassette was shown to behave as a valuable biocatalyst for anaerobic toluene valorization towards the synthesis of poly‐3‐hydroxybutyrate (PHB), a biodegradable and biocompatible polyester of increasing biotechnological interest as a sustainable alternative to classical oil‐derived polymers.
Collapse
Affiliation(s)
- María Teresa Zamarro
- Centro de Investigaciones Biológicas, CSIC, C/Ramiro de Maeztu, 9, 28040, Madrid, Spain
| | - María J L Barragán
- Centro de Investigaciones Biológicas, CSIC, C/Ramiro de Maeztu, 9, 28040, Madrid, Spain
| | - Manuel Carmona
- Centro de Investigaciones Biológicas, CSIC, C/Ramiro de Maeztu, 9, 28040, Madrid, Spain
| | - José Luis García
- Centro de Investigaciones Biológicas, CSIC, C/Ramiro de Maeztu, 9, 28040, Madrid, Spain
| | - Eduardo Díaz
- Centro de Investigaciones Biológicas, CSIC, C/Ramiro de Maeztu, 9, 28040, Madrid, Spain
| |
Collapse
|
12
|
The Azoarcus anaerobius 1,3-Dihydroxybenzene (Resorcinol) Anaerobic Degradation Pathway Is Controlled by the Coordinated Activity of Two Enhancer-Binding Proteins. Appl Environ Microbiol 2017; 83:AEM.03042-16. [PMID: 28258136 DOI: 10.1128/aem.03042-16] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Accepted: 02/22/2017] [Indexed: 11/20/2022] Open
Abstract
The anaerobic resorcinol degradation pathway in Azoarcus anaerobius is unique in that it uses an oxidative rather than a reductive strategy to overcome the aromatic ring stability in degradation of this compound, in a process that is dependent on nitrate respiration. We show that the pathway is organized in five transcriptional units, three of which are inducible by the presence of the substrate. Three σ54-dependent promoters located upstream from the three operons coding for the main pathway enzymes were identified, which shared a similar structure with conserved upstream activating sequences (UASs) located at 103 to 111 bp from the transcription start site. Expression of the pathway is controlled by the bacterial enhancer-binding proteins (bEBPs) RedR1 and RedR2, two homologous regulators that, despite their high sequence identity (97%), have nonredundant functions: RedR2, the master regulator which also controls RedR1 expression, is itself able to promote transcription from two of the promoters, while RedR1 activity is strictly dependent on the presence of RedR2. The two regulators were shown to interact with each other, suggesting that the natural mode of activation is by forming heterodimers, which become active in the presence of the substrate after its metabolization to hydroxybenzoquinone through the pathway enzymes. The model structure of the N-terminal domain of the proteins is composed of tandem GAF and PAS motifs; the possible mechanisms controlling the activity of the regulators are discussed.IMPORTANCEAzoarcus anaerobius is a strict anaerobe that is able to use 1,3-dihydroxybenzene as the sole carbon source in a process that is dependent on nitrate respiration. We have shown that expression of the pathway is controlled by two regulators of almost identical sequences: the bEBPs RedR1 and RedR2, which share 97% identity. These regulators control three promoters with similar structure. Despite their sequence identity, the two bEBPs are not redundant and are both required for maximum pathway expression. In fact, the two proteins function as heterodimers and require activation by the pathway intermediate hydroxyhydroquinone. The structure of the domain sensing the activation signal resembles that of regulators that are known to interact with other proteins.
