1
|
Sridhara S. Multiple structural flavors of RNase P in precursor tRNA processing. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1835. [PMID: 38479802 DOI: 10.1002/wrna.1835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 06/06/2024]
Abstract
The precursor transfer RNAs (pre-tRNAs) require extensive processing to generate mature tRNAs possessing proper fold, structural stability, and functionality required to sustain cellular viability. The road to tRNA maturation follows an ordered process: 5'-processing, 3'-processing, modifications at specific sites, if any, and 3'-CCA addition before aminoacylation and recruitment to the cellular protein synthesis machinery. Ribonuclease P (RNase P) is a universally conserved endonuclease in all domains of life, performing the hydrolysis of pre-tRNA sequences at the 5' end by the removal of phosphodiester linkages between nucleotides at position -1 and +1. Except for an archaeal species: Nanoarchaeum equitans where tRNAs are transcribed from leaderless-position +1, RNase P is indispensable for life and displays fundamental variations in terms of enzyme subunit composition, mechanism of substrate recognition and active site architecture, utilizing in all cases a two metal ion-mediated conserved catalytic reaction. While the canonical RNA-based ribonucleoprotein RNase P has been well-known to occur in bacteria, archaea, and eukaryotes, the occurrence of RNA-free protein-only RNase P in eukaryotes and RNA-free homologs of Aquifex RNase P in prokaryotes has been discovered more recently. This review aims to provide a comprehensive overview of structural diversity displayed by various RNA-based and RNA-free RNase P holoenzymes towards harnessing critical RNA-protein and protein-protein interactions in achieving conserved pre-tRNA processing functionality. Furthermore, alternate roles and functional interchangeability of RNase P are discussed in the context of its employability in several clinical and biotechnological applications. This article is categorized under: RNA Processing > tRNA Processing RNA Evolution and Genomics > RNA and Ribonucleoprotein Evolution RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes.
Collapse
Affiliation(s)
- Sagar Sridhara
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
2
|
Trang P, Zhang I, Liu F. In Vitro Amplification and Selection of Engineered RNase P Ribozyme for Gene Targeting Applications. Methods Mol Biol 2024; 2822:419-429. [PMID: 38907932 DOI: 10.1007/978-1-0716-3918-4_26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
Ribozymes engineered from the RNase P catalytic RNA (M1 RNA) represent promising gene-targeting agents for clinical applications. We describe in this report an in vitro amplification and selection procedure for generating active RNase P ribozyme variants with improved catalytic efficiency. Using the amplification and selection procedure, we have previously generated ribozyme variants that were highly active in cleaving a herpes simplex virus 1-encoded mRNA in vitro and inhibiting its expression in virally infected human cells. In this chapter, we use an overlapping region of the mRNAs for the IE1 and IE2 proteins of human cytomegalovirus (HCMV) as a target substrate. We provide detailed protocols and include methods for establishing the procedure for the amplification and selection of active mRNA-cleaving RNase P ribozymes. The in vitro amplification and selection system represents an excellent approach for engineering highly active RNase P ribozymes that can be used in both basic research and clinical applications.
Collapse
Affiliation(s)
- Phong Trang
- School of Public Health, University of California, Berkeley, CA, USA
| | - Isadora Zhang
- Program in Comparative Biochemistry, University of California, Berkeley, CA, USA
| | - Fenyong Liu
- School of Public Health, University of California, Berkeley, CA, USA.
- Program in Comparative Biochemistry, University of California, Berkeley, CA, USA.
| |
Collapse
|
3
|
Miyachi R, Shimizu Y, Ichihashi N. Transfer RNA Synthesis-Coupled Translation and DNA Replication in a Reconstituted Transcription/Translation System. ACS Synth Biol 2022; 11:2791-2799. [PMID: 35848947 DOI: 10.1021/acssynbio.2c00163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Transfer RNAs (tRNAs) are key molecules involved in translation. In vitro synthesis of tRNAs and their coupled translation are important challenges in the construction of a self-regenerative molecular system. Here, we first purified EF-Tu and ribosome components in a reconstituted translation system of Escherichia coli to remove residual tRNAs. Next, we expressed 15 types of tRNAs in the repurified translation system and performed translation of the reporter luciferase gene depending on the expression. Furthermore, we demonstrated DNA replication through expression of a tRNA encoded by DNA, mimicking information processing within the cell. Our findings highlight the feasibility of an in vitro self-reproductive system, in which tRNAs can be synthesized from replicating DNA.
