1
|
Birkelbach J, Seyfert CE, Walesch S, Müller R. Harnessing Gram-negative bacteria for novel anti-Gram-negative antibiotics. Microb Biotechnol 2024; 17:e70032. [PMID: 39487848 DOI: 10.1111/1751-7915.70032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 10/01/2024] [Indexed: 11/04/2024] Open
Abstract
Natural products have proven themselves as a valuable resource for antibiotics. However, in view of increasing antimicrobial resistance, there is an urgent need for new, structurally diverse agents that have the potential to overcome resistance and treat Gram-negative pathogens in particular. Historically, the search for new antibiotics was strongly focussed on the very successful Actinobacteria. On the other hand, other producer strains have been under-sampled and their potential for the production of bioactive natural products has been underestimated. In this mini-review, we highlight prominent examples of novel anti-Gram negative natural products produced by Gram-negative bacteria that are currently in lead optimisation or preclinical development. Furthermore, we will provide insights into the considerations and strategies behind the discovery of these agents and their putative applications.
Collapse
Affiliation(s)
- Joy Birkelbach
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI) and Saarland University Department of Pharmacy, Saarbrücken, Germany
- German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Braunschweig, Germany
| | - Carsten E Seyfert
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI) and Saarland University Department of Pharmacy, Saarbrücken, Germany
- German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Braunschweig, Germany
| | - Sebastian Walesch
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI) and Saarland University Department of Pharmacy, Saarbrücken, Germany
- German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Braunschweig, Germany
| | - Rolf Müller
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI) and Saarland University Department of Pharmacy, Saarbrücken, Germany
- German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Braunschweig, Germany
| |
Collapse
|
2
|
Chandrakasan G, García-Trejo JF, Feregrino-Pérez AA, Aguirre-Becerra H, García ER, Nieto-Ramírez MI. Preliminary Screening on Antibacterial Crude Secondary Metabolites Extracted from Bacterial Symbionts and Identification of Functional Bioactive Compounds by FTIR, HPLC and Gas Chromatography-Mass Spectrometry. Molecules 2024; 29:2914. [PMID: 38930979 PMCID: PMC11206551 DOI: 10.3390/molecules29122914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/02/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Secondary metabolites, bioactive compounds produced by living organisms, can unveil symbiotic relationships in nature. In this study, soilborne entomopathogenic nematodes associated with symbiotic bacteria (Xenorhabdus stockiae and Photorhabdus luminescens) were extracted from solvent supernatant containing secondary metabolites, demonstrating significant inhibitory effects against E. coli, S. aureus, B. subtilus, P. mirabilis, E. faecalis, and P. stutzeri. The characterization of these secondary metabolites by Fourier transforms infrared spectroscopy revealed amine groups of proteins, hydroxyl and carboxyl groups of polyphenols, hydroxyl groups of polysaccharides, and carboxyl groups of organic acids. Furthermore, the obtained crude extracts were analyzed by high-performance liquid chromatography for the basic identification of potential bioactive peptides. Gas chromatography-mass spectrometry analysis of ethyl acetate extracts from Xenorhabdus stockiae identified major compounds including nonanoic acid derivatives, proline, paromycin, octodecanal derivatives, trioxa-5-aza-1-silabicyclo, 4-octadecenal, methyl ester, oleic acid, and 1,2-benzenedicarboxylicacid. Additional extraction from Photorhabdus luminescens yielded functional compounds such as indole-3-acetic acid, phthalic acid, 1-tetradecanol, nemorosonol, 1-eicosanol, and unsaturated fatty acids. These findings support the potential development of novel natural antimicrobial agents for future pathogen suppression.
Collapse
Affiliation(s)
- Gobinath Chandrakasan
- División de Estudios de Posgrado, Facultad de Ingeniería, Universidad Autónoma de Querétaro, Santiago de Querétaro 76010, Querétaro, Mexico; (A.A.F.-P.); (H.A.-B.); (E.R.G.); (M.I.N.-R.)
| | - Juan Fernando García-Trejo
- División de Estudios de Posgrado, Facultad de Ingeniería, Universidad Autónoma de Querétaro, Santiago de Querétaro 76010, Querétaro, Mexico; (A.A.F.-P.); (H.A.-B.); (E.R.G.); (M.I.N.-R.)
| | | | | | | | | |
Collapse
|
3
|
Půža V, Nermuť J, Konopická J, Skoková Habuštová O. The effect of Xenorhabdus bacteria metabolites on Colorado potato beetle (Leptinotarsa decemlineata) adult feeding and larval survival. J Invertebr Pathol 2024; 203:108075. [PMID: 38350523 DOI: 10.1016/j.jip.2024.108075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 02/15/2024]
Abstract
Colorado Potato Beetle (CPB) is one of the most destructive potato pests that can quickly develop resistance to insecticides. Therefore, new safe and effective control strategies that are less susceptible to the development of resistance by CPB are urgently needed. Due to their complex mode of action, the likelihood of resistance development by target pests is generally low with antifeedants. In the present study, we assessed the effect of secondary metabolites of various Xenorhabdus bacteria species and strains on CPB adult feeding and on larval development. The metabolites were applied in the form of cell free supernatants (CFSs) from Xenorhabdus cultures. In bioassay 1, leaves treated with ten Xenorhabdus cultures were fed to CPB adults, and their feeding was assessed daily for one week. In bioassay 2, CPB egg masses were placed on the leaves treated with five bacterial cultures, and larval development to pupae was monitored. Out of the ten Xenorhabdus cultures tested, two strains exhibited a significant reduction in the feeding behavior of Colorado Potato Beetle adults, with reductions of up to 70% compared to the control. The effect of CFSs on larval development was variable, and when treated with X. khoisanae SGI 197, over 90% of larvae died in the first few days before reaching the 2nd instar, and complete mortality was achieved on the 8th day of the experiment. Our study is the first study to demonstrate the antifeedant effect of Xenorhabdus cultures towards herbivorous beetles, and the metabolites of these bacteria may have potential for CPB control. Clearly, the metabolites produced by X. khoisanae SGI-197 may be a promising tool for CPB larvae control with the potential to significantly decrease damage to potato plants.
Collapse
Affiliation(s)
- Vladimír Půža
- Institute of Entomology, Biology centre, CAS, Branišovská 31, 37005 České Budějovice, Czech Republic.
| | - Jiří Nermuť
- Institute of Entomology, Biology centre, CAS, Branišovská 31, 37005 České Budějovice, Czech Republic
| | - Jana Konopická
- Institute of Entomology, Biology centre, CAS, Branišovská 31, 37005 České Budějovice, Czech Republic
| | - Oxana Skoková Habuštová
- Institute of Entomology, Biology centre, CAS, Branišovská 31, 37005 České Budějovice, Czech Republic
| |
Collapse
|
4
|
Berdyshev IM, Svetlova AO, Chukhontseva KN, Karaseva MA, Varizhuk AM, Filatov VV, Kleymenov SY, Kostrov SV, Demidyuk IV. Production and Characterization of Photorin, a Novel Proteinaceous Protease Inhibitor from the Entomopathogenic Bacteria Photorhabdus laumondii. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1356-1367. [PMID: 37770402 DOI: 10.1134/s0006297923090158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/27/2023] [Accepted: 06/17/2023] [Indexed: 09/30/2023]
Abstract
Entomopathogenic bacteria of the genus Photorhabdus secrete protease S (PrtS), which is considered a virulence factor. We found that in the Photorhabdus genomes, immediately after the prtS genes, there are genes that encode small hypothetical proteins homologous to emfourin, a recently discovered protein inhibitor of metalloproteases. The gene of emfourin-like inhibitor from Photorhabdus laumondii subsp. laumondii TT01 was cloned and expressed in Escherichia coli cells. The recombinant protein, named photorin (Phin), was purified by metal-chelate affinity and gel permeation chromatography and characterized. It has been established that Phin is a monomer and inhibits activity of protealysin and thermolysin, which, similar to PrtS, belong to the M4 peptidase family. Inhibition constants were 1.0 ± 0.3 and 10 ± 2 µM, respectively. It was also demonstrated that Phin is able to suppress proteolytic activity of P. laumondii culture fluid (half-maximal inhibition concentration 3.9 ± 0.3 nM). Polyclonal antibodies to Phin were obtained, and it was shown by immunoblotting that P. laumondii cells produce Phin. Thus, the prtS genes in entomopathogenic bacteria of the genus Photorhabdus are colocalized with the genes of emfourin-like inhibitors, which probably regulate activity of the enzyme during infection. Strict regulation of the activity of proteolytic enzymes is essential for functioning of all living systems. At the same time, the principles of regulation of protease activity by protein inhibitors remain poorly understood. Bacterial protease-inhibitor pairs, such as the PrtS and Phin pair, are promising models for in vivo studies of these principles. Bacteria of the genus Photorhabdus have a complex life cycle with multiple hosts, being both nematode symbionts and powerful insect pathogens. This provides a unique opportunity to use the PrtS and Phin pair as a model for studying the principles of protease activity regulation by proteinaceous inhibitors in the context of bacterial interactions with different types of hosts.