Collapse
|
13
|
Zamarro MT, Martín-Moldes Z, Díaz E. The ICE XTD of Azoarcus sp. CIB, an integrative and conjugative element with aerobic and anaerobic catabolic properties. Environ Microbiol 2016; 18:5018-5031. [PMID: 27450529 DOI: 10.1111/1462-2920.13465] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 07/15/2016] [Accepted: 07/19/2016] [Indexed: 11/28/2022]
Abstract
Integrative and conjugative elements (ICE) play a major role in aerobic degradation of aromatic compounds, but they have not yet been shown to be involved in anaerobic degradation. We have characterized here the ICEXTD element which endows to the beta-proteobacterium Azoarcus sp. CIB with the ability to utilize aromatic hydrocarbons. The core region of ICEXTD , which shows a remarkable synteny with that of ICEclc-like elements, allows its own intracellular and intercellular mobility. ICEXTD integrates at the tRNAGly of the host chromosome, but it can also excise to produce a ready to transfer circular form. The adaptation modules of ICEXTD represent a unique combination of gene clusters for aerobic (tod genes) and anaerobic (bss-bbs and mbd genes) degradation of certain aromatic hydrocarbons, e.g., toluene, m-xylene and cumene. Transfer of ICEXTD to other Azoarcus strains, e.g., A. evansii, confers them the ability to degrade aromatic hydrocarbons both aerobically and anaerobically. Interestingly, ICEXTD allows Cupriavidus pinatubonensis, a bacterium unable to degrade anaerobically aromatic compounds, to grow with m-xylene under anoxic conditions. Thus, ICEXTD constitutes the first mobile genetic element able to expand the catabolic abilities of certain bacteria for the removal of aromatic hydrocarbons either in the presence or absence of oxygen.
Collapse
Affiliation(s)
- María Teresa Zamarro
- Environmental Biology Department, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, Madrid, 28040, Spain
| | - Zaira Martín-Moldes
- Environmental Biology Department, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, Madrid, 28040, Spain
| | - Eduardo Díaz
- Environmental Biology Department, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, Madrid, 28040, Spain
| |
Collapse
|
14
|
Fernández-Llamosas H, Castro L, Blázquez ML, Díaz E, Carmona M. Biosynthesis of selenium nanoparticles by Azoarcus sp. CIB. Microb Cell Fact 2016; 15:109. [PMID: 27301452 PMCID: PMC4908764 DOI: 10.1186/s12934-016-0510-y] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 06/07/2016] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Different bacteria have been reported so far that link selenite resistance to the production of metallic selenium nanoparticles (SeNPs). Although SeNPs have many biotechnological applications in diverse areas, the molecular mechanisms involved in their microbial genesis are not fully understood. The Azoarcus genus is a physiologically versatile group of beta-proteobacteria of great environmental relevance. Azoarcus sp. CIB is a facultative anaerobe that combines the ability to degrade under aerobic and/or anaerobic conditions a wide range of aromatic compounds, including some toxic hydrocarbons such as toluene and m-xylene, with an endophytic life style in the root of rice. We unravel here an additional physiological feature of the strain CIB that is related to its resistance to selenium oxyanions and the formation of SeNPs. RESULTS This work is the first report of a member of the Azoarcus genus that is able to anaerobically grow in the presence of selenite. Electron microscopy preparations and X-ray spectroscopy analyses demonstrate the reduction of selenite to spherical electron-dense SeNPs whose average size was 123 ± 35 nm of diameter. Our data suggest that the main molecular mechanism of selenite resistance resides on an energy-dependent selenite exporter. Azoarcus cells trigger the synthesis of SeNPs when they reach the stationary-phase of growth, and either the exhaustion of electron donor or acceptor, both of which lead to starvation conditions, produce the reduction of selenite to red elemental selenium. Azoarcus becomes a promising biocatalyst, either as whole cells or cellular extracts, for the anaerobic and/or aerobic green synthesis of SeNPs. CONCLUSIONS Azoarcus turns out to be a new eco-friendly system to reduce selenite and produce spherical SeNPs. Moreover, this is the first report of a rice endophyte able to produce SeNPs. Since Azoarcus is also able to degrade both aerobically and anaerobically toxic aromatic compounds of great environmental concern, it becomes a suitable candidate for a more sustainable agricultural practice and for bioremediation strategies.
