1
|
Liu J, Corroyer-Dulmont S, Pražák V, Khusainov I, Bahrami K, Welsch S, Vasishtan D, Obarska-Kosińska A, Thorkelsson SR, Grünewald K, Quemin ERJ, Turoňová B, Locker JK. The palisade layer of the poxvirus core is composed of flexible A10 trimers. Nat Struct Mol Biol 2024; 31:1105-1113. [PMID: 38316878 PMCID: PMC11257942 DOI: 10.1038/s41594-024-01218-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 01/05/2024] [Indexed: 02/07/2024]
Abstract
Due to its asymmetric shape, size and compactness, the structure of the infectious mature virus (MV) of vaccinia virus (VACV), the best-studied poxvirus, remains poorly understood. Instead, subviral particles, in particular membrane-free viral cores, have been studied with cryo-electron microscopy. Here, we compared viral cores obtained by detergent stripping of MVs with cores in the cellular cytoplasm, early in infection. We focused on the prominent palisade layer on the core surface, combining cryo-electron tomography, subtomogram averaging and AlphaFold2 structure prediction. We showed that the palisade is composed of densely packed trimers of the major core protein A10. Trimers display a random order and their classification indicates structural flexibility. A10 on cytoplasmic cores is organized in a similar manner, indicating that the structures obtained in vitro are physiologically relevant. We discuss our results in the context of the VACV replicative cycle, and the assembly and disassembly of the infectious MV.
Collapse
Affiliation(s)
- Jiasui Liu
- Department of Molecular Sociology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Simon Corroyer-Dulmont
- Centre for Structural Systems Biology, Leibniz Institute of Virology, Hamburg, Germany
- University of Hamburg, Hamburg, Germany
| | - Vojtěch Pražák
- Centre for Structural Systems Biology, Leibniz Institute of Virology, Hamburg, Germany
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Iskander Khusainov
- Department of Molecular Sociology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Karola Bahrami
- Electron Microscopy of Pathogens, Paul Ehrlich Institute, Langen, Germany
- University Clinic Frankfurt, Frankfurt am Main, Germany
| | - Sonja Welsch
- Max Planck Institute of Biophysics, Central Electron Microscopy Facility, Frankfurt am Main, Germany
| | - Daven Vasishtan
- Centre for Structural Systems Biology, Leibniz Institute of Virology, Hamburg, Germany
- Department of Biochemistry, University of Oxford, Oxford, UK
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | | | - Sigurdur R Thorkelsson
- Centre for Structural Systems Biology, Leibniz Institute of Virology, Hamburg, Germany
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Kay Grünewald
- Centre for Structural Systems Biology, Leibniz Institute of Virology, Hamburg, Germany.
- University of Hamburg, Hamburg, Germany.
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK.
| | - Emmanuelle R J Quemin
- Centre for Structural Systems Biology, Leibniz Institute of Virology, Hamburg, Germany.
- Department of Virology, Institute for Integrative Biology of the Cell (I2BC), CNRS UMR9198, Université Paris-Saclay, CEA, Gif-sur-Yvette, France.
| | - Beata Turoňová
- Department of Molecular Sociology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany.
| | - Jacomina Krijnse Locker
- Electron Microscopy of Pathogens, Paul Ehrlich Institute, Langen, Germany.
- Justus Liebig University of Giessen, Giessen, Germany.