Collapse
Affiliation(s)
- Igor M Berdyshev
- National Research Centre "Kurchatov Institute", Moscow, 123182, Russia
| | | | | | - Maria A Karaseva
- National Research Centre "Kurchatov Institute", Moscow, 123182, Russia
| | - Anna M Varizhuk
- Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Moscow Region, 141701, Russia
| | - Vasily V Filatov
- Semenov Federal Research Center for Chemical Physics, Chernogolovka Branch, Russian Academy of Sciences, Chernogolovka, Moscow Region, 142432, Russia
| | - Sergey Y Kleymenov
- Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Sergey V Kostrov
- National Research Centre "Kurchatov Institute", Moscow, 123182, Russia
| | - Ilya V Demidyuk
- National Research Centre "Kurchatov Institute", Moscow, 123182, Russia.
| |
Collapse
|
5
|
Monteiro GG, Paulo HH, Nascimento DD, Pelegrini G, Lacerda LM, Chacon-Orozco J, Leite LG, Polanczyk RA. Virulence of entomopathogenic nematodes and their symbiotic bacteria, under laboratory conditions, aiming controlling Saccharicoccus sacchari (Cockerell, 1895) (Hemiptera: Pseudococcidae) on sugarcane. BRAZ J BIOL 2022; 84:e253780. [PMID: 35137847 DOI: 10.1590/1519-6984.253780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 12/31/2021] [Indexed: 11/22/2022] Open
Abstract
Sugarcane crops Saccharum spp. (Poales: Poaceae) produces different derivatives to the world: sugar, ethanol and bioenergy. Despite the application of pesticides, insect pests still cause economic losses, among these the pink sugarcane mealybug Saccharicoccus sacchari (Cockerell, 1895) (Hemiptera: Pseudococcidae) causing direct and indirect damage to the plant. This study assess the virulence of three entomopathogenic nematodes (EPNs) species and their symbiont bacteria against the pink sugarcane mealybug, under laboratory conditions. Fourteen treatments represented by control (distilled water), Heterorhabditis bacteriophora Poinar, 1976 (HB EN01) (Rhabditida: Heterorhabditidae), Steinernema rarum (Doucet, 1986) (PAM25) and Steinernema carpocapsae Weiser, 1955 (All) (Rhabditida: Steinermatidae) at concentrations of 25, 50, 75 and 100 infective juveniles (IJs)/insect, and the standard chemical product, thiamethoxam, were assayed. In a second experiment, the bacteria Photorhabdus luminescens (Thomas and Poinar, 1979), Xenorhabdus szentirmaii Lengyel, 2005 and Xenorhabdus nematophila (Poinar and Thomas, 1965) (Enterobacterales: Morganellaceae) at 3.0 x 109 cells/ml were assessed for each treatment. Ten replications were stablished, each one counting ten females/mealybugs inside a 10 cm Petri dish, amounting 100 individuals/treatment. All treatments were kept under stable conditions (25±1 ºC, H 70±10%, in the dark). All nematodes species infected S. sacchari. Steinerma rarum (PAM25) provided the highest mortality against the pink sugarcane mealybug (79.25%), followed by H. bacteriophora (HB EN01) (58.25%) and S. carpocapsae (All) (42.50%) (P<0.001). The mortality rate caused by X. szentirmaii, P. luminescens and X. nematophila were 40, 45 and 20%, respectively. Steinerma rarum (PAM25) has conditions to be a potential agent to be incorporate into the integrated pest management in sugarcane.
Collapse
Affiliation(s)
- G G Monteiro
- Universidade Estadual Paulista "Júlio de Mesquita Filho" - UNESP, Faculdade de Ciências Agrárias e Veterinárias, Câmpus de Jaboticabal, Jaboticabal, SP, Brasil
| | - H H Paulo
- Universidade Estadual Paulista "Júlio de Mesquita Filho" - UNESP, Faculdade de Ciências Agrárias e Veterinárias, Câmpus de Jaboticabal, Jaboticabal, SP, Brasil
| | - D D Nascimento
- Universidade Estadual Paulista "Júlio de Mesquita Filho" - UNESP, Faculdade de Ciências Agrárias e Veterinárias, Câmpus de Jaboticabal, Jaboticabal, SP, Brasil
| | - G Pelegrini
- Universidade Estadual Paulista "Júlio de Mesquita Filho" - UNESP, Faculdade de Ciências Agrárias e Veterinárias, Câmpus de Jaboticabal, Jaboticabal, SP, Brasil
| | - L M Lacerda
- Universidade Estadual Paulista "Júlio de Mesquita Filho" - UNESP, Faculdade de Ciências Agrárias e Veterinárias, Câmpus de Jaboticabal, Jaboticabal, SP, Brasil
| | | | - L G Leite
- Instituto Biológico, Campinas, SP, Brasil
| | - R A Polanczyk
- Universidade Estadual Paulista "Júlio de Mesquita Filho" - UNESP, Faculdade de Ciências Agrárias e Veterinárias, Câmpus de Jaboticabal, Jaboticabal, SP, Brasil
| |
Collapse
|
6
|
Upadhyay A, Mohan S. Bacillus subtilis and B. licheniformis Isolated from Heterorhabditis indica Infected Apple Root Borer (Dorysthenes huegelii) Suppresses Nematode Production in Galleria mellonella. Acta Parasitol 2021; 66:989-996. [PMID: 33768406 DOI: 10.1007/s11686-021-00366-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/01/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE Heterorhabdits indica successfully controlled apple root borer Dorysthenes huegelii in the orchards, but nematode-infected cadavers revealed the presence of non-symbiotic bacterial B. subtilis and B. licheniformis, and no subsequent generations of H. indica were produced (hampered recycling phenomenon). Intrigued, we tested the effect of the two Bacillus species on symbiotic association of H. indica-Photorhabdus luminescens. METHODS One-to-one competitive parallel line in vitro assays were carried out between P. luminescens and the two Bacillus spp., while in vivo H. indica development was studied on the test insect Galleria mellonella which were fed with Bacillus mixed diet, followed by nematode exposure. RESULTS Where P. luminescens was flanked by either of the two Bacillus species, only B. subtilis significantly suppressed its growth, while in reversed assays both the Bacillus growth was unaffected. Heterorhabditis indica was able to kill Galleria larvae pre-fed with the two Bacillus spp.; these cadavers did not develop the characteristic evenly distributed brick red coloration. Besides P. luminesecns, both Bacillus spp. were found to coexist in these cadavers. Development of hermaphrodites was not affected, but second-generation females, and final nematode progeny was reduced significantly. Monozenic lawns of B. subtilis and B. licheniformis did not support H. indica development. CONCLUSION These results show the reduced development of H. indica by the presence of the non-symbiotic bacteria in G. mellonella is likely to affect their ability to recycle in other insect larvae. Reduced recycling caused by non-symbiotic bacteria will reduce the overall long-term pest control benefits and have implications in the development of application strategies using entomopathogenic nematodes (EPNs) as insect control agents.
Collapse
|
7
|
Photorhabdus spp.: An Overview of the Beneficial Aspects of Mutualistic Bacteria of Insecticidal Nematodes. PLANTS 2021; 10:plants10081660. [PMID: 34451705 PMCID: PMC8401807 DOI: 10.3390/plants10081660] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 07/29/2021] [Accepted: 08/03/2021] [Indexed: 11/17/2022]
Abstract
The current approaches to sustainable agricultural development aspire to use safer means to control pests and pathogens. Photorhabdus bacteria that are insecticidal symbionts of entomopathogenic nematodes in the genus Heterorhabditis can provide such a service with a treasure trove of insecticidal compounds and an ability to cope with the insect immune system. This review highlights the need of Photorhabdus-derived insecticidal, fungicidal, pharmaceutical, parasiticidal, antimicrobial, and toxic materials to fit into current, or emerging, holistic strategies, mainly for managing plant pests and pathogens. The widespread use of these bacteria, however, has been slow, due to cost, natural presence within the uneven distribution of their nematode partners, and problems with trait stability during in vitro culture. Yet, progress has been made, showing an ability to overcome these obstacles via offering affordable mass production and mastered genome sequencing, while detecting more of their beneficial bacterial species/strains. Their high pathogenicity to a wide range of arthropods, efficiency against diseases, and versatility, suggest future promising industrial products. The many useful properties of these bacteria can facilitate their integration with other pest/disease management tactics for crop protection.
Collapse
|
8
|
Antifungal activity of different Xenorhabdus and Photorhabdus species against various fungal phytopathogens and identification of the antifungal compounds from X. szentirmaii. Appl Microbiol Biotechnol 2021; 105:5517-5528. [PMID: 34250572 DOI: 10.1007/s00253-021-11435-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 06/12/2021] [Accepted: 06/16/2021] [Indexed: 10/20/2022]
Abstract
Xenorhabdus and Photorhabdus spp. are enteric bacterial symbionts of Steinernema and Heterorhabditis nematodes, respectively. These bacteria produce an extensive set of natural products (NPs) with antibacterial, antifungal, antiprotozoal, insecticidal, or other bioactivities when vectored into insect hemocoel by nematodes. We assessed the in vitro activity of different Xenorhabdus and Photorhabdus cell-free supernatants against important fungal phytopathogens, viz., Cryphonectria parasitica, Fusarium oxysporum, Rhizoctonia solani, and Sclerotinia sclerotiorum and identified the bioactive antifungal compound/s present in the most effective bacterial supernatant using the easyPACId (easy promoter-activated compound identification) approach against chestnut blight C. parasitica. Our data showed that supernatants from Xenorhabdus species were comparatively more effective than extracts from Photorhabdus in suppressing the fungal pathogens; among the bacteria assessed, Xenorhabdus szentirmaii was the most effective species against all tested phytopathogens especially against C. parasitica. Subsequent analysis revealed fabclavines as antifungal bioactive compounds in X. szentirmaii, generated by a polyketide synthase (PKS) and non-ribosomal peptide synthetase (NRPS) hybrid system. Fabclavines are broad-spectrum, heat-stable NPs that have great potential as biological control compounds against fungal plant pathogens. More studies are needed to assess the potential phytotoxicity of these compounds and their effects on non-target organisms before commercialization. KEY POINTS: • Chemical fungicides have toxic effects on humans and other non-target organisms. • Alternatives with novel modes of action to supplant current fungicide are needed. • A novel bioactive antifungal compound from Xenorhabdus szentirmaii was identified.