Collapse
Affiliation(s)
- Helga Fernández-Llamosas
- />Environmental Biology Department, Centro de Investigaciones Biológicas-CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Laura Castro
- />Material Science and Metallurgical Engineering Department, Facultad de Químicas, Universidad Complutense de Madrid, Madrid, Spain
| | - María Luisa Blázquez
- />Material Science and Metallurgical Engineering Department, Facultad de Químicas, Universidad Complutense de Madrid, Madrid, Spain
| | - Eduardo Díaz
- />Environmental Biology Department, Centro de Investigaciones Biológicas-CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Manuel Carmona
- />Environmental Biology Department, Centro de Investigaciones Biológicas-CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| |
Collapse
|
15
|
Heider J, Szaleniec M, Martins BM, Seyhan D, Buckel W, Golding BT. Structure and Function of Benzylsuccinate Synthase and Related Fumarate-Adding Glycyl Radical Enzymes. J Mol Microbiol Biotechnol 2016; 26:29-44. [PMID: 26959246 DOI: 10.1159/000441656] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The pathway of anaerobic toluene degradation is initiated by a remarkable radical-type enantiospecific addition of the chemically inert methyl group to the double bond of a fumarate cosubstrate to yield (R)-benzylsuccinate as the first intermediate, as catalyzed by the glycyl radical enzyme benzylsuccinate synthase. In recent years, it has become clear that benzylsuccinate synthase is the prototype enzyme of a much larger family of fumarate-adding enzymes, which play important roles in the anaerobic metabolism of further aromatic and even aliphatic hydrocarbons. We present an overview on the biochemical properties of benzylsuccinate synthase, as well as its recently solved structure, and present the results of an initial structure-based modeling study on the reaction mechanism. Moreover, we compare the structure of benzylsuccinate synthase with those predicted for different clades of fumarate-adding enzymes, in particular the paralogous enzymes converting p-cresol, 2-methylnaphthalene or n-alkanes.
Collapse
Affiliation(s)
- Johann Heider
- Laboratory of Microbial Biochemistry, LOEWE Center for Synthetic Microbiology, Philipps University Marburg, Marburg, Germany
| | | | | | | | | | | |
Collapse
|
16
|
Rabus R, Boll M, Golding B, Wilkes H. Anaerobic Degradation of p-Alkylated Benzoates and Toluenes. J Mol Microbiol Biotechnol 2016; 26:63-75. [PMID: 26960059 DOI: 10.1159/000441144] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The anaerobic degradation of 4-alkylbenzoates and 4-alkyltoluenes is to date a rarely reported microbial capacity. The newly isolated Alphaproteobacterium Magnetospirillum sp. strain pMbN1 represents the first pure culture demonstrated to degrade 4-methylbenzoate completely to CO2 in a process coupled to denitrification. Differential proteogenomic studies in conjunction with targeted metabolite analyses and enzyme activity measurements elucidated a specific 4-methylbenzoyl-coenzyme A (CoA) pathway in this bacterium alongside the classical central benzoyl-CoA pathway. Whilst these two pathways are analogous, in the former the p-methyl group is retained and its 4-methylbenzoyl-CoA reductase (MbrCBAD) is phylogenetically distinct from the archetypical class I benzoyl-CoA reductase (BcrCBAD). Subsequent global regulatory studies on strain pMbN1 grown with binary or ternary substrate mixtures revealed benzoate to repress the anaerobic utilization of 4-methylbenzoate and succinate. The shared nutritional property of betaproteobacterial 'Aromatoleum aromaticum' pCyN1 and Thauera sp. strain pCyN2 is the anaerobic degradation of the plant-derived hydrocarbon p-cymene (4-isopropyltoluene) coupled to denitrification. Notably, the two strains employ two different peripheral pathways for the conversion of p-cymene to 4-isopropylbenzoyl-CoA as the possible first common intermediate. In 'A. aromaticum' pCyN1 a putative p-cymene dehydrogenase (CmdABC) is proposed to hydroxylate the benzylic methyl group, which is subsequently further oxidized to the CoA-thioester. In contrast, Thauera sp. strain pCyN2 employs a reaction sequence analogous to the known anaerobic toluene pathway, involving a distinct branching (4-isopropylbenzyl)succinate synthase (IbsABCDEF).