Collapse
Affiliation(s)
- Ryota Miyachi
- Department of Life Science, Graduate School of Arts and Science, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Yoshihiro Shimizu
- Laboratory for Cell-Free Protein Synthesis, RIKEN Center for Biosystems Dynamics Research (BDR), Suita 565-0874, Osaka, Japan
| | - Norikazu Ichihashi
- Department of Life Science, Graduate School of Arts and Science, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan.,Komaba Institute for Science, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan.,Research Center for Complex Systems Biology, Universal Biology Institute, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan
| |
Collapse
|
4
|
Li G, Zhai Y, Liu H, Wang Z, Huang R, Jiang H, Feng Y, Chang Y, Wu F, Zeng F, Jiang T, Zhang W. RPP30, a transcriptional regulator, is a potential pathogenic factor in glioblastoma. Aging (Albany NY) 2020; 12:16155-16171. [PMID: 32702667 PMCID: PMC7485703 DOI: 10.18632/aging.103596] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 06/13/2020] [Indexed: 12/11/2022]
Abstract
Background: Old age has been demonstrated to be a risk factor for GBM, but the underlying biological mechanism is still unclear. We designed this study intending to determine a mechanistic explanation for the link between age and pathogenesis in GBM. Results: The expression of RPP30, an independent prognostic factor in GBM, was negatively correlated with age in both tumor and non-tumor brain samples. However, the post-transcriptional modifications carried out by RPP30 were different in primary GBM and non-tumor brain samples. RPP30 affected protein expression of cancer pathways by performing RNA modifications. Further, we found that RPP30 was related to drug metabolism pathways important in GBM. The decreased expression of RPP30 in older patients might be a pathogenic factor for GBM. Conclusion: This study revealed the role of RPP30 in gliomagenesis and provided the theoretical foundation for targeted therapy. Methods: In total, 616 primary GBM samples and 41 non-tumor brain samples were enrolled in this study. Transcriptome data and clinical information were obtained from the CGGA, TCGA, and GSE53890 databases. Gene Set Variation Analysis and Gene Ontology analyses were the primary analytical methods used in this study. All statistical analyses were performed using R.
Collapse
Affiliation(s)
- Guanzhang Li
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - You Zhai
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Hanjie Liu
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Zhiliang Wang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Ruoyu Huang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Haoyu Jiang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yuemei Feng
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Yuanhao Chang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Fan Wu
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Fan Zeng
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Tao Jiang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Center of Brain Tumor, Beijing Institute for Brain Disorders, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Chinese Glioma Genome Atlas Network (CGGA) and Asian Glioma Genome Atlas Network (AGGA)
| | - Wei Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Chinese Glioma Genome Atlas Network (CGGA) and Asian Glioma Genome Atlas Network (AGGA)
| |
Collapse
|
5
|
Zhuo SM, Li SC, Lin YQ, Yu HB, Li N. The effects of anti-Fas ribozyme on T lymphocyte apoptosis in mice model with chronic obstructive pulmonary disease. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2017; 20:1102-1108. [PMID: 29147485 PMCID: PMC5673694 DOI: 10.22038/ijbms.2017.9367] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 08/10/2017] [Indexed: 01/22/2023]
Abstract
OBJECTIVES In this study, we aimed to investigate the effects of anti-Fas ribozyme on the apoptosis of T lymphocytes (T cells) in mice model with chronic obstructive pulmonary disease (COPD). MATERIALS AND METHODS Male 6-week-old C57BL/6 mice were used to establish the COPD model by exposure to cigarette smoke. The COPD mice were sacrificed for spleen dissection and T cell isolation. T cells were randomly divided into four groups (n=10 per group). Group A was used as the control. B, C, and D groups were transfected with empty lentivirus, anti-Fas ribozyme, and an anti-Fas ribozyme mutant, respectively. The expression of Fas mRNA and protein in the T cells were evaluated using qPCR and Western blot, respectively. Flow cytometry was used to evaluate the apoptosis of CD4+ T cells and calculate the ratio of CD4+ to CD8+ T cells (CD4+/CD8+). RESULTS Anti-Fas ribozyme significantly inhibited the expression of Fas in the T cells of COPD mice. In addition, the number of apoptotic CD4+ T cells and CD4+/CD8+ of the C and D groups were significantly lower and higher than those of group A, respectively (P<0.05). The apoptotic CD4+ T cells and CD4+ CD8+ of the C group were significantly lower and higher than those of group D, respectively (P<0.05). CONCLUSION Anti-Fas ribozyme significantly inhibited the expression of Fas, increased CD4+/CD8+, and inhibited the apoptosis of T cells in COPD mice.