| |
Collapse
|
2
|
Datler J, Hansen JM, Thader A, Schlögl A, Bauer LW, Hodirnau VV, Schur FKM. Multi-modal cryo-EM reveals trimers of protein A10 to form the palisade layer in poxvirus cores. Nat Struct Mol Biol 2024; 31:1114-1123. [PMID: 38316877 PMCID: PMC11257981 DOI: 10.1038/s41594-023-01201-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 12/06/2023] [Indexed: 02/07/2024]
Abstract
Poxviruses are among the largest double-stranded DNA viruses, with members such as variola virus, monkeypox virus and the vaccination strain vaccinia virus (VACV). Knowledge about the structural proteins that form the viral core has remained sparse. While major core proteins have been annotated via indirect experimental evidence, their structures have remained elusive and they could not be assigned to individual core features. Hence, which proteins constitute which layers of the core, such as the palisade layer and the inner core wall, has remained enigmatic. Here we show, using a multi-modal cryo-electron microscopy (cryo-EM) approach in combination with AlphaFold molecular modeling, that trimers formed by the cleavage product of VACV protein A10 are the key component of the palisade layer. This allows us to place previously obtained descriptions of protein interactions within the core wall into perspective and to provide a detailed model of poxvirus core architecture. Importantly, we show that interactions within A10 trimers are likely generalizable over members of orthopox- and parapoxviruses.
Collapse
Affiliation(s)
- Julia Datler
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Jesse M Hansen
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Andreas Thader
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Alois Schlögl
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Lukas W Bauer
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | | | - Florian K M Schur
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria.
| |
Collapse
|
3
|
Mirzakhanyan Y, Jankevics A, Scheltema RA, Gershon PD. Combination of deep XLMS with deep learning reveals an ordered rearrangement and assembly of a major protein component of the vaccinia virion. mBio 2023; 14:e0113523. [PMID: 37646531 PMCID: PMC10653903 DOI: 10.1128/mbio.01135-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 07/11/2023] [Indexed: 09/01/2023] Open
Abstract
IMPORTANCE An outstanding problem in the understanding of poxvirus biology is the molecular structure of the mature virion. Via deep learning methods combined with chemical cross-linking mass spectrometry, we have addressed the structure and assembly pathway of P4a, a key poxvirus virion core component.
Collapse
Affiliation(s)
- Yeva Mirzakhanyan
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, California, USA
| | - Andris Jankevics
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, the Netherlands
| | - Richard A. Scheltema
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, the Netherlands
| | - Paul David Gershon
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, California, USA
| |
Collapse
|
4
|
Suarez C, Hoppe S, Pénard E, Walther P, Krijnse-Locker J. Vaccinia virus A11 is required for membrane rupture and viral membrane assembly. Cell Microbiol 2017; 19. [PMID: 28618160 DOI: 10.1111/cmi.12756] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 05/17/2017] [Accepted: 06/05/2017] [Indexed: 01/22/2023]
Abstract
Although most enveloped viruses acquire their membrane from the host by budding or by a wrapping process, collective data argue that nucleocytoplasmic large DNA viruses (NCLDVs) may be an exception. The prototype member of NCLDVs, vaccinia virus (VACV) may induce rupture of endoplasmic-reticulum-derived membranes to build an open-membrane sphere that closes after DNA uptake. This unconventional membrane assembly pathway is also used by at least 3 other members of the NCLDVs. In this study, we identify the VACV gene product of A11, as required for membrane rupture, hence for VACV membrane assembly and virion formation. By electron tomography, in the absence of A11, the site of assembly formed by the viral scaffold protein D13 is surrounded by endoplasmic reticulum cisternae that are closed. We use scanning transmission electron microscopy-electron tomography to analyse large volumes of cells and demonstrate that in the absence of A11, no open membranes are detected. Given the pivotal role of D13 in initiating VACV membrane assembly, we also analyse viral membranes in the absence of D13 synthesis and show that this protein is not required for rupture. Finally, consistent with a role in rupture, we show that during wild-type infection, A11 localises predominantly to the small ruptured membranes, the precursors of VACV membrane assembly. These data provide strong evidence in favour of the unusual membrane biogenesis of VACV and are an important step towards understanding its molecular mechanism.