Collapse
Affiliation(s)
- Ralf Rabus
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | | | | | | |
Collapse
|
17
|
Martín-Moldes Z, Zamarro MT, del Cerro C, Valencia A, Gómez MJ, Arcas A, Udaondo Z, García JL, Nogales J, Carmona M, Díaz E. Whole-genome analysis of Azoarcus sp. strain CIB provides genetic insights to its different lifestyles and predicts novel metabolic features. Syst Appl Microbiol 2015; 38:462-71. [DOI: 10.1016/j.syapm.2015.07.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 06/29/2015] [Accepted: 07/06/2015] [Indexed: 11/25/2022]
|
18
|
Juárez JF, Liu H, Zamarro MT, McMahon S, Liu H, Naismith JH, Eberlein C, Boll M, Carmona M, Díaz E. Unraveling the specific regulation of the central pathway for anaerobic degradation of 3-methylbenzoate. J Biol Chem 2015; 290:12165-83. [PMID: 25795774 PMCID: PMC4424350 DOI: 10.1074/jbc.m115.637074] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Indexed: 01/06/2023] Open
Abstract
The mbd cluster encodes the anaerobic degradation of 3-methylbenzoate in the β-proteobacterium Azoarcus sp. CIB. The specific transcriptional regulation circuit that controls the expression of the mbd genes was investigated. The PO, PB1, and P3R promoters responsible for the expression of the mbd genes, their cognate MbdR transcriptional repressor, as well as the MbdR operator regions (ATACN10GTAT) have been characterized. The three-dimensional structure of MbdR has been solved revealing a conformation similar to that of other TetR family transcriptional regulators. The first intermediate of the catabolic pathway, i.e. 3-methylbenzoyl-CoA, was shown to act as the inducer molecule. An additional MbdR-dependent promoter, PA, which contributes to the expression of the CoA ligase that activates 3-methylbenzoate to 3-methylbenzoyl-CoA, was shown to be necessary for an efficient induction of the mbd genes. Our results suggest that the mbd cluster recruited a regulatory system based on the MbdR regulator and its target promoters to evolve a distinct central catabolic pathway that is only expressed for the anaerobic degradation of aromatic compounds that generate 3-methylbenzoyl-CoA as the central metabolite. All these results highlight the importance of the regulatory systems in the evolution and adaptation of bacteria to the anaerobic degradation of aromatic compounds.
Collapse
Affiliation(s)
- Javier F Juárez
- From the Department of Environmental Biology, Centro de Investigaciones Biológicas-Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Huixiang Liu
- the Biomedical Sciences Research Complex, University of St. Andrews, North Haugh, St. Andrews KY16 9ST, Scotland, United Kingdom, and
| | - María T Zamarro
- From the Department of Environmental Biology, Centro de Investigaciones Biológicas-Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Stephen McMahon
- the Biomedical Sciences Research Complex, University of St. Andrews, North Haugh, St. Andrews KY16 9ST, Scotland, United Kingdom, and
| | - Huanting Liu
- the Biomedical Sciences Research Complex, University of St. Andrews, North Haugh, St. Andrews KY16 9ST, Scotland, United Kingdom, and
| | - James H Naismith
- the Biomedical Sciences Research Complex, University of St. Andrews, North Haugh, St. Andrews KY16 9ST, Scotland, United Kingdom, and
| | - Christian Eberlein
- the Institute for Biology II, University of Freiburg, 79104 Freiburg, Germany
| | - Matthias Boll
- the Institute for Biology II, University of Freiburg, 79104 Freiburg, Germany
| | - Manuel Carmona
- From the Department of Environmental Biology, Centro de Investigaciones Biológicas-Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Eduardo Díaz
- From the Department of Environmental Biology, Centro de Investigaciones Biológicas-Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040 Madrid, Spain,
| |
Collapse
|
19
|