Collapse
Affiliation(s)
- Song-Ming Zhuo
- Department of Respiratory Medicine, the Affiliated Shenzhen Longgang Center Hospital, Zunyi Medical University, Shenzhen City, Guangdong Province, China
| | - Si-Cong Li
- Zhuhai Campus of Zunyi Medical University, Zhuhai City, Guangdong Province, China
| | - Yong-Qun Lin
- Department of Respiratory Medicine, the Affiliated Shenzhen Longgang Center Hospital, Zunyi Medical University, Shenzhen City, Guangdong Province, China
| | - Hai-Bin Yu
- Department of Respiratory Medicine, the Affiliated Shenzhen Longgang Center Hospital, Zunyi Medical University, Shenzhen City, Guangdong Province, China
| | - Na Li
- Department of Respiratory Medicine, the Affiliated Shenzhen Longgang Center Hospital, Zunyi Medical University, Shenzhen City, Guangdong Province, China
| |
Collapse
|
6
|
Chen Y, Liu X, Wu N, Fierke CA. Fluorescence-Based Real-Time Activity Assays to Identify RNase P Inhibitors. Methods Mol Biol 2017; 1520:201-225. [PMID: 27873254 DOI: 10.1007/978-1-4939-6634-9_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Transfer RNA is transcribed as precursor molecules that are processed before participating in translation catalyzed by the ribosome. Ribonuclease P is the endonuclease that catalyzes the 5' end maturation of precursor tRNA and it is essential for cell survival. Bacterial RNase P has a distinct subunit composition compared to the eukaryal counterparts; therefore, it is an attractive antibacterial target. Here, we describe a real-time fluorescence-based RNase P activity assay using fluorescence polarization/anisotropy with a 5' end fluorescein-labeled pre-tRNAAsp substrate. This FP/FA assay is sensitive, robust, and easy to transition to a high-throughput mode and it also detects ligands that interact with pre-tRNA. We apply this FP/FA assay to measure Bacillus subtilis RNase P activity under single and multiple turnover conditions in a continuous format and a high-throughput screen of inhibitors, as well as determining the dissociation constant of pre-tRNA for small molecules.
Collapse
Affiliation(s)
- Yu Chen
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Xin Liu
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Nancy Wu
- Chemical Biology Program, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Carol A Fierke
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA.
- Chemical Biology Program, University of Michigan, Ann Arbor, MI, 48109, USA.
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
7
|
Mao X, Li X, Mao X, Huang Z, Zhang C, Zhang W, Wu J, Li G. Inhibition of hepatitis C virus by an M1GS ribozyme derived from the catalytic RNA subunit of Escherichia coli RNase P. Virol J 2014; 11:86. [PMID: 24885776 PMCID: PMC4038377 DOI: 10.1186/1743-422x-11-86] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 04/30/2014] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Hepatitis C virus (HCV) is a human pathogen causing chronic liver disease in about 200 million people worldwide. However, HCV resistance to interferon treatment is one of the important clinical implications, suggesting the necessity to seek new therapies. It has already been shown that some forms of the catalytic RNA moiety from E. coli RNase P, M1 RNA, can be introduced into the cytoplasm of mammalian cells for the purpose of carrying out targeted cleavage of mRNA molecules. Our study is to use an engineering M1 RNA (i.e. M1GS) for inhibiting HCV replication and demonstrates the utility of this ribozyme for antiviral applications. RESULTS By analyzing the sequence and structure of the 5' untranslated region of HCV RNA, a putative cleavage site (C67-G68) was selected for ribozyme designing. Based on the flanking sequence of this site, a targeting M1GS ribozyme (M1GS-HCV/C67) was constructed by linking a custom guide sequence (GS) to the 3' termini of catalytic RNA subunit (M1 RNA) of RNase P from Escherichia coli through an 88 nt-long bridge sequence. In vitro cleavage assays confirmed that the engineered M1GS ribozyme cleaved the targeted RNA specifically. Moreover, ~85% reduction in the expression levels of HCV proteins and >1000-fold reduction in viral growth were observed in supernatant of cultured cells that transfected the functional ribozyme. In contrast, the HCV core expression and viral growth were not significantly affected by a "disabled" ribozyme (i.e. M1GS-HCV/C67*). Moreover, cholesterol-conjugated M1GS ribozyme (i.e. Chol-M1GS-HCV/C67) showed almost the same bioactivities with M1GS-HCV/C67, demonstrating the potential to improve in vivo pharmacokinetic properties of M1GS-based RNA therapeutics. CONCLUSION Our results provide direct evidence that the M1GS ribozyme can function as an antiviral agent and effectively inhibit gene expression and multiplication of HCV.