Collapse
Affiliation(s)
- Cristina Suarez
- EM Core Facility & Department of Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Simone Hoppe
- EM Core Facility & Department of Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Esthel Pénard
- Center for Innovation and Technological Research, Ultrapole, Ultrastructural Bio-imaging, Paris, France
| | - Paul Walther
- Central Facility for EM, Ulm University, Ulm, Germany
| | - Jacomine Krijnse-Locker
- EM Core Facility & Department of Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany.,Center for Innovation and Technological Research, Ultrapole, Ultrastructural Bio-imaging, Paris, France
| |
Collapse
|
5
|
Wang X, Zhang J, Hao W, Peng Y, Li H, Li W, Li M, Luo S. Isolation and Characterization of Monoclonal Antibodies Against a Virion Core Protein of Orf Virus Strain NA1/11 As Potential Diagnostic Tool for Orf Viruses. Monoclon Antib Immunodiagn Immunother 2016; 34:233-45. [PMID: 26301926 DOI: 10.1089/mab.2014.0101] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Orf is caused by the orf virus (ORFV) and is a non-systemic, widespread disease afflicting sheep, goats, wild ruminants, and humans. Recent outbreaks in sheep and goats in Jilin and other northern Chinese provinces raise concerns about orf control in China. Thirty-five hybridoma clones were constructed from splenocytes of BALB/c mice immunized with natural orf virus protein. These hybridomas were used to produce antibodies targeting ORFV proteins. Immunological characterization of these monoclonal antibodies (MAb) showed that the 5F2D8 hybridoma line produced MAb that can recognize the 100, 70, and 20 kDa bands from total viral lysate. This hybridoma was further characterized by immunoprecipitation and peptide sequencing. The results indicate that 5F2D8 specifically recognizes orf virus encoded protein ORFV086, a late expression virion core protein that plays important roles in progeny virus particle assembly, morphogenesis, and maturity. Further experiments demonstrate that this MAb did not react with other viral proteins of ORFV orthopoxviruses, but reacted strongly to different field isolates of orf viruses from China. Additionally, this anti-ORFV086 MAb possesses ORFV neutralizing capability. Sequence alignments and phylogenetic analysis determined that ORFV086 of NA1/11, clustered together with NZ2 and IA82, is highly conserved and has structural similarities with the Vaccinia virus core protein P4a. As such, this MAb has great potential as a diagnostic tool for orf viruses, in the further exploration of orf pathogenesis, and in disease control and prevention.
Collapse
Affiliation(s)
- Xiaoping Wang
- Institute of Antibody Engineering, School of Biotechnology, Southern Medical University , Guangzhou, People's Republic of China
| | - Jiafeng Zhang
- Institute of Antibody Engineering, School of Biotechnology, Southern Medical University , Guangzhou, People's Republic of China
| | - Wenbo Hao
- Institute of Antibody Engineering, School of Biotechnology, Southern Medical University , Guangzhou, People's Republic of China
| | - Yongzheng Peng
- Institute of Antibody Engineering, School of Biotechnology, Southern Medical University , Guangzhou, People's Republic of China
| | - Hong Li
- Institute of Antibody Engineering, School of Biotechnology, Southern Medical University , Guangzhou, People's Republic of China
| | - Wei Li
- Institute of Antibody Engineering, School of Biotechnology, Southern Medical University , Guangzhou, People's Republic of China
| | - Ming Li
- Institute of Antibody Engineering, School of Biotechnology, Southern Medical University , Guangzhou, People's Republic of China
| | - Shuhong Luo
- Institute of Antibody Engineering, School of Biotechnology, Southern Medical University , Guangzhou, People's Republic of China
| |
Collapse
|
6
|
Wang X, Xiao B, Zhang J, Chen D, Li W, Li M, Hao W, Luo S. Identification and Characterization of a Cleavage Site in the Proteolysis of Orf Virus 086 Protein. Front Microbiol 2016; 7:538. [PMID: 27148226 PMCID: PMC4837287 DOI: 10.3389/fmicb.2016.00538] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 04/01/2016] [Indexed: 11/26/2022] Open
Abstract