Schmid G, René SB, Boll M. Enzymes of the benzoyl-coenzyme A degradation pathway in the hyperthermophilic archaeon Ferroglobus placidus. Environ Microbiol 2015; 17:3289-300. [PMID: 25630364 DOI: 10.1111/1462-2920.12785] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 01/09/2015] [Accepted: 01/14/2015] [Indexed: 12/28/2022]
Abstract
The Fe(III)-respiring Ferroglobus placidus is the only known archaeon and hyperthermophile for which a complete degradation of aromatic substrates to CO2 has been reported. Recent genome and transcriptome analyses proposed a benzoyl-coenzyme A (CoA) degradation pathway similar to that found in the phototrophic Rhodopseudomonas palustris, which involves a cyclohex-1-ene-1-carboxyl-CoA (1-enoyl-CoA) forming, ATP-dependent key enzyme benzoyl-CoA reductase (BCR). In this work, we demonstrate, by first in vitro studies, that benzoyl-CoA is ATP-dependently reduced by two electrons to cyclohexa-1,5-dienoyl-CoA (1,5-dienoyl-CoA), which is further degraded by hydration to 6-hydroxycyclohex-1-ene-1-carboxyl-CoA (6-OH-1-enoyl-CoA); upon addition of NAD(+) , the latter was subsequently converted to β-oxidation intermediates. The four candidate genes of BCR were heterologously expressed, and the enriched, oxygen-sensitive enzyme catalysed the two-electron reduction of benzoyl-CoA to 1,5-dienoyl-CoA. A gene previously assigned to a 2,3-didehydropimeloyl-CoA hydratase was heterologously expressed and shown to act as a typical 1,5-dienoyl-CoA hydratase that does not accept 1-enoyl-CoA. A gene previously assigned to a 1-enoyl-CoA hydratase was heterologously expressed and identified to code for a bifunctional crotonase/3-OH-butyryl-CoA dehydrogenase. In summary, the results consistently provide biochemical evidence that F. placidus and probably other archaea predominantly degrade aromatics via the Thauera/Azoarcus type and not or only to a minor extent via the predicted R. palustris-type benzoyl-CoA degradation pathway.
Collapse
Affiliation(s)
- Georg Schmid
- Microbiology, Faculty of Biology, University of Freiburg, Schänzlestr. 1, Freiburg, 79104, Germany
| | - Sandra Bosch René
- Microbiology, Faculty of Biology, University of Freiburg, Schänzlestr. 1, Freiburg, 79104, Germany
| | - Matthias Boll
- Microbiology, Faculty of Biology, University of Freiburg, Schänzlestr. 1, Freiburg, 79104, Germany
| |
Collapse
|
20
|
Lahme S, Trautwein K, Strijkstra A, Dörries M, Wöhlbrand L, Rabus R. Benzoate mediates the simultaneous repression of anaerobic 4-methylbenzoate and succinate utilization in Magnetospirillum sp. strain pMbN1. BMC Microbiol 2014; 14:269. [PMID: 25344702 PMCID: PMC4268860 DOI: 10.1186/s12866-014-0269-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 10/15/2014] [Indexed: 11/13/2022] Open
Abstract
Background At high concentrations of organic substrates, microbial utilization of preferred substrates (i.e., supporting fast growth) often results in diauxic growth with hierarchical substrate depletion. Unlike the carbon catabolite repression-mediated discriminative utilization of carbohydrates, the substrate preferences of non-carbohydrate-utilizing bacteria for environmentally relevant compound classes (e.g., aliphatic or aromatic acids) are rarely investigated. The denitrifying alphaproteobacterium Magnetospirillum sp. strain pMbN1 anaerobically degrades a wide variety of aliphatic and aromatic compounds and is unique for anaerobic degradation of 4-methylbenzoate. The latter proceeds via a distinct reaction sequence analogous to the central anaerobic benzoyl-CoA pathway to intermediates of central metabolism. Considering the presence of these two different anaerobic “aromatic ring degrading” pathways, substrate preferences of Magnetospirillum sp. strain pMbN1 were investigated. Anaerobic growth and substrate consumption were monitored in binary and ternary mixtures of 4-methylbenzoate, benzoate and succinate, in