Collapse
Affiliation(s)
| | | | | | | | | | - Wenjun Zhang
- Vaccine Institute, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, PR China.
| | | | | |
Collapse
|
8
|
Zhang W, Li H, Li Y, Zeng Z, Li S, Zhang X, Zou Y, Zhou T. Effective inhibition of HCMV UL49 gene expression and viral replication by oligonucleotide external guide sequences and RNase P. Virol J 2010; 7:100. [PMID: 20482805 PMCID: PMC2885339 DOI: 10.1186/1743-422x-7-100] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Accepted: 05/18/2010] [Indexed: 12/03/2022] Open
Abstract
Background Human cytomegalovirus (HCMV) is a ubiquitous herpesvirus that typically causes asymptomatic infections in healthy individuals but may lead to serious complications in newborns and immunodeficient individuals. The emergence of drug-resistant strains of HCMV has posed a need for the development of new drugs and treatment strategies. Antisense molecules are promising gene-targeting agents for specific regulation of gene expression. External guide sequences (EGSs) are oligonucleotides that consist of a sequence complementary to a target mRNA and recruit intracellular RNase P for specific degradation of the target RNA. The UL49-deletion BAC of HCMV was significantly defective in growth in human foreskin fibroblasts. Therefore, UL49 gene may serve as a potential target for novel drug development to combat HCMV infection. In this study, DNA-based EGS molecules were synthesized to target the UL49 mRNA of human cytomegalovirus (HCMV). Results By cleavage activity assessing in vitro, the EGS aimed to the cleavage site 324 nt downstream from the translational initiation codon of UL49 mRNA (i.e. EGS324) was confirmed be efficient to direct human RNase P to cleave the target mRNA sequence. When EGS324 was exogenously administered into HCMV-infected human foreskin fibroblasts (HFFs), a significant reduction of ~76% in the mRNA and ~80% in the protein expression of UL49 gene, comparing with the cells transfected with control EGSs. Furthermore, a reduction of about 330-fold in HCMV growth were observed in HCMV-infected HFFs treated with the EGS. Conclusions These results indicated that UL49 gene was essential for replication of HCMV. Moreover, our study provides evidence that exogenous administration of a DNA-based EGS can be used as a potential therapeutic approach for inhibiting gene expression and replication of a human virus.
Collapse
Affiliation(s)
- WenJun Zhang
- National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, China
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
The ability to interfere with gene expression is of crucial importance to unravel the function of genes and is also a promising therapeutic strategy. Here we discuss methodologies for inhibition of target RNAs based on the cleavage activity of the essential enzyme, Ribonuclease P (RNase P). RNase P-mediated cleavage of target RNAs can be directed by external guide sequences (EGSs) or by the use of the catalytic M1 RNA from E. coli linked to a guide sequence (M1GSs). These are not only basic tools for functional genetic studies in prokaryotic and eukaryotic cells but also promising antibacterial, anticancer and antiviral agents.