The orf virus (ORFV) is among the parapoxvirus genus of the poxviridae family, but little is known about the proteolytic pathways of ORFV encoding proteins. By contrast, the proteolysis mechanism of the vaccinia virus (VV) has been extensively explored. Vaccinia virus core protein P4a undergoes a proteolytic process that takes place at a conserved cleavage site Ala-Gly-X (where X is any amino acid) and participates in virus assembly. Bioinformatics analysis revealed that an ORFV encoding protein, ORFV086, has a similar structure to the vaccinia virus P4a core protein. In this study, we focus on the kinetic analysis and proteolysis mechanism of ORFV086. We found, via kinetic analysis, that ORFV086 is a late gene that starts to express at 8 h post infection at mRNA level and 12–24 h post infection at the protein level. The ORFV086 precursor and a 21 kDa fragment can be observed in mature ORFV virions. The same bands were detected at only 3 h post infection, suggesting that both the ORFV086 precursor and the 21 kDa fragment are viral structural proteins. ORFV086 was cleaved from 12 to 24 h post infection. The cleavage took place at different sites, resulting in seven bands with differing molecular weights. Sequence alignment revealed that five putative cleavage sites were predicted at C-terminal and internal regions of ORFV086. To investigate whether those cleavage sites are involved in proteolytic processing, full length and several deletion mutant ORFV086 recombinant proteins were expressed and probed. The GGS site that produced a 21 kDa cleavage fragment was confirmed by identification of N/C-terminal FLAG epitope recombinant proteins, site-directed mutagenesis and pulse-chase analysis. Interestingly, chase results demonstrated that, at late times, ORFV086 is partially cleaved. Taken together, we concluded that GGS is a cleavage site in ORFV086 and produces a 21 kDa fragment post infection. Both ORFV086 precursor and the 21 kDa fragment are structural proteins of mature ORFV virions. ORFV086 and its cleaved products are indispensable for correct assembly of mature viral particles and this proteolytic processing of ORFV086 may play an essential role in viral morphogenic transition.
Collapse
Affiliation(s)
- Xiaoping Wang
- Institute of Antibody Engineering, School of Biotechnology, Southern Medical UniversityGuangzhou, China; Department of Laboratory, Medicine Nongken Centre, Hospital of GuangdongZhanjiang, China
| | - Bin Xiao
- Institute of Antibody Engineering, School of Biotechnology, Southern Medical UniversityGuangzhou, China; Department of Laboratory Medicine, Guangzhou General Hospital of Guangzhou Military CommandGuangzhou, China
| | - Jiafeng Zhang
- Institute of Antibody Engineering, School of Biotechnology, Southern Medical University Guangzhou, China
| | - Daxiang Chen
- Institute of Antibody Engineering, School of Biotechnology, Southern Medical University Guangzhou, China
| | - Wei Li
- Institute of Antibody Engineering, School of Biotechnology, Southern Medical University Guangzhou, China
| | - Ming Li
- Institute of Antibody Engineering, School of Biotechnology, Southern Medical UniversityGuangzhou, China; Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Epidemiology, School of Public Health, Southern Medical UniversityGuangzhou, China; State Key Laboratory of Organ Failure, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Biotechnology, Southern Medical UniversityGuangzhou, China
| | - Wenbo Hao
- Institute of Antibody Engineering, School of Biotechnology, Southern Medical UniversityGuangzhou, China; Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Epidemiology, School of Public Health, Southern Medical UniversityGuangzhou, China
| | - Shuhong Luo
- Institute of Antibody Engineering, School of Biotechnology, Southern Medical UniversityGuangzhou, China; Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Epidemiology, School of Public Health, Southern Medical UniversityGuangzhou, China
| |
Collapse
|
7
|
Lee ML, Hsu WL, Wang CY, Chen HY, Lin FY, Chang MH, Chang HY, Wong ML, Chan KW. Goatpoxvirus ATPase activity is increased by dsDNA and decreased by zinc ion. Virus Genes 2016; 52:625-32. [PMID: 27146321 DOI: 10.1007/s11262-016-1349-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 04/08/2016] [Indexed: 11/30/2022]
Abstract
Viral-encoded ATPase can act as a part of molecular motor in genome packaging of DNA viruses, such as vaccinia virus and adenovirus, by ATP hydrolysis and interaction with DNA. Poxviral ATPase (also called A32) is involved in genomic double-stranded DNA (dsDNA) encapsidation, and inhibition of the expression of A32 causes formation of immature virions lacking viral DNA. However, the role of A32 in goatpoxvirus genome packaging and its dsDNA binding property are not known. In this study, purified recombinant goatpoxvirus A32 protein (rA32) was examined for its dsDNA binding property as well as the effect of dsDNA on ATP hydrolysis. We found that rA32 could bind dsDNA, and its ATPase activity was significant increased with dsDNA binding. Effects of magnesium and calcium ions on ATP hydrolysis were investigated also. The ATPase activity was dramatically enhanced by dsDNA in the presence of Mg(2+); in contrast, ATPase function was not altered by Ca(2+). Furthermore, the enzyme activity of rA32 was completely blocked by Zn(2+). Regarding DNA-protein interaction, the rA32-ATP-Mg(2+) showed lower dsDNA binding affinity than that of rA32-ATP-Ca(2+). The DNA-protein binding was stronger in the presence of zinc ion. Our results implied that A32 may play a role in viral genome encapsidation and DNA condensation.