conjuction with time-resolved abundance profiling of selected transcripts and/or proteins related to substrate uptake and catabolism. Results Diauxic growth with benzoate preference was observed for binary and ternary substrate mixtures containing 4-methylbenzoate and succinate (despite adaptation of Magnetospirillum sp. strain pMbN1 to one of the latter two substrates). On the contrary, 4-methylbenzoate and succinate were utilized simultaneously from a binary mixture, as well as after benzoate depletion from the ternary mixture. Apparently, simultaneous repression of 4-methylbenzoate and succinate utilization from the ternary substrate mixture resulted from (i) inhibition of 4-methylbenzoate uptake, and (ii) combined inhibition of succinate uptake (via the two transporters DctPQM and DctA) and succinate conversion to acetyl-CoA (via pyruvate dehydrogenase). The benzoate-mediated repression of C4-dicarboxylate utilization in Magnetospirillum sp. strain pMbN1 differs from that recently described for “Aromatoleum aromaticum” EbN1 (involving only DctPQM). Conclusions The preferential or simultaneous utilization of benzoate and other aromatic acids from mixtures with aliphatic acids may represent a more common nutritional behavior among (anaerobic) degradation specialist than previously thought. Preference of Magnetospirillum sp. strain pMbN1 for benzoate from mixtures with 4-methylbenzoate, and thus temporal separation of the benzoyl-CoA (first) and 4-methylbenzoyl-CoA (second) pathway, may reflect a catabolic tuning towards metabolic efficiency and the markedly broader range of aromatic substrates feeding into the central anaerobic benzoyl-CoA pathway. Electronic supplementary material The online version of this article (doi:10.1186/s12866-014-0269-4) contains supplementary material, which is available to authorized users.
Collapse
|
21
|
Fernández H, Prandoni N, Fernández-Pascual M, Fajardo S, Morcillo C, Díaz E, Carmona M. Azoarcus sp. CIB, an anaerobic biodegrader of aromatic compounds shows an endophytic lifestyle. PLoS One 2014; 9:e110771. [PMID: 25340341 PMCID: PMC4207700 DOI: 10.1371/journal.pone.0110771] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 09/16/2014] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Endophytic bacteria that have plant growth promoting traits are of great interest in green biotechnology. The previous thought that the Azoarcus genus comprises bacteria that fit into one of two major eco-physiological groups, either free-living anaerobic biodegraders of aromatic compounds or obligate endophytes unable to degrade aromatics under anaerobic conditions, is revisited here. METHODOLOGY/PRINCIPAL FINDINGS Light, confocal and electron microscopy reveal that Azoarcus sp. CIB, a facultative anaerobe β-proteobacterium able to degrade aromatic hydrocarbons under anoxic conditions, is also able to colonize the intercellular spaces of the rice roots. In addition, the strain CIB displays plant growth promoting traits such nitrogen fixation, uptake of insoluble phosphorus and production of indoleacetic acid. Therefore, this work demonstrates by the first time that a free-living bacterium able to degrade aromatic compounds under aerobic and anoxic conditions can share also an endophytic lifestyle. The phylogenetic analyses based on the 16S rDNA and nifH genes confirmed that obligate endophytes of the Azoarcus genus and facultative endophytes, such as Azoarcus sp. CIB, locate into different evolutionary branches. CONCLUSIONS/SIGNIFICANCE This is the first report of a bacterium, Azoarcus sp. CIB, able to degrade anaerobically a significant number of aromatic compounds, some of them of great environmental concern, and to colonize the rice as a facultative endophyte. Thus, Azoarcus sp. CIB becomes a suitable candidate for a more sustainable agricultural practice and phytoremediation technology.