Collapse
Affiliation(s)
- Eirik Wasmuth Lundblad
- Reference Centre for Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, 9038 Tromsø, Norway.
| | | |
Collapse
|
10
|
Generation of an external guide sequence library for a reverse genetic screen in Caenorhabditis elegans. BMC Biotechnol 2009; 9:47. [PMID: 19457250 PMCID: PMC2696436 DOI: 10.1186/1472-6750-9-47] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2008] [Accepted: 05/20/2009] [Indexed: 11/10/2022] Open
Abstract
Background A method for inhibiting the expression of particular genes using external guide sequences (EGSs) has been developed in bacteria, mammalian cells and maize cells. Results To examine whether EGS technology can be used to down-regulate gene expression in Caenorhabditis elegans (C. elegans), we generated EGS-Ngfp-lacZ and EGS-Mtgfp that are targeted against Ngfp-lacZ and Mtgfp mRNA, respectively. These EGSs were introduced, both separately and together, into the C. elegans strain PD4251, which contains Ngfp-lacZ and Mtgfp. Consequently, the expression levels of Ngfp-lacZ and Mtgfp were affected by EGS-Ngfp-lacZ and EGS-Mtgfp, respectively. We further generated an EGS library that contains a randomized antisense domain of tRNA-derived EGS ("3/4 EGS"). Examination of the composition of the EGS library showed that there was no obvious bias in the cloning of certain EGSs. A subset of EGSs was randomly chosen for screening in the C. elegans strain N2. About 6% of these EGSs induced abnormal phenotypes such as P0 slow postembryonic growth, P0 larval arrest, P0 larval lethality and P0 sterility. Of these, EGS-35 and EGS-83 caused the greatest phenotype changes, and their target mRNAs were identified as ZK858.7 mRNA and Lin-13 mRNA, respectively. Conclusion EGS technology can be used to down-regulate gene expression in C. elegans. The EGS library is a research tool for reverse genetic screening in C. elegans. These observations are potentially of great importance to further our understanding and use of C. elegans genomics.
Collapse
|
11
|
Rapid selection of accessible and cleavable sites in RNA by Escherichia coli RNase P and random external guide sequences. Proc Natl Acad Sci U S A 2008; 105:2354-7. [PMID: 18263737 DOI: 10.1073/pnas.0711977105] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
A method of inhibiting the expression of particular genes by using external guide sequences (EGSs) has been improved in its rapidity and specificity. Random EGSs that have 14-nt random sequences are used in the selection procedure for an EGS that attacks the mRNA for a gene in a particular location. A mixture of the random EGSs, the particular target RNA, and RNase P is used in the diagnostic procedure, which, after completion, is analyzed in a gel with suitable control lanes. Within a few hours, the procedure is complete. The action of EGSs designed by an older method is compared with EGSs designed by the random EGS method on mRNAs from two bacterial pathogens.
Collapse
|
12
|
Smith JK, Hsieh J, Fierke CA. Importance of RNA-protein interactions in bacterial ribonuclease P structure and catalysis. Biopolymers 2007; 87:329-38. [PMID: 17868095 DOI: 10.1002/bip.20846] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Ribonuclease P (RNase P) is a ribonucleoprotein (RNP) complex that catalyzes the metal-dependent maturation of the 5' end of precursor tRNAs (pre-tRNAs) in all organisms. RNase P is comprised of a catalytic RNA (P RNA), and at least one essential protein (P protein). Although P RNA is the catalytic subunit of the enzyme and is active in the absence of P protein under high salt concentrations in vitro, the protein is still required for enzyme activity in vivo. Therefore, the function of the P protein and how it interacts with both P RNA and pre-tRNA have been the focus of much ongoing research. RNA-protein interactions in RNase P serve a number of critical roles in the RNP including stabilizing the structure, and enhancing the affinity for substrates and metal ions. This review examines the role of RNA-protein interactions in bacterial RNase P from both structural and mechanistic perspectives.