Collapse
Affiliation(s)
- Ming-Liang Lee
- Department of Veterinary Medicine, National Chiayi University, Chiayi City, 60061, Taiwan
| | - Wei-Li Hsu
- Graduate Institute of Veterinary Public Health, College of Veterinary Medicine, National Chung-Hsing University, Taichung, 40227, Taiwan
| | - Chi-Young Wang
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung-Hsing University, Taichung, 40227, Taiwan
| | - Hui-Yu Chen
- Department of Veterinary Medicine, National Chiayi University, Chiayi City, 60061, Taiwan
| | - Fong-Yuan Lin
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung-Hsing University, Taichung, 40227, Taiwan
| | - Ming-Huang Chang
- Department of Veterinary Medicine, National Chiayi University, Chiayi City, 60061, Taiwan
| | | | - Min-Liang Wong
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung-Hsing University, Taichung, 40227, Taiwan
| | - Kun-Wei Chan
- Department of Veterinary Medicine, National Chiayi University, Chiayi City, 60061, Taiwan.
| |
Collapse
|
8
|
|
9
|
Netherton CL, Wileman TE. African swine fever virus organelle rearrangements. Virus Res 2013; 173:76-86. [PMID: 23291273 DOI: 10.1016/j.virusres.2012.12.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 11/30/2012] [Accepted: 12/03/2012] [Indexed: 11/28/2022]
Abstract
Like most viruses African swine fever virus (ASFV) subsumes the host cell apparatus in order to facilitate its replication. ASFV replication is a highly orchestrated process with a least four stages of transcription, immediate-early, early, intermediate and late. As the infective cycle progresses through these stages most if not all of the organelles that comprise a nucleated cell are modified, adapted or in some cases destroyed. The entry of the virus is receptor-mediated, but the precise mechanism of endocytosis is a matter of keen, current debate. Once ASFV has exited from the endosomal-lysosomal complex the virus life-cycle enters into an intimate relationship with the microtubular network. Genome replication is believed to be initiated within the nucleus and ASFV infection completely reorders the structure of this organelle. The majority of replication and assembly occurs in discrete, perinuclear regions of the cell called virus factories and finally progeny virions are transported to the plasma membrane along microtubules where they bud out or are propelled away along actin projections to infect new cells. The generation of ASFV replication sites induces profound reorganisation of the organelles that comprise the secretory pathway and may contribute to the induction of cellular stress responses that ASFV modulates. The level of organisation and complexity of virus factories are not dissimilar to those seen in cellular organelles. Like their cellular counterparts the formation of virus factories, as well as virus entry and exit, are dependent on the various components of the cytoskeleton. This review will summarise these rearrangements, the viral proteins involved and their functional consequences.