Collapse
Affiliation(s)
- Helga Fernández
- Department of Environmental Biology, Centro de Investigaciones Biológicas-CSIC, Madrid, Spain
| | - Nicolás Prandoni
- Department of Environmental Biology, Centro de Investigaciones Biológicas-CSIC, Madrid, Spain
| | | | - Susana Fajardo
- Plant Protection Department, Instituto de Ciencias Agrarias-CSIC, Madrid, Spain
| | - César Morcillo
- Plant Protection Department, Instituto de Ciencias Agrarias-CSIC, Madrid, Spain
| | - Eduardo Díaz
- Department of Environmental Biology, Centro de Investigaciones Biológicas-CSIC, Madrid, Spain
| | - Manuel Carmona
- Department of Environmental Biology, Centro de Investigaciones Biológicas-CSIC, Madrid, Spain
| |
Collapse
|
22
|
Buckel W, Kung JW, Boll M. The benzoyl-coenzyme a reductase and 2-hydroxyacyl-coenzyme a dehydratase radical enzyme family. Chembiochem 2014; 15:2188-94. [PMID: 25204868 DOI: 10.1002/cbic.201402270] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Indexed: 11/10/2022]
Affiliation(s)
- Wolfgang Buckel
- Laboratorium für Mikrobiologie, Fachbereich Biologie, Philipps-Universität Marburg, Karl-von-Frisch-Strasse 8, 35043 Marburg (Germany)
| | | | | |
Collapse
|
23
|
Bozinovski D, Taubert M, Kleinsteuber S, Richnow HH, von Bergen M, Vogt C, Seifert J. Metaproteogenomic analysis of a sulfate-reducing enrichment culture reveals genomic organization of key enzymes in the m-xylene degradation pathway and metabolic activity of proteobacteria. Syst Appl Microbiol 2014; 37:488-501. [PMID: 25156802 DOI: 10.1016/j.syapm.2014.07.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 06/02/2014] [Accepted: 07/15/2014] [Indexed: 10/24/2022]
Abstract
This study aimed to ascertain the functional and phylogenetic relationships within an m-xylene degrading sulfate-reducing enrichment culture, which had been maintained for several years in the laboratory with m-xylene as the sole source of carbon and energy. Previous studies indicated that a phylotype affiliated to the Desulfobacteraceae was the main m-xylene assimilating organism. In the present study, genes and gene products were identified by a metaproteogenomic approach using LC-MS/MS analysis of the microbial community, and 2426 peptides were identified from 576 proteins. In the metagenome of the community, gene clusters encoding enzymes involved in fumarate addition to a methyl moiety of m-xylene (nms, bss), as well as gene clusters coding for enzymes involved in modified beta-oxidation to (3-methyl)benzoyl-CoA (bns), were identified in two separate contigs. Additionally, gene clusters containing homologues to bam genes encoding benzoyl-CoA reductase (Bcr) class II, catalyzing the dearomatization of (3-methyl)benzoyl-CoA, were identified. Time-resolved protein stable isotope probing (protein-SIP) experiments using (13)C-labeled m-xylene showed that the respective gene products were highly (13)C-labeled. The present data suggested the identification of gene products that were similar to those involved in methylnaphthalene degradation even though the consortium was not capable of growing in the presence of naphthalene, methylnaphthalene or toluene as substrates. Thus, a novel branch of enzymes was found that was probably specific for anaerobic m-xylene degradation.
Collapse
Affiliation(s)
- Dragana Bozinovski
- UFZ-Helmholtz Centre for Environmental Research, Department of Proteomics, 04318 Leipzig, Germany
| | - Martin Taubert
- UFZ-Helmholtz Centre for Environmental Research, Department of Proteomics, 04318 Leipzig, Germany; School of Environmental Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | - Sabine Kleinsteuber
- UFZ-Helmholtz Centre for Environmental Research, Department of Environmental Microbiology, 04318 Leipzig, Germany
| | - Hans-Hermann Richnow
- UFZ-Helmholtz Centre for Environmental Research, Department of Isotope Biogeochemistry, 04318 Leipzig, Germany
| | - Martin von Bergen
- UFZ-Helmholtz Centre for Environmental Research, Department of Proteomics, 04318 Leipzig, Germany; UFZ-Helmholtz Centre for Environmental Research, Department of Metabolomics, 04318 Leipzig, Germany; Aalborg University, Department of Biotechnology, Chemistry and Environmental Engineering, Aalborg University, 9000 Aalborg, Denmark
| | - Carsten Vogt
- UFZ-Helmholtz Centre for Environmental Research, Department of Isotope Biogeochemistry, 04318 Leipzig, Germany
| | - Jana Seifert
- UFZ-Helmholtz Centre for Environmental Research, Department of Proteomics, 04318 Leipzig, Germany; University of Hohenheim, Institute of Animal Nutrition, 70599 Stuttgart, Germany.