Collapse
|
9
|
Zhao L, Le Chapelain C, Brachmann AO, Kaiser M, Groll M, Bode HB. Activation, Structure, Biosynthesis and Bioactivity of Glidobactin-like Proteasome Inhibitors from Photorhabdus laumondii. Chembiochem 2021; 22:1582-1588. [PMID: 33452852 PMCID: PMC8248439 DOI: 10.1002/cbic.202100014] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Indexed: 12/22/2022]
Abstract
The glidobactin-like natural products (GLNPs) glidobactin A and cepafungin I have been reported to be potent proteasome inhibitors and are regarded as promising candidates for anticancer drug development. Their biosynthetic gene cluster (BGC) plu1881-1877 is present in entomopathogenic Photorhabdus laumondii but silent under standard laboratory conditions. Here we show the largest subset of GLNPs, which are produced and identified after activation of the silent BGC in the native host and following heterologous expression of the BGC in Escherichia coli. Their chemical diversity results from a relaxed substrate specificity and flexible product release in the assembly line of GLNPs. Crystal structure analysis of the yeast proteasome in complex with new GLNPs suggests that the degree of unsaturation and the length of the aliphatic tail are critical for their bioactivity. The results in this study provide the basis to engineer the BGC for the generation of new GLNPs and to optimize these natural products resulting in potential drugs for cancer therapy.
Collapse
Affiliation(s)
- Lei Zhao
- Molecular BiotechnologyDepartment of BiosciencesGoethe University Frankfurt60438Frankfurt am MainGermany
- Institute of BotanyJiangsu Province and Chinese Academy of Sciences210014NanjingP. R. China
| | - Camille Le Chapelain
- Center for Integrated Protein Science Munich (CIPSM)Department of ChemistryTechnical University of Munich85748GarchingGermany
| | - Alexander O. Brachmann
- Molecular BiotechnologyDepartment of BiosciencesGoethe University Frankfurt60438Frankfurt am MainGermany
| | - Marcel Kaiser
- Swiss Tropical and Public Health Institute4002BaselSwitzerland
| | - Michael Groll
- Center for Integrated Protein Science Munich (CIPSM)Department of ChemistryTechnical University of Munich85748GarchingGermany
| | - Helge B. Bode
- Molecular BiotechnologyDepartment of BiosciencesGoethe University Frankfurt60438Frankfurt am MainGermany
- Buchmann Institute for Molecular Life Sciences (BMLS)Goethe University Frankfurt60438Frankfurt am MainGermany
- Senckenberg Gesellschaft für Naturforschung60325Frankfurt am MainGermany
- Department of Natural Products in Organismic InteractionsMax-Planck-Institute for Terrestrial Microbiology35043MarburgGermany
| |
Collapse
|
10
|
Hill V, Kuhnert P, Erb M, Machado RAR. Identification of Photorhabdus symbionts by MALDI-TOF MS. MICROBIOLOGY-SGM 2021; 166:522-530. [PMID: 32301690 DOI: 10.1099/mic.0.000905] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Species of the bacterial genus Photorhabus live in a symbiotic relationship with Heterorhabditis entomopathogenic nematodes. Besides their use as biological control agents against agricultural pests, some Photorhabdus species are also a source of natural products and are of medical interest due to their ability to cause tissue infections and subcutaneous lesions in humans. Given the diversity of Photorhabdus species, rapid and reliable methods to resolve this genus to the species level are needed. In this study, we evaluated the potential of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) for the identification of Photorhabdus species. To this end, we established a collection of 54 isolates consisting of type strains and multiple field strains that belong to each of the validly described species and subspecies of this genus. Reference spectra for the strains were generated and used to complement a currently available database. The extended reference database was then used for identification based on the direct transfer sample preparation method and the protein fingerprint of single colonies. High-level discrimination of distantly related species was observed. However, lower discrimination was observed with some of the most closely related species and subspecies. Our results therefore suggest that MALDI-TOF MS can be used to correctly identify Photorhabdus strains at the genus and species level, but has limited resolution power for closely related species and subspecies. Our study demonstrates the suitability and limitations of MALDI-TOF-based identification methods for assessment of the taxonomic position and identification of Photorhabdus isolates.
Collapse
Affiliation(s)
- Virginia Hill
- Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Bern, Switzerland.,Institute of Plant Sciences, University of Bern, Switzerland
| | - Peter Kuhnert
- Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Bern, Switzerland
| | - Matthias Erb
- Institute of Plant Sciences, University of Bern, Switzerland
| | - Ricardo A R Machado
- Experimental Biology Research Group, University of Neuchatel, Switzerland.,Institute of Plant Sciences, University of Bern, Switzerland
| |
Collapse
|
11
|
Park HB, Goddard TN, Oh J, Patel J, Wei Z, Perez CE, Mercado BQ, Wang R, Wyche TP, Piizzi G, Flavell RA, Crawford JM. Bacterial Autoimmune Drug Metabolism Transforms an Immunomodulator into Structurally and Functionally Divergent Antibiotics. Angew Chem Int Ed Engl 2020; 59:7871-7880. [PMID: 32097515 PMCID: PMC7200298 DOI: 10.1002/anie.201916204] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Indexed: 01/01/2023]
Abstract
Tapinarof is a stilbene drug that is used to treat psoriasis and atopic dermatitis, and is thought to function through regulation of the AhR and Nrf2 signaling pathways, which have also been linked to inflammatory bowel diseases. It is produced by the gammaproteobacterial Photorhabdus genus, which thus represents a model to probe tapinarof structural and functional transformations. We show that Photorhabdus transforms tapinarof into novel drug metabolism products that kill inflammatory bacteria, and that a cupin enzyme contributes to the conversion of tapinarof and related dietary stilbenes into novel dimers. One dimer has activity against methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus faecalis (VRE), and another undergoes spontaneous cyclizations to a cyclopropane-bridge-containing hexacyclic framework that exhibits activity against Mycobacterium. These dimers lack efficacy in a colitis mouse model, whereas the monomer reduces disease symptoms.
Collapse
Affiliation(s)
- Hyun Bong Park
- Department of Chemistry, Yale University, New Haven, CT 06520, USA
- Chemical Biology Institute, Yale University, West Haven, CT 06516, USA
- These authors contributed equally: Hyun Bong Park, Tyler N. Goddard
| | - Tyler N. Goddard
- Department of Chemistry, Yale University, New Haven, CT 06520, USA
- Chemical Biology Institute, Yale University, West Haven, CT 06516, USA
- These authors contributed equally: Hyun Bong Park, Tyler N. Goddard
| | - Joonseok Oh
- Department of Chemistry, Yale University, New Haven, CT 06520, USA
- Chemical Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Jaymin Patel
- Chemical Biology Institute, Yale University, West Haven, CT 06516, USA
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | - Zheng Wei
- Chemical Biology Institute, Yale University, West Haven, CT 06516, USA
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Corey E. Perez
- Department of Chemistry, Yale University, New Haven, CT 06520, USA
- Chemical Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Brandon Q. Mercado
- Department of Chemistry, Yale University, New Haven, CT 06520, USA
- Chemical and Biophysical Instrumentation Center, Yale University, New Haven, CT 06520, USA
| | - Rurun Wang
- Exploratory Science Center, Merck & Co., Inc., Cambridge, MA, USA
| | - Thomas P. Wyche
- Exploratory Science Center, Merck & Co., Inc., Cambridge, MA, USA
| | - Grazia Piizzi
- Exploratory Science Center, Merck & Co., Inc., Cambridge, MA, USA
| | - Richard A. Flavell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Jason M. Crawford
- Department of Chemistry, Yale University, New Haven, CT 06520, USA
- Chemical Biology Institute, Yale University, West Haven, CT 06516, USA
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT 06536, USA
| |
Collapse
|
12
|
Park HB, Goddard TN, Oh J, Patel J, Wei Z, Perez CE, Mercado BQ, Wang R, Wyche TP, Piizzi G, Flavell RA, Crawford JM. Bacterial Autoimmune Drug Metabolism Transforms an Immunomodulator into Structurally and Functionally Divergent Antibiotics. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201916204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Hyun Bong Park
- Department of Chemistry Yale University New Haven CT 06520 USA
- Chemical Biology Institute Yale University West Haven CT 06516 USA
| | - Tyler N. Goddard
- Department of Chemistry Yale University New Haven CT 06520 USA
- Chemical Biology Institute Yale University West Haven CT 06516 USA
| | - Joonseok Oh
- Department of Chemistry Yale University New Haven CT 06520 USA
- Chemical Biology Institute Yale University West Haven CT 06516 USA
| | - Jaymin Patel
- Chemical Biology Institute Yale University West Haven CT 06516 USA
- Department of Molecular, Cellular, and Developmental Biology Yale University New Haven CT 06520 USA
| | - Zheng Wei
- Chemical Biology Institute Yale University West Haven CT 06516 USA
- Department of Immunobiology Yale University School of Medicine New Haven CT 06520 USA
| | - Corey E. Perez
- Department of Chemistry Yale University New Haven CT 06520 USA
- Chemical Biology Institute Yale University West Haven CT 06516 USA
| | - Brandon Q. Mercado
- Department of Chemistry Yale University New Haven CT 06520 USA
- Chemical and Biophysical Instrumentation Center Yale University New Haven CT 06520 USA
| | - Rurun Wang
- Exploratory Science Center Merck & Co., Inc. Cambridge MA USA
| | - Thomas P. Wyche
- Exploratory Science Center Merck & Co., Inc. Cambridge MA USA
| | - Grazia Piizzi
- Exploratory Science Center Merck & Co., Inc. Cambridge MA USA
| | - Richard A. Flavell
- Department of Immunobiology Yale University School of Medicine New Haven CT 06520 USA
- Howard Hughes Medical Institute Yale University School of Medicine New Haven CT 06520 USA
| | - Jason M. Crawford
- Department of Chemistry Yale University New Haven CT 06520 USA
- Chemical Biology Institute Yale University West Haven CT 06516 USA
- Department of Microbial Pathogenesis Yale School of Medicine New Haven CT 06536 USA
| |
Collapse
|
13
|
Murakami T, Onouchi S, Igai K, Ohkuma M, Hongoh Y. Ectosymbiotic bacterial microbiota densely colonize the surface of thelastomatid nematodes in the gut of the wood-feeding cockroach Panesthia angustipennis. FEMS Microbiol Ecol 2019; 95:5250881. [PMID: 30561598 DOI: 10.1093/femsec/fiy238] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 12/14/2018] [Indexed: 12/30/2022] Open
Abstract
Cockroaches generally harbor thelastomatid nematodes (pinworms) in their gut. In this study, we discovered that the surfaces of two undescribed thelastomatid species in the hindgut of the wood-feeding cockroach Panesthia angustipennis were consistently and densely colonized by bacteria. Epifluorescence microscopy using 4',6-diamidino-2-phenylindole and transmission electron microscopy revealed that several distinct morphotypes of bacteria covered almost the entire body surface of the nematodes in single or multiple layers. Sequencing analysis of 16S rRNA amplicons of either entire nematodes or sections of nematode body surfaces indicated that the associated bacterial microbiota consisted of several dominant phylotypes belonging to either Dysgonomonadaceae (Bacteroidales termite cluster V), Rikennellaceae or Ruminococcaceae. These phylotypes formed clades with sequences previously obtained from cockroach and/or termite guts. Comparisons of the bacterial community structure of the entire cockroach hindgut microbiota vs the nematode-associated microbiota suggested that these dominant bacterial phylotypes preferentially colonized the nematode surface. The two nematode species shared most of the dominant bacterial phylotypes, but the bacterial community structures differed significantly. Colonization by five predominant phylotypes was confirmed by fluorescence in situ hybridization analysis using phylotype-specific probes. Our study provides fundamental information on this previously unknown ectosymbiosis between gut bacteria and thelastomatid pinworms.