Collapse
Affiliation(s)
- Christopher L Netherton
- Vaccinology Group, The Pirbright Institute, Pirbright, Woking, Surrey GU24 0NF, United Kingdom.
| | | |
Collapse
|
10
|
Moloughney JG, Monken CE, Tao H, Zhang H, Thomas JD, Lattime EC, Jin S. Vaccinia virus leads to ATG12–ATG3 conjugation and deficiency in autophagosome formation. Autophagy 2012; 7:1434-47. [PMID: 22024753 PMCID: PMC3327614 DOI: 10.4161/auto.7.12.17793] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The interactions between viruses and cellular autophagy have been widely reported. On the one hand, autophagy is an important innate immune response against viral infection. On the other hand, some viruses exploit the autophagy pathway for their survival and proliferation in host cells. Vaccinia virus is a member of the family of Poxviridae which includes the smallpox virus. The biogenesis of vaccinia envelopes, including the core envelope of the immature virus (IV), is not fully understood. In this study we investigated the possible interaction between vaccinia virus and the autophagy membrane biogenesis machinery. Massive LC3 lipidation was observed in mouse fibroblast cells upon vaccinia virus infection. Surprisingly, the vaccinia virus induced LC3 lipidation was shown to be independent of ATG5 and ATG7, as the atg5 and atg7 null mouse embryonic fibroblasts (MEFs) exhibited the same high levels of LC3 lipidation as compared with the wild-type MEFs. Mass spectrometry and immunoblotting analyses revealed that the viral infection led to the direct conjugation of ATG3, which is the E2-like enzyme required for LC3-phosphoethanonamine conjugation, to ATG12, which is a component of the E3-like ATG12–ATG5-ATG16 complex for LC3 lipidation. Consistently, ATG3 was shown to be required for the vaccinia virus induced LC3 lipidation. Strikingly, despite the high levels of LC3 lipidation, subsequent electron microscopy showed that vaccinia virus-infected cells were devoid of autophagosomes, either in normal growth medium or upon serum and amino acid deprivation. In addition, no autophagy flux was observed in virus-infected cells. We further demonstrated that neither ATG3 nor LC3 lipidation is crucial for viral membrane biogenesis or viral proliferation and infection. Together, these results indicated that vaccinia virus does not exploit the cellular autophagic membrane biogenesis machinery for their viral membrane production. Moreover, this study demonstrated that vaccinia virus instead actively disrupts the cellular autophagy through a novel molecular mechanism that is associated with aberrant LC3 lipidation and a direct conjugation between ATG12 and ATG3.
Collapse
Affiliation(s)
- Joseph G Moloughney
- Department of Pharmacology, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Cryo X-ray nano-tomography of vaccinia virus infected cells. J Struct Biol 2011; 177:202-11. [PMID: 22178221 PMCID: PMC7119024 DOI: 10.1016/j.jsb.2011.12.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Revised: 11/14/2011] [Accepted: 12/01/2011] [Indexed: 11/22/2022]
Abstract
We have performed full-field cryo X-ray microscopy in the water window photon energy range on vaccinia virus (VACV) infected cells to produce tomographic reconstructions. PtK2 cells were infected with a GFP-expressing VACV strain and frozen by plunge fast freezing. The infected cells were selected by light fluorescence microscopy of the GFP marker and subsequently imaged in the X-ray microscope under cryogenic conditions. Tomographic tilt series of X-ray images were used to yield three-dimensional reconstructions showing different cell organelles (nuclei, mitochondria, filaments), together with other structures derived from the virus infection. Among them, it was possible to detect viral factories and two types of viral particles related to different maturation steps of VACV (immature and mature particles), which were compared to images obtained by standard electron microscopy of the same type of cells. In addition, the effect of radiation damage during X-ray tomographic acquisition was analyzed. Thin sections studied by electron microscopy revealed that the morphological features of the cells do not present noticeable changes after irradiation. Our findings show that cryo X-ray nano-tomography is a powerful tool for collecting three-dimensional structural information from frozen, unfixed, unstained whole cells with sufficient resolution to detect different virus particles exhibiting distinct maturation levels.