| |
Collapse
|
24
|
Boll M, Löffler C, Morris BEL, Kung JW. Anaerobic degradation of homocyclic aromatic compounds via arylcarboxyl-coenzyme A esters: organisms, strategies and key enzymes. Environ Microbiol 2013; 16:612-27. [PMID: 24238333 DOI: 10.1111/1462-2920.12328] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 11/03/2013] [Indexed: 11/28/2022]
Abstract
Next to carbohydrates, aromatic compounds are the second most abundant class of natural organic molecules in living organic matter but also make up a significant proportion of fossil carbon sources. Only microorganisms are capable of fully mineralizing aromatic compounds. While aerobic microbes use well-studied oxygenases for the activation and cleavage of aromatic rings, anaerobic bacteria follow completely different strategies to initiate catabolism. The key enzymes related to aromatic compound degradation in anaerobic bacteria are comprised of metal- and/or flavin-containing cofactors, of which many use unprecedented radical mechanisms for C-H bond cleavage or dearomatization. Over the past decade, the increasing number of completed genomes has helped to reveal a large variety of anaerobic degradation pathways in Proteobacteria, Gram-positive microbes and in one archaeon. This review aims to update our understanding of the occurrence of aromatic degradation capabilities in anaerobic microorganisms and serves to highlight characteristic enzymatic reactions involved in (i) the anoxic oxidation of alkyl side chains attached to aromatic rings, (ii) the carboxylation of aromatic rings and (iii) the reductive dearomatization of central arylcarboxyl-coenzyme A intermediates. Depending on the redox potential of the electron acceptors used and the metabolic efficiency of the cell, different strategies may be employed for identical overall reactions.
Collapse
Affiliation(s)
- Matthias Boll
- Institute for Biology II, University of Freiburg, Freiburg, Germany
| | | | | | | |
Collapse
|
25
|
Valderrama JA, Shingler V, Carmona M, Díaz E. AccR is a master regulator involved in carbon catabolite repression of the anaerobic catabolism of aromatic compounds in Azoarcus sp. CIB. J Biol Chem 2013; 289:1892-904. [PMID: 24302740 DOI: 10.1074/jbc.m113.517714] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Here we characterized the first known transcriptional regulator that accounts for carbon catabolite repression (CCR) control of the anaerobic catabolism of aromatic compounds in bacteria. The AccR response regulator of Azoarcus sp. CIB controls succinate-responsive CCR of the central pathways for the anaerobic catabolism of aromatics by this strain. Phosphorylation of AccR to AccR-P triggers a monomer-to-dimer transition as well as the ability to bind to the target promoter and causes repression both in vivo and in vitro. Substitution of the Asp(60) phosphorylation target residue of the N-terminal receiver motif of AccR to a phosphomimic Glu residue generates a constitutively active derivative that behaves as a superrepressor of the target genes. AccR-P binds in vitro to a conserved inverted repeat (ATGCA-N6-TGCAT) present at two different locations within the PN promoter of the bzd genes for anaerobic benzoate degradation. Because the DNA binding-proficient C-terminal domain of AccR is monomeric, we propose an activation mechanism in which phosphorylation of Asp(60) of AccR alleviates interdomain repression mediated by the N-terminal domain. The presence of AccR-like proteins encoded in the genomes of other β-proteobacteria of the Azoarcus/Thauera group further suggests that AccR constitutes a master regulator that controls anaerobic CCR in these bacteria.
Collapse
Affiliation(s)
- J Andrés Valderrama
- From the Department of Environmental Biology, Centro de Investigaciones Biológicas-Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040 Madrid, Spain and
| | | | | | | |
Collapse
|
26
|
Affiliation(s)
| | | | - Juan L. Ramos
- CSIC- Estacion Experimental del Zaidin; Granada; Spain
| |
Collapse
|