Collapse
Affiliation(s)
- Takumi Murakami
- School of Life Science and Technology, Tokyo Institute of Technology, 2-12-1-W3-48 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.,Center for Information Biology, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
| | - Shu Onouchi
- School of Life Science and Technology, Tokyo Institute of Technology, 2-12-1-W3-48 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Katsura Igai
- School of Life Science and Technology, Tokyo Institute of Technology, 2-12-1-W3-48 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Moriya Ohkuma
- Japan Collection of Microorganisms, RIKEN BioResource Research Center, 3-1-1 Koyada, Tsukuba, Ibaraki 305-0074, Japan
| | - Yuichi Hongoh
- School of Life Science and Technology, Tokyo Institute of Technology, 2-12-1-W3-48 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.,Japan Collection of Microorganisms, RIKEN BioResource Research Center, 3-1-1 Koyada, Tsukuba, Ibaraki 305-0074, Japan
| |
Collapse
|
14
|
Faltinek L, Fujdiarová E, Melicher F, Houser J, Kašáková M, Kondakov N, Kononov L, Parkan K, Vidal S, Wimmerová M. Lectin PLL3, a Novel Monomeric Member of the Seven-Bladed β-Propeller Lectin Family. Molecules 2019; 24:E4540. [PMID: 31835851 PMCID: PMC6943638 DOI: 10.3390/molecules24244540] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/05/2019] [Accepted: 12/07/2019] [Indexed: 01/23/2023] Open
Abstract
The Photorhabdus species is a Gram-negative bacteria of the family Morganellaceae that is known for its mutualistic relationship with Heterorhabditis nematodes and pathogenicity toward insects. This study is focused on the characterization of the recombinant lectin PLL3 with an origin in P. laumondii subsp. laumondii. PLL3 belongs to the PLL family of lectins with a seven-bladed β-propeller fold. The binding properties of PLL3 were tested by hemagglutination assay, glycan array, isothermal titration calorimetry, and surface plasmon resonance, and its structure was determined by X-ray crystallography. Obtained data revealed that PLL3 binds similar carbohydrates to those that the other PLL family members bind, with some differences in the binding properties. PLL3 exhibited the highest affinity toward l-fucose and its derivatives but was also able to interact with O-methylated glycans and other ligands. Unlike the other members of this family, PLL3 was discovered to be a monomer, which might correspond to a weaker avidity effect compared to homologous lectins. Based on the similarity to the related lectins and their proposed biological function, PLL3 might accompany them during the interaction of P. laumondii with both the nematode partner and the insect host.
Collapse
Affiliation(s)
- Lukáš Faltinek
- Department of Biochemistry, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic;
| | - Eva Fujdiarová
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic; (E.F.); (F.M.); (J.H.)
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Filip Melicher
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic; (E.F.); (F.M.); (J.H.)
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Josef Houser
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic; (E.F.); (F.M.); (J.H.)
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Martina Kašáková
- Department of Chemistry of Natural Compounds, University of Chemistry and Technology, Prague (UCTP), Technická 5, 166 28 Prague, Czech Republic; (M.K.); (K.P.)
| | - Nikolay Kondakov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow 119 415, Russia; (N.K.); (L.K.)
| | - Leonid Kononov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow 119 415, Russia; (N.K.); (L.K.)
| | - Kamil Parkan
- Department of Chemistry of Natural Compounds, University of Chemistry and Technology, Prague (UCTP), Technická 5, 166 28 Prague, Czech Republic; (M.K.); (K.P.)
| | - Sébastien Vidal
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, CO2-Glyco, UMR 5246, CNRS, Université Claude Bernard Lyon 1, 43 Boulevard du 11 Novembre 1918, 6922 Villeurbanne, France;
| | - Michaela Wimmerová
- Department of Biochemistry, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic;
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic; (E.F.); (F.M.); (J.H.)
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| |
Collapse
|
15
|
Eckstein S, Heermann R. Regulation of Phenotypic Switching and Heterogeneity in Photorhabdus luminescens Cell Populations. J Mol Biol 2019; 431:4559-4568. [DOI: 10.1016/j.jmb.2019.04.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 03/22/2019] [Accepted: 04/12/2019] [Indexed: 11/26/2022]
|
16
|
Payelleville A, Blackburn D, Lanois A, Pagès S, Cambon MC, Ginibre N, Clarke DJ, Givaudan A, Brillard J. Role of the Photorhabdus Dam methyltransferase during interactions with its invertebrate hosts. PLoS One 2019; 14:e0212655. [PMID: 31596856 PMCID: PMC6785176 DOI: 10.1371/journal.pone.0212655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 09/20/2019] [Indexed: 11/19/2022] Open
Abstract
Photorhabdus luminescens is an entomopathogenic bacterium found in symbiosis with the nematode Heterorhabditis. Dam DNA methylation is involved in the pathogenicity of many bacteria, including P. luminescens, whereas studies about the role of bacterial DNA methylation during symbiosis are scarce. The aim of this study was to determine the role of Dam DNA methylation in P. luminescens during the whole bacterial life cycle including during symbiosis with H. bacteriophora. We constructed a strain overexpressing dam by inserting an additional copy of the dam gene under the control of a constitutive promoter in the chromosome of P. luminescens and then achieved association between this recombinant strain and nematodes. The dam overexpressing strain was able to feed the nematode in vitro and in vivo similarly as a control strain, and to re-associate with Infective Juvenile (IJ) stages in the insect. No difference in the amount of emerging IJs from the cadaver was observed between the two strains. Compared to the nematode in symbiosis with the control strain, a significant increase in LT50 was observed during insect infestation with the nematode associated with the dam overexpressing strain. These results suggest that during the life cycle of P. luminescens, Dam is not involved the bacterial symbiosis with the nematode H. bacteriophora, but it contributes to the pathogenicity of the nemato-bacterial complex.
Collapse
Affiliation(s)
| | - Dana Blackburn
- Department of Microbiology, University College Cork, Cork, Ireland
| | - Anne Lanois
- DGIMI, INRA, Univ. Montpellier, Montpellier, France
| | - Sylvie Pagès
- DGIMI, INRA, Univ. Montpellier, Montpellier, France
| | - Marine C. Cambon
- DGIMI, INRA, Univ. Montpellier, Montpellier, France
- Évolution et Diversité Biologique, CNRS, UPS Université Paul Sabatier, Toulouse, France
| | | | - David J. Clarke
- Department of Microbiology, University College Cork, Cork, Ireland
| | | | | |
Collapse
|
17
|
Abstract
In recent years, tremendous advances have been made in our ability to characterize complex microbial communities such as the gut microbiota, and numerous surveys of the human gut microbiota have identified countless associations between different compositional attributes of the gut microbiota and adverse health conditions. However, most of these findings in humans are purely correlative and animal models are required for prospective evaluation of such changes as causative factors in disease initiation or progression. As in most fields of biomedical research, microbiota-focused studies are predominantly performed in mouse or rat models. Depending on the field of research and experimental question or objective, non-rodent models may be preferable due to better translatability or an inability to use rodents for various reasons. The following review describes the utility and limitations of several non-rodent model species for research on the microbiota and its influence on host physiology and disease. In an effort to balance the breadth of potential model species with the amount of detail provided, four model species are discussed: zebrafish, dogs, pigs, and rabbits.