Collapse
|
12
|
Windsor M, Hawes P, Monaghan P, Snapp E, Salas ML, Rodríguez JM, Wileman T. Mechanism of collapse of endoplasmic reticulum cisternae during African swine fever virus infection. Traffic 2011; 13:30-42. [PMID: 21951707 DOI: 10.1111/j.1600-0854.2011.01293.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Infection of cells with African swine fever virus (ASFV) can lead to the formation of zipper-like stacks of structural proteins attached to collapsed endoplasmic reticulum (ER) cisternae. We show that the collapse of ER cisternae observed during ASFV infection is dependent on the viral envelope protein, J13Lp. Expression of J13Lp alone in cells is sufficient to induce collapsed ER cisternae. Collapse was dependent on a cysteine residue in the N-terminal domain of J13Lp exposed to the ER lumen. Luminal collapse was also dependent on the expression of J13Lp within stacks of ER where antiparallel interactions between the cytoplasmic domains of J13Lp orientated N-terminal domains across ER cisternae. Cisternal collapse was then driven by disulphide bonds between N-terminal domains arranged in antiparallel arrays across the ER lumen. This provides a novel mechanism for biogenesis of modified stacks of ER present in cells infected with ASFV, and may also be relevant to cellular processes.
Collapse
Affiliation(s)
- Miriam Windsor
- Institute for Animal Health, Pirbright Laboratory, Surrey, UK
| | | | | | | | | | | | | |
Collapse
|
13
|
The envelope of intracellular African swine fever virus is composed of a single lipid bilayer. J Virol 2008; 82:7905-12. [PMID: 18550658 DOI: 10.1128/jvi.00194-08] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
African swine fever virus (ASFV) is a member of a family of large nucleocytoplasmic DNA viruses that include poxviruses, iridoviruses, and phycodnaviruses. Previous ultrastructural studies of ASFV using chemical fixation and cryosectioning for electron microscopy (EM) have produced uncertainty over whether the inner viral envelope is composed of a single or double lipid bilayer. In this study we prepared ASFV-infected cells for EM using chemical fixation, cryosectioning, and high-pressure freezing. The appearance of the intracellular viral envelope was determined and compared to that of mitochondrial membranes in each sample. The best resolution of membrane structure was obtained with samples prepared by high-pressure freezing, and images suggested that the envelope of ASFV consisted of a single lipid membrane. It was less easy to interpret virus structure in chemically fixed or cryosectioned material, and in the latter case the virus envelope could be interpreted as having two membranes. Comparison of membrane widths in all three preparations indicated that the intracellular viral envelope of ASFV was not significantly different from the outer mitochondrial membrane (P < 0.05). The results support the hypothesis that the intracellular ASFV viral envelope is composed of a single lipid bilayer.
Collapse
|
14
|
Abstract
Poxviruses comprise a large family of viruses characterized by a large, linear dsDNA genome, a cytoplasmic site of replication and a complex virion morphology. The most notorious member of the poxvirus family is variola, the causative agent of smallpox. The laboratory prototype virus used for the study of poxviruses is vaccinia, the virus that was used as a live, naturally attenuated vaccine for the eradication of smallpox. Both the morphogenesis and structure of poxvirus virions are unique among viruses. Poxvirus virions apparently lack any of the symmetry features common to other viruses such as helical or icosahedral capsids or nucleocapsids. Instead poxvirus virions appear as "brick shaped" or "ovoid" membrane-bound particles with a complex internal structure featuring a walled, biconcave core flanked by "lateral bodies." The virion assembly pathway involves a remarkable fabrication of membrane-containing crescents and immature virions, which evolve into mature virions in a process that is unparalleled in virology. As a result of significant advances in poxvirus genetics and molecular biology during the past 15 years, we can now positively identify over 70 specific gene products contained in poxvirus virions, and we can describe the effects of mutations in over 50 specific genes on poxvirus assembly. This review summarizes these advances and attempts to assemble them into a comprehensible and thoughtful picture of poxvirus structure and assembly.
Collapse
Affiliation(s)
- Richard C Condit
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, 32610, USA
| | | | | |
Collapse
|