Collapse
Affiliation(s)
- J Kristin Smith
- Department of Chemistry, University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48109, USA
| | | | | |
Collapse
|
13
|
Kim K, Liu F. Inhibition of gene expression in human cells using RNase P-derived ribozymes and external guide sequences. ACTA ACUST UNITED AC 2007; 1769:603-12. [PMID: 17976837 DOI: 10.1016/j.bbaexp.2007.09.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2007] [Revised: 09/13/2007] [Accepted: 09/14/2007] [Indexed: 11/19/2022]
Abstract
Ribonuclease P (RNase P) complexed with an external guide sequence (EGS) represents a novel nucleic acid-based gene interference approach to modulate gene expression. This enzyme is a ribonucleoprotein complex for tRNA processing. In Escherichia coli, RNase P contains a catalytic RNA subunit (M1 ribozyme) and a protein subunit (C5 cofactor). EGSs, which are RNAs derived from natural tRNAs, bind to a target mRNA and render the mRNA susceptible to hydrolysis by RNase P and M1 ribozyme. When covalently linked with a guide sequence, M1 can be engineered into a sequence-specific endonuclease, M1GS ribozyme, which cleaves any target RNAs that base pair with the guide sequence. Studies have demonstrated efficient cleavage of mRNAs by M1GS and RNase P complexed with EGSs in vitro. Moreover, highly active M1GS and EGSs were successfully engineered using in vitro selection procedures. EGSs and M1GS ribozymes are effective in blocking gene expression in both bacteria and human cells, and exhibit promising activity for antimicrobial, antiviral, and anticancer applications. In this review, we highlight some recent results using the RNase P-based technology, and offer new insights into the future of using EGS and M1GS RNA as tools for basic research and as gene-targeting agents for clinical applications.
Collapse
Affiliation(s)
- Kihoon Kim
- Program in Comparative Biochemistry, University of California, Berkeley, CA 94720, USA
| | | |
Collapse
|
14
|
Evans D, Marquez SM, Pace NR. RNase P: interface of the RNA and protein worlds. Trends Biochem Sci 2006; 31:333-41. [PMID: 16679018 DOI: 10.1016/j.tibs.2006.04.007] [Citation(s) in RCA: 158] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2006] [Revised: 03/07/2006] [Accepted: 04/24/2006] [Indexed: 01/27/2023]
Abstract
Ribonuclease P (RNase P) is an endonuclease involved in processing tRNA. It contains both RNA and protein subunits and occurs in all three domains of life: namely, Archaea, Bacteria and Eukarya. The RNase P RNA subunits from bacteria and some archaea are catalytically active in vitro, whereas those from eukaryotes and most archaea require protein subunits for activity. RNase P has been characterized biochemically and genetically in several systems, and detailed structural information is emerging for both RNA and protein subunits from phylogenetically diverse organisms. In vitro reconstitution of activity is providing insight into the role of proteins in the RNase P holoenzyme. Together, these findings are beginning to impart an understanding of the coevolution of the RNA and protein worlds.
Collapse
Affiliation(s)
- Donald Evans
- Department of Molecular, Cellular and Developmental Biology, University of Colorado at Boulder, Campus Box 347, Boulder, CO 80309-0347, USA
| | | | | |
Collapse
|
15
|
Khan AU. Ribozyme: A clinical tool. Clin Chim Acta 2006; 367:20-7. [PMID: 16426595 DOI: 10.1016/j.cca.2005.11.023] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2005] [Revised: 11/18/2005] [Accepted: 11/22/2005] [Indexed: 01/15/2023]
Abstract
Catalytic RNAs (ribozymes) are capable of specifically cleaving RNA molecules, a property that enables them to act as potential antiviral and anti-cancer agents, as well as powerful tools for functional genomic studies. Recently, ribozymes have been used successfully to inhibit gene expression in a variety of biological systems in vitro and in vivo. Phase I clinical trials using ribozyme gene therapy to treat AIDS patients have been conducted. Despite initial success, there are many areas that require further investigation. These include stability of ribozymes in cells and designing highly active ribozymes in vivo, identification of target sequence sites and co-localization of ribozymes and substrates, and their delivery to specific tissues and maintenance of its stable long-term expression. This review gives a brief introduction to ribozyme structure, catalysis and its potential applications in biological systems as therapeutic agents.
Collapse
Affiliation(s)
- Asad U Khan
- Interdisciplinary Biotechnology unit, Aligarh Muslim University, Aligarh 202002, India.
| |
Collapse
|
16
|
SU YZ, LI HJ, LI YQ, CHEN HJ, TANG DS, ZHANG X, JIANG H, ZHOU TH. In Vitro Construction of Effective M1GS Ribozymes Targeting HCMV UL54 RNA Segments. Acta Biochim Biophys Sin (Shanghai) 2005. [DOI: 10.1111/j.1745-7270.2005.00025.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|