Collapse
Affiliation(s)
- Aaron C Ericsson
- Department of Veterinary Pathobiology, University of Missouri, United States of America
| |
Collapse
|
18
|
Shan S, Wang W, Song C, Wang M, Sun B, Li Y, Fu Y, Gu X, Ruan W, Rasmann S. The symbiotic bacteria Alcaligenes faecalis of the entomopathogenic nematodes Oscheius spp. exhibit potential biocontrol of plant- and entomopathogenic fungi. Microb Biotechnol 2019; 12:459-471. [PMID: 30618110 PMCID: PMC6465237 DOI: 10.1111/1751-7915.13365] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 12/13/2018] [Indexed: 11/27/2022] Open
Abstract
Soil-dwelling entomopathogenic nematodes (EPNs) kill arthropod hosts by injecting their symbiotic bacteria into the host hemolymph and feed on the bacteria and the tissue of the dying host for several generations cycles until the arthropod cadaver is completely depleted. The EPN-bacteria-arthropod cadaver complex represents a rich energy source for the surrounding opportunistic soil fungal biota and other competitors. We hypothesized that EPNs need to protect their food source until depletion and that the EPN symbiotic bacteria produce volatile and non-volatile exudations that deter different soil fungal groups in the soil. We isolated the symbiotic bacteria species (Alcaligenes faecalis) from the EPN Oscheius spp. and ran infectivity bioassays against entomopathogenic fungi (EPF) as well as against plant pathogenic fungi (PPF). We found that both volatile and non-volatile symbiotic bacterial exudations had negative effects on both EPF and PPF. Such deterrent function on functionally different fungal strains suggests a common mode of action of A. faecalis bacterial exudates, which has the potential to influence the structure of soil microbial communities, and could be integrated into pest management programs for increasing crop protection against fungal pathogens.
Collapse
Affiliation(s)
- Shaojie Shan
- College of Life SciencesNankai UniversityTianjin300071China
| | - Wenwu Wang
- College of Life SciencesNankai UniversityTianjin300071China
| | - Chunxu Song
- Department of Molecular GeneticsGroningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenGroningenThe Netherlands
| | - Minggang Wang
- Department of Plant Protection BiologySwedish University of Agricultural SciencesPO Box 102SE‐23053AlnarpSweden
| | - Bingjiao Sun
- College of Life SciencesNankai UniversityTianjin300071China
| | - Yang Li
- College of Life SciencesNankai UniversityTianjin300071China
| | - Yaqi Fu
- College of Life SciencesNankai UniversityTianjin300071China
| | - Xinghui Gu
- Disease and Insect Bio‐control Engineering Research Center of National Tobacco IndustryYuxi653100YunnanChina
| | - Weibin Ruan
- College of Life SciencesNankai UniversityTianjin300071China
| | - Sergio Rasmann
- Laboratory of Animal Ecology and EntomologyInstitute of ZoologyUniversity of NeuchâtelCP 2CH‐2007NeuchâtelSwitzerland
| |
Collapse
|
19
|
Perez CE, Crawford JM. Characterization of a Hybrid Nonribosomal Peptide–Carbohydrate Biosynthetic Pathway in Photorhabdus luminescens. Biochemistry 2019; 58:1131-1140. [DOI: 10.1021/acs.biochem.8b01120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Corey E. Perez
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Chemical Biology Institute, Yale University, West Haven, Connecticut 06516, United States
| | - Jason M. Crawford
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Chemical Biology Institute, Yale University, West Haven, Connecticut 06516, United States
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut 06536, United States
| |
Collapse
|
20
|
Jenkins T, Brindley P, Gasser R, Cantacessi C. Helminth Microbiomes – A Hidden Treasure Trove? Trends Parasitol 2019; 35:13-22. [DOI: 10.1016/j.pt.2018.10.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 10/27/2018] [Accepted: 10/31/2018] [Indexed: 12/14/2022]
|
21
|
Zamora-Lagos MA, Eckstein S, Langer A, Gazanis A, Pfeiffer F, Habermann B, Heermann R. Phenotypic and genomic comparison of Photorhabdus luminescens subsp. laumondii TT01 and a widely used rifampicin-resistant Photorhabdus luminescens laboratory strain. BMC Genomics 2018; 19:854. [PMID: 30497380 PMCID: PMC6267812 DOI: 10.1186/s12864-018-5121-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 09/26/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Photorhabdus luminescens is an enteric bacterium, which lives in mutualistic association with soil nematodes and is highly pathogenic for a broad spectrum of insects. A complete genome sequence for the type strain P. luminescens subsp. laumondii TT01, which was originally isolated in Trinidad and Tobago, has been described earlier. Subsequently, a rifampicin resistant P. luminescens strain has been generated with superior possibilities for experimental characterization. This strain, which is widely used in research, was described as a spontaneous rifampicin resistant mutant of TT01 and is known as TT01-RifR. RESULTS Unexpectedly, upon phenotypic comparison between the rifampicin resistant strain and its presumed parent TT01, major differences were found with respect to bioluminescence, pigmentation, biofilm formation, haemolysis as well as growth. Therefore, we renamed the strain TT01-RifR to DJC. To unravel the genomic basis of the observed differences, we generated a complete genome sequence for strain DJC using the PacBio long read technology. As strain DJC was supposed to be a spontaneous mutant, only few sequence differences were expected. In order to distinguish these from potential sequencing errors in the published TT01 genome, we re-sequenced a derivative of strain TT01 in parallel, also using the PacBio technology. The two TT01 genomes differed at only 30 positions. In contrast, the genome of strain DJC varied extensively from TT01, showing 13,000 point mutations, 330 frameshifts, and 220 strain-specific regions with a total length of more than 300 kb in each of the compared genomes. CONCLUSIONS According to the major phenotypic and genotypic differences, the rifampicin resistant P. luminescens strain, now named strain DJC, has to be considered as an independent isolate rather than a derivative of strain TT01. Strains TT01 and DJC both belong to P. luminescens subsp. laumondii.
Collapse
Affiliation(s)
- Maria-Antonia Zamora-Lagos
- Computational Biology Group, Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - Simone Eckstein
- Biozentrum, Bereich Mikrobiologie, Ludwig-Maximilians-Universität München, Großhaderner Str. 2-4, 82152, Martinsried, Germany
| | - Angela Langer
- Biozentrum, Bereich Mikrobiologie, Ludwig-Maximilians-Universität München, Großhaderner Str. 2-4, 82152, Martinsried, Germany
| | - Athanasios Gazanis
- Biozentrum, Bereich Mikrobiologie, Ludwig-Maximilians-Universität München, Großhaderner Str. 2-4, 82152, Martinsried, Germany
| | - Friedhelm Pfeiffer
- Computational Biology Group, Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - Bianca Habermann
- Computational Biology Group, Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany. .,CNRS UMR 7288, Computational Biology Group, Developmental Biology Institute of Marseille (IBDM), Aix Marseille Université, 13009, Marseille, France.
| | - Ralf Heermann
- Biozentrum, Bereich Mikrobiologie, Ludwig-Maximilians-Universität München, Großhaderner Str. 2-4, 82152, Martinsried, Germany.
| |
Collapse
|
22
|
Orozco JGC, Leite LG, Custódio BC, Silva RSAD, Casteliani AGB, Travaglini RV. Inhibition of symbiote fungus of the leaf cutter ant Atta sexdens by secondary metabolites from the bacterium Xenorhabdus szentirmaii associated with entomopathogenic nematodes. ARQUIVOS DO INSTITUTO BIOLÓGICO 2018. [DOI: 10.1590/1808-1657000172018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
ABSTRACT: Leaf-cutter ants (Hymenoptera: Formicidae) have evolved as dominant herbivores on the American continent. These social insects remove the leaves of economically important plant species to maintain their colony’s food reserves, the symbiotic fungus Leucocoprinus gongylophorus, a basidiomycete. Such fungus can be used for applications of fungicide molecules from metabolites generated by symbiont bacteria (Xenorhabdus and Photorhabdus) from entomopathogenic nematodes (Steinernema and Heterorhabditis). Through isolation and multiplication in tryptic soy broth (TSB) medium of the bacteria Xenorhabdus szentirmaii isolated PAM 25, we conducted laboratorial tests using treatments with 10, 25, and 50% of the metabolites obtained in the sixth day of cultivation. The treatments were centrifuged and filtered to generate a supernatant, which was diluted in potato + dextrose + agar (PDA), to verify the consequences of exposure to the fungus L. gongylophorus in Petri dishes. To confirm metabolite efficiency, the control treatments in PDA only and mixed (PDA+TSB) media were conducted simultaneously for 14 days. We observed total inhibition of the symbiont fungus in both the 25 and 50% dilutions during the first days of the tests. Our results support that these metabolites have inhibitory effect on the development of symbiont fungus of leaf-cutter ants.
Collapse
|
23
|
Skjerning RB, Senissar M, Winther KS, Gerdes K, Brodersen DE. The RES domain toxins of RES-Xre toxin-antitoxin modules induce cell stasis by degrading NAD+. Mol Microbiol 2018; 111:221-236. [PMID: 30315706 DOI: 10.1111/mmi.14150] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2018] [Indexed: 12/18/2022]
Abstract
Type II toxin-antitoxin (TA) modules, which are important cellular regulators in prokaryotes, usually encode two proteins, a toxin that inhibits cell growth and a nontoxic and labile inhibitor (antitoxin) that binds to and neutralizes the toxin. Here, we demonstrate that the res-xre locus from Photorhabdus luminescens and other bacterial species function as bona fide TA modules in Escherichia coli. The 2.2 Å crystal structure of the intact Pseudomonas putida RES-Xre TA complex reveals an unusual 2:4 stoichiometry in which a central RES toxin dimer binds two Xre antitoxin dimers. The antitoxin dimers each expose two helix-turn-helix DNA-binding domains of the Cro repressor type, suggesting the TA complex is capable of binding the upstream promoter sequence on DNA. The toxin core domain shows structural similarity to ADP-ribosylating enzymes such as diphtheria toxin but has an atypical NAD+ -binding pocket suggesting an alternative function. We show that activation of the toxin in vivo causes a depletion of intracellular NAD+ levels eventually leading to inhibition of cell growth in E. coli and inhibition of global macromolecular biosynthesis. Both structure and activity are unprecedented among bacterial TA systems, suggesting the functional scope of bacterial TA toxins is much wider than previously appreciated.
Collapse
Affiliation(s)
- Ragnhild Bager Skjerning
- Department of Biology, Centre for Bacterial Stress Response and Persistence (BASP), University of Copenhagen, Copenhagen, Denmark
| | - Meriem Senissar
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark
| | - Kristoffer S Winther
- Department of Biology, Centre for Bacterial Stress Response and Persistence (BASP), University of Copenhagen, Copenhagen, Denmark
| | - Kenn Gerdes
- Department of Biology, Centre for Bacterial Stress Response and Persistence (BASP), University of Copenhagen, Copenhagen, Denmark
| | - Ditlev E Brodersen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark
| |
Collapse
|
24
|
Patrnogic J, Castillo JC, Shokal U, Yadav S, Kenney E, Heryanto C, Ozakman Y, Eleftherianos I. Pre-exposure to non-pathogenic bacteria does not protect Drosophila against the entomopathogenic bacterium Photorhabdus. PLoS One 2018; 13:e0205256. [PMID: 30379824 PMCID: PMC6209181 DOI: 10.1371/journal.pone.0205256] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 09/22/2018] [Indexed: 01/27/2023] Open
Abstract
Immune priming in insects involves an initial challenge with a non-pathogenic microbe or exposure to a low dose of pathogenic microorganisms, which provides a certain degree of protection against a subsequent pathogenic infection. The protective effect of insect immune priming has been linked to the activation of humoral or cellular features of the innate immune response during the preliminary challenge, and these effects might last long enough to promote the survival of the infected animal. The fruit fly Drosophila melanogaster is a superb model to dissect immune priming processes in insects due to the availability of molecular and genetic tools, and the comprehensive understanding of the innate immune response in this organism. Previous investigations have indicated that the D. melanogaster immune system can be primed efficiently. Here we have extended these studies by examining the result of immune priming against two potent entomopathogenic bacteria, Photorhabdus luminescens and P. asymbiotica. We have found that rearing D. melanogaster on diet containing a non-pathogenic strain of Escherichia coli alone or in combination with Micrococcus luteus upregulates the antibacterial peptide immune response in young adult flies, but it does not prolong fly life span. Also, subsequent intrathoracic injection with P. luminescens or P. asymbiotica triggers the Immune deficiency and Toll signaling pathways in flies previously exposed to a live or heat-killed mix of the non-pathogenic bacteria, but the immune activation fails to promote fly survival against the pathogens. These findings suggest that immune priming in D. melanogaster, and probably in other insects, is determined by the type of microbes involved as well as the mode of microbial exposure, and possibly requires a comprehensive and precise alteration of immune signaling and function to provide efficient protection against pathogenic infection.
Collapse
Affiliation(s)
- Jelena Patrnogic
- Infection and Innate Immunity Lab, Department of Biological Sciences, George Washington University, Washington, District of Columbia, United States of America
| | - Julio Cesar Castillo
- Infection and Innate Immunity Lab, Department of Biological Sciences, George Washington University, Washington, District of Columbia, United States of America
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Upasana Shokal
- Infection and Innate Immunity Lab, Department of Biological Sciences, George Washington University, Washington, District of Columbia, United States of America
| | - Shruti Yadav
- Infection and Innate Immunity Lab, Department of Biological Sciences, George Washington University, Washington, District of Columbia, United States of America
| | - Eric Kenney
- Infection and Innate Immunity Lab, Department of Biological Sciences, George Washington University, Washington, District of Columbia, United States of America
| | - Christa Heryanto
- Infection and Innate Immunity Lab, Department of Biological Sciences, George Washington University, Washington, District of Columbia, United States of America
| | - Yaprak Ozakman
- Infection and Innate Immunity Lab, Department of Biological Sciences, George Washington University, Washington, District of Columbia, United States of America
| | - Ioannis Eleftherianos
- Infection and Innate Immunity Lab, Department of Biological Sciences, George Washington University, Washington, District of Columbia, United States of America
- * E-mail:
| |
Collapse
|
25
|
Perez CE, Park HB, Crawford JM. Functional Characterization of a Condensation Domain That Links Nonribosomal Peptide and Pteridine Biosynthetic Machineries in Photorhabdus luminescens. Biochemistry 2018; 57:354-361. [PMID: 29111689 DOI: 10.1021/acs.biochem.7b00863] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Nonribosomal peptide synthetases (NRPSs) produce a wide variety of biologically important small molecules. NRPSs can interface with other enzymes to form hybrid biosynthetic systems that expand the structural and functional diversity of their products. The pepteridines are metabolites encoded by an unprecedented pteridine-NRPS-type hybrid biosynthetic gene cluster in Photorhabdus luminescens, but how the distinct enzymatic systems interface to produce these molecules has not been examined at the biochemical level. By an unknown mechanism, the genetic locus can also affect the regulation of other enzymes involved in autoinducer and secondary metabolite biosynthesis. Here, through in vitro protein biochemical assays, we demonstrate that an atypical NRPS condensation (C) domain present in the pathway condenses acyl units derived from α-keto acids onto a free 5,6,7,8-tetrahydropterin core, producing the tertiary cis-amide-containing pepteridines. Solution studies of the chemically synthesized molecules led to the same amide regiochemistries that were observed in the natural products. The biochemical transformations mediated by the C domain destroy the radical scavenging activity of its redox active tetrahydropterin substrate. Secondary metabolite analyses revealed that the pepteridine locus affects select metabolic pathways associated with quorum sensing, antibiosis, and symbiosis. Taken together, the results suggest that the pathway likely regulates cellular redox and specialized metabolic pathways through engagement with the citric acid cycle.
Collapse
Affiliation(s)
- Corey E Perez
- Department of Chemistry, Yale University , New Haven, Connecticut 06520, United States.,Chemical Biology Institute, Yale University , West Haven, Connecticut 06516, United States
| | - Hyun Bong Park
- Department of Chemistry, Yale University , New Haven, Connecticut 06520, United States.,Chemical Biology Institute, Yale University , West Haven, Connecticut 06516, United States
| | - Jason M Crawford
- Department of Chemistry, Yale University , New Haven, Connecticut 06520, United States.,Chemical Biology Institute, Yale University , West Haven, Connecticut 06516, United States.,Department of Microbial Pathogenesis, Yale School of Medicine , New Haven, Connecticut 06510, United States
| |
Collapse
|
26
|
STOCK SPATRICIA, KUSAKABE AYAKO, OROZCO ROUSELA. Secondary Metabolites Produced by Heterorhabditis Symbionts and Their Application in Agriculture: What We Know and What to Do Next. J Nematol 2018. [DOI: 10.21307/jofnem-2017-084] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
27
|
Permanent Draft Genome Sequence of Photorhabdus temperata Strain Hm, an Entomopathogenic Bacterium Isolated from Nematodes. GENOME ANNOUNCEMENTS 2017; 5:5/37/e00974-17. [PMID: 28912324 PMCID: PMC5597765 DOI: 10.1128/genomea.00974-17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Photorhabdus temperata strain Hm is an entomopathogenic bacterium that forms a symbiotic association with Heterorhabditis nematodes. Here, we report a 5.0-Mbp draft genome sequence for P. temperata strain Hm with a G+C content of 44.1% and containing 4,226 candidate protein-encoding genes.
Collapse
|
28
|
Payelleville A, Lanois A, Gislard M, Dubois E, Roche D, Cruveiller S, Givaudan A, Brillard J. DNA Adenine Methyltransferase (Dam) Overexpression Impairs Photorhabdus luminescens Motility and Virulence. Front Microbiol 2017; 8:1671. [PMID: 28919886 PMCID: PMC5585154 DOI: 10.3389/fmicb.2017.01671] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 08/17/2017] [Indexed: 12/24/2022] Open
Abstract
Dam, the most described bacterial DNA-methyltransferase, is widespread in gamma-proteobacteria. Dam DNA methylation can play a role in various genes expression and is involved in pathogenicity of several bacterial species. The purpose of this study was to determine the role played by the dam ortholog identified in the entomopathogenic bacterium Photorhabdus luminescens. Complementation assays of an Escherichia coli dam mutant showed the restoration of the DNA methylation state of the parental strain. Overexpression of dam in P. luminescens did not impair growth ability in vitro. In contrast, compared to a control strain harboring an empty plasmid, a significant decrease in motility was observed in the dam-overexpressing strain. A transcriptome analysis revealed the differential expression of 208 genes between the two strains. In particular, the downregulation of flagellar genes was observed in the dam-overexpressing strain. In the closely related bacterium Xenorhabdus nematophila, dam overexpression also impaired motility. In addition, the dam-overexpressing P. luminescens strain showed a delayed virulence compared to that of the control strain after injection in larvae of the lepidopteran Spodoptera littoralis. These results reveal that Dam plays a major role during P. luminescens insect infection.
Collapse
Affiliation(s)
- Amaury Payelleville
- Diversité, Génomes Interactions Microorganismes Insectes (DGIMI), Institut National De La Recherche Agronomique, Université de MontpellierMontpellier, France
| | - Anne Lanois
- Diversité, Génomes Interactions Microorganismes Insectes (DGIMI), Institut National De La Recherche Agronomique, Université de MontpellierMontpellier, France
| | - Marie Gislard
- MGX-Montpellier GenomiX, Institut de Génomique FonctionnelleMontpellier, France
| | - Emeric Dubois
- MGX-Montpellier GenomiX, Institut de Génomique FonctionnelleMontpellier, France
| | - David Roche
- Le Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Genoscope, Université d'Evry, Centre National De La Recherche Scientifique-UMR8030, Université Paris-SaclayEvry, France
| | - Stéphane Cruveiller
- Le Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Genoscope, Université d'Evry, Centre National De La Recherche Scientifique-UMR8030, Université Paris-SaclayEvry, France
| | - Alain Givaudan
- Diversité, Génomes Interactions Microorganismes Insectes (DGIMI), Institut National De La Recherche Agronomique, Université de MontpellierMontpellier, France
| | - Julien Brillard
- Diversité, Génomes Interactions Microorganismes Insectes (DGIMI), Institut National De La Recherche Agronomique, Université de MontpellierMontpellier, France
| |
Collapse
|
29
|
Draft Genome Sequence of Photorhabdus luminescens HIM3 Isolated from an Entomopathogenic Nematode in Agricultural Soils. GENOME ANNOUNCEMENTS 2017; 5:5/35/e00745-17. [PMID: 28860237 PMCID: PMC5578835 DOI: 10.1128/genomea.00745-17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In this work, we report the draft genome sequence of Photorhabdus luminescens strain HIM3, a symbiotic bacterium associated with the entomopathogenic nematode Heterorhabditis indica MOR03, isolated from soil sugarcane in Yautepec, Morelos, Mexico. These bacteria have a G+C content of 42.6% and genome size of 5.47 Mb.
Collapse
|
30
|
Jones R, Fenton A, Speed M, Mappes J. Investment in multiple defences protects a nematode-bacterium symbiosis from predation. Anim Behav 2017. [DOI: 10.1016/j.anbehav.2017.03.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
31
|
Park HB, Perez CE, Barber KW, Rinehart J, Crawford JM. Genome mining unearths a hybrid nonribosomal peptide synthetase-like-pteridine synthase biosynthetic gene cluster. eLife 2017; 6. [PMID: 28431213 PMCID: PMC5384830 DOI: 10.7554/elife.25229] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 02/28/2017] [Indexed: 01/03/2023] Open
Abstract
Nonribosomal peptides represent a large class of metabolites with pharmaceutical relevance. Pteridines, such as pterins, folates, and flavins, are heterocyclic metabolites that often serve as redox-active cofactors. The biosynthetic machineries for construction of these distinct classes of small molecules operate independently in the cell. Here, we discovered an unprecedented nonribosomal peptide synthetase-like-pteridine synthase hybrid biosynthetic gene cluster in Photorhabdus luminescens using genome synteny analysis. P. luminescens is a Gammaproteobacterium that undergoes phenotypic variation and can have both pathogenic and mutualistic roles. Through extensive gene deletion, pathway-targeted molecular networking, quantitative proteomic analysis, and NMR, we show that the genetic locus affects the regulation of quorum sensing and secondary metabolic enzymes and encodes new pteridine metabolites functionalized with cis-amide acyl-side chains, termed pepteridine A (1) and B (2). The pepteridines are produced in the pathogenic phenotypic variant and represent the first reported metabolites to be synthesized by a hybrid NRPS-pteridine pathway. These studies expand our view of the combinatorial biosynthetic potential available in bacteria.
Collapse
Affiliation(s)
- Hyun Bong Park
- Department of Chemistry, Yale University, New Haven, United States.,Chemical Biology Institute, Yale University, West Haven, United States
| | - Corey E Perez
- Department of Chemistry, Yale University, New Haven, United States.,Chemical Biology Institute, Yale University, West Haven, United States
| | - Karl W Barber
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, United States.,Systems Biology Institute, Yale University, West Haven, United States
| | - Jesse Rinehart
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, United States.,Systems Biology Institute, Yale University, West Haven, United States
| | - Jason M Crawford
- Department of Chemistry, Yale University, New Haven, United States.,Chemical Biology Institute, Yale University, West Haven, United States.,Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, United States
| |
Collapse
|
32
|
Park HB, Sampathkumar P, Perez CE, Lee JH, Tran J, Bonanno JB, Hallem EA, Almo SC, Crawford JM. Stilbene epoxidation and detoxification in a Photorhabdus luminescens-nematode symbiosis. J Biol Chem 2017; 292:6680-6694. [PMID: 28246174 DOI: 10.1074/jbc.m116.762542] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 02/16/2017] [Indexed: 11/06/2022] Open
Abstract
Members of the gammaproteobacterial Photorhabdus genus share mutualistic relationships with Heterorhabditis nematodes, and the pairs infect a wide swath of insect larvae. Photorhabdus species produce a family of stilbenes, with two major components being 3,5-dihydroxy-4-isopropyl-trans-stilbene (compound 1) and its stilbene epoxide (compound 2). This family of molecules harbors antimicrobial and immunosuppressive activities, and its pathway is responsible for producing a nematode "food signal" involved in nematode development. However, stilbene epoxidation biosynthesis and its biological roles remain unknown. Here, we identified an orphan protein (Plu2236) from Photorhabdus luminescens that catalyzes stilbene epoxidation. Structural, mutational, and biochemical analyses confirmed the enzyme adopts a fold common to FAD-dependent monooxygenases, contains a tightly bound FAD prosthetic group, and is required for the stereoselective epoxidation of compounds 1 and 2. The epoxidase gene was dispensable in a nematode-infective juvenile recovery assay, indicating the oxidized compound is not required for the food signal. The epoxide exhibited reduced cytotoxicity toward its producer, suggesting this may be a natural route for intracellular detoxification. In an insect infection model, we also observed two stilbene-derived metabolites that were dependent on the epoxidase. NMR, computational, and chemical degradation studies established their structures as new stilbene-l-proline conjugates, prolbenes A (compound 3) and B (compound 4). The prolbenes lacked immunosuppressive and antimicrobial activities compared with their stilbene substrates, suggesting a metabolite attenuation mechanism in the animal model. Collectively, our studies provide a structural view for stereoselective stilbene epoxidation and functionalization in an invertebrate animal infection model and provide new insights into stilbene cellular detoxification.
Collapse
Affiliation(s)
- Hyun Bong Park
- From the Department of Chemistry, Yale University, New Haven, Connecticut 06520.,the Chemical Biology Institute, Yale University, West Haven, Connecticut 06516
| | | | - Corey E Perez
- From the Department of Chemistry, Yale University, New Haven, Connecticut 06520.,the Chemical Biology Institute, Yale University, West Haven, Connecticut 06516
| | - Joon Ha Lee
- the Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, California 90095, and
| | - Jeannie Tran
- the Chemical Biology Institute, Yale University, West Haven, Connecticut 06516
| | - Jeffrey B Bonanno
- the Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Elissa A Hallem
- the Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, California 90095, and
| | - Steven C Almo
- the Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Jason M Crawford
- From the Department of Chemistry, Yale University, New Haven, Connecticut 06520, .,the Chemical Biology Institute, Yale University, West Haven, Connecticut 06516.,the Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut 06510
| |
Collapse
|
33
|
Maher AMD, Asaiyah MAM, Brophy C, Griffin CT. An Entomopathogenic Nematode Extends Its Niche by Associating with Different Symbionts. MICROBIAL ECOLOGY 2017; 73:211-223. [PMID: 27543560 DOI: 10.1007/s00248-016-0829-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 08/02/2016] [Indexed: 06/06/2023]
Abstract
Bacterial symbionts are increasingly recognised as mediators of ecologically important traits of their animal hosts, with acquisition of new traits possible by uptake of novel symbionts. The entomopathogenic nematode Heterorhabditis downesi associates with two bacterial symbionts, Photorhabdus temperata subsp. temperata and P. temperata subsp. cinerea. At one intensively studied coastal dune site, P. temperata subsp. cinerea is consistently more frequently isolated than P. temperata subsp. temperata in H. downesi recovered from under the bare sand/Ammophila arrenaria of the front dunes (where harsh conditions, including drought, prevail). This is not the case in the more permissive closed dune grassland further from the sea. No differences were detected in ITS1 (internal transcribed spacer) sequence between nematode lines carrying either of the two symbiont subspecies, nor did they differ in their ability to utilise insects from three orders. The two symbionts could be readily swapped between lines, and both were carried in equal numbers within infective juveniles. In laboratory experiments, we tested whether the symbionts differentially affected nematode survival in insect cadavers that were allowed to dry. We assessed numbers of nematode infective juveniles emerging from insects that had been infected with H. downesi carrying either symbiont subspecies and then allowed to desiccate for up to 62 days. In moist conditions, cadavers produced similar numbers of nematodes, irrespective of the symbiont subspecies present, while under desiccating conditions, P. temperata subsp. cinerea cadavers yielded more nematode progeny than P. temperata subsp. temperata cadavers. Desiccating cadavers with the same nematode isolates, carrying either one or the other symbiont subspecies, confirmed that the symbiont was responsible for differences in nematode survival. Moreover, cadavers harbouring P. temperata subsp. cinerea had a reduced rate of drying relative to cadavers harbouring P. temperata subsp. temperata. Our experiments support the hypothesis that H. downesi can extend its niche into harsher conditions by associating with P. temperata subsp. cinerea.
Collapse
Affiliation(s)
- Abigail M D Maher
- Department of Biology, Maynooth University, Maynooth, County Kildare, Ireland
| | - Mohamed A M Asaiyah
- Department of Biology, Maynooth University, Maynooth, County Kildare, Ireland
- Department of Biology, Azzaytuna University, Tarhouna, Libya
| | - Caroline Brophy
- Department of Mathematics and Statistics, Maynooth University, Maynooth, County Kildare, Ireland
| | - Christine T Griffin
- Department of Biology, Maynooth University, Maynooth, County Kildare, Ireland.
| |
Collapse
|
34
|
Heinrich AK, Glaeser A, Tobias NJ, Heermann R, Bode HB. Heterogeneous regulation of bacterial natural product biosynthesis via a novel transcription factor. Heliyon 2016; 2:e00197. [PMID: 27957552 PMCID: PMC5133734 DOI: 10.1016/j.heliyon.2016.e00197] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 10/19/2016] [Accepted: 11/11/2016] [Indexed: 11/25/2022] Open
Abstract
Biological diversity arises among genetically equal subpopulations in the same environment, a phenomenon called phenotypic heterogeneity. The life cycle of the enteric bacterium Photorhabdus luminescens involves a symbiotic interaction with nematodes as well as a pathogenic association with insect larvae. P. luminescens exists in two distinct phenotypic forms designated as primary (1°) and secondary (2°). In contrast to 1° cells, 2° cells are non-pigmented due to the absence of natural compounds, especially anthraquinones (AQs). We identified a novel type of transcriptional regulator, AntJ, which activates expression of the antA-I operon responsible for AQ production. AntJ heterogeneously activates the AQ production in single P. luminescens 1° cells, and blocks AQ production in 2° cells. AntJ contains a proposed ligand-binding WYL-domain, which is widespread among bacteria. AntJ is one of the rare examples of regulators that mediate heterogeneous gene expression by altering activity rather than copy number in single cells.
Collapse
Affiliation(s)
- Antje K Heinrich
- Fachbereich Biowissenschaften, Merck Stiftungsprofessur für Molekulare Biotechnologie, Goethe-Universität Frankfurt, Frankfurt am Main, Germany
| | - Angela Glaeser
- Bereich Mikrobiologie, Biozentrum Martinsried, Ludwig-Maximilians-Universität München, München, Germany
| | - Nicholas J Tobias
- Fachbereich Biowissenschaften, Merck Stiftungsprofessur für Molekulare Biotechnologie, Goethe-Universität Frankfurt, Frankfurt am Main, Germany
| | - Ralf Heermann
- Bereich Mikrobiologie, Biozentrum Martinsried, Ludwig-Maximilians-Universität München, München, Germany
| | - Helge B Bode
- Fachbereich Biowissenschaften, Merck Stiftungsprofessur für Molekulare Biotechnologie, Goethe-Universität Frankfurt, Frankfurt am Main, Germany; Buchmann Institute for Molecular Life Sciences (BMLS), Goethe-Universität Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
35
|
Response of three cyprinid fish species to the Scavenger Deterrent Factor produced by the mutualistic bacteria associated with entomopathogenic nematodes. J Invertebr Pathol 2016; 143:40-49. [PMID: 27908637 DOI: 10.1016/j.jip.2016.11.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 11/22/2016] [Accepted: 11/27/2016] [Indexed: 11/23/2022]
Abstract
The symbiotic bacteria, Photorhabdus and Xenorhabdus associated with entomopathogenic nematodes (EPNs) in the genera Heterorhabditis and Steinernema, respectively, produce a compound(s) called the Scavenging Deterrent Factor (SDF). SDF deters a number of terrestrial insect scavengers and predators and one bird species from feeding on host insects killed by the nematode-bacterium complex but has not been tested against aquatic vertebrates. Moreover, the Heterorhabditis-Photorhabdus association is believed to have evolved in an aquatic environment. Accordingly, we hypothesized that SDF will deter fish from feeding on nematode-killed insects and tested the responses of three omnivorous fresh water fish species, Devario aequipinnatus, Alburnoides bipunctatus, and Squalius pursakensis, to SDF in the laboratory. When the fish were exposed to Galleria mellonella larvae killed by the Heterorhabditis- or Steinernema-bacterium complex at 2 or 4days post-infection, all three fish species made several attempts to consume the cadavers but subsequently rejected them. However, all fish species consumed freeze-killed control larvae. In a choice test, when D. aequipinnatus or A. bipunctatus were offered a pair of nematode-killed larvae, both fish species rejected these cadavers; when offered a nematode-killed larva and a freeze-killed larva, both fish species consumed the freeze-killed larva but not the nematode-killed one. In further tests with D. aequipinnatus, there was no significant difference in the number of 2-day-old Bacillus thuringiensis subsp. kurstaki-killed (Btk) larvae consumed compared to freeze-killed larvae, but significantly fewer 4-day-old Btk-killed larvae were consumed compared to freeze-killed larvae. When D. aequipinnatus was fed G. mellonella larvae killed by the symbiotic bacteria, the fish rejected the cadavers. When given freeze-killed or nematode-killed mosquito (Aedes aegypti) larvae, the fish consumed significantly more of the former larvae (99%) compared to the latter (55%). When D. aequipinnatus was placed in a symbiotic cell-free supernatant for 18h, a significant reduction in consumption of freeze-killed larvae compared to cell-free Btk or control broth supernatant was observed. We showed that SDF protects the nematode-killed insects from being consumed by omnivorous fishes and suggests that they will have minimal effects on recycling of EPNs in the aquatic environment.
Collapse
|
36
|
|
37
|
Chapman C, Tisa LS. Identification and characterization of Photorhabdus temperata mutants altered in hemolysis and virulence. Can J Microbiol 2016; 62:657-67. [PMID: 27300499 DOI: 10.1139/cjm-2016-0102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Photorhabdus temperata is a symbiont of the entomopathogenic nematode Heterorhabditis bacteriophora and an insect pathogen. This bacterium produces a wide variety of virulence factors and hemolytic activity. The goal of this study was to identify hemolysin-defective mutants and test their virulence. A genetic approach was used to identify mutants with altered hemolytic activity by screening a library of 10 000 P. temperata transposon mutants. Three classes of mutants were identified: (i) defective (no hemolytic activity), (ii) delayed (delayed initiation of hemolytic activity), and (iii) early (early initiation of hemolytic activity). The transposon insertion sites for these mutants were identified and used to investigate other physiological properties, including insect pathogenesis and motility. The hemolysin-defective mutants, P10A-C11, P10A-H12, and P79-B5, had inserts in genes involved in RNA turnover (RNase II and 5'-pentaphospho-5'-adenosine pyrophosphohydrolase) and showed reduced virulence and production of extracellular factors. These data support the role of RNA turnover in insect pathogenesis and other physiological functions.
Collapse
Affiliation(s)
- Christine Chapman
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH 03824-217, USA.,Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH 03824-217, USA
| | - Louis S Tisa
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH 03824-217, USA.,Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH 03824-217, USA
| |
Collapse
|
38
|
Joyce SA, Lango L, Clarke DJ. The Regulation of Secondary Metabolism and Mutualism in the Insect Pathogenic Bacterium Photorhabdus luminescens. ADVANCES IN APPLIED MICROBIOLOGY 2016; 76:1-25. [PMID: 21924970 DOI: 10.1016/b978-0-12-387048-3.00001-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Photorhabdus is a genus of insect-pathogenic Gram-negative bacteria that also maintain a mutualistic interaction with nematodes from the family Heterorhabditis. This complex life cycle, involving different interactions with different invertebrate hosts, coupled with the amenability of the system to laboratory culture has resulted in the development of Photorhabdus as a model system for studying bacterial-host interactions. Photorhabdus is predicted to have an extensive secondary metabolism with the genetic potential to produce >20 different small secondary metabolites. Therefore, this system also presents us with a unique opportunity to study the contribution of secondary metabolism to the environmental fitness of the producing organism in its natural habitat (i.e., the insect and/or the nematode). In vivo and in vitro studies have revealed that the vast majority of the genetic loci in Photorhabdus predicted to be involved in the production of secondary metabolites appear to be cryptic and, to date, although several have been characterized, only three compounds have been studied in any great detail: 3,5-dihydroxy-4-isopropylstilbene, the β-lactam antibiotic carbapenem, and an anthraquinone pigment. In this chapter, we describe how these compounds are made and the role (if any) that they have during the interactions between Photorhabdus and its invertebrate hosts. We will also outline recent work on the regulation of secondary metabolism in Photorhabdus and comment on how this has led to an increased understanding of mutualism in this bacterium.
Collapse
Affiliation(s)
- Susan A Joyce
- Department of Microbiology, University College Cork, Cork, Ireland
| | | | | |
Collapse
|
39
|
Draft Genome Sequence of Photorhabdus luminescens subsp. laumondii HP88, an Entomopathogenic Bacterium Isolated from Nematodes. GENOME ANNOUNCEMENTS 2016; 4:4/2/e00154-16. [PMID: 26988056 PMCID: PMC4796135 DOI: 10.1128/genomea.00154-16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Photorhabdus luminescens subsp. laumondii HP88 is an entomopathogenic bacterium that forms a symbiotic association with Heterorhabditis nematodes. We report here a 5.27-Mbp draft genome sequence for P. luminescens subsp. laumondii HP88, with a G+C content of 42.4% and containing 4,243 candidate protein-coding genes.
Collapse
|
40
|
Abstract
Be it their pervasiveness, experimental tractability or their impact on human health and agriculture, nematode–bacterium associations are far-reaching research subjects. Although the omics hype did not spare them and helped reveal mechanisms of communication and exchange between the associated partners, a huge amount of knowledge still awaits to be harvested from their study. Here, I summarize and compare the kind of research that has been already performed on the model nematode Caenorhabditis elegans and on symbiotic nematodes, both marine and entomopathogenic ones. The emerging picture highlights how complementing genetic studies with ecological ones (in the case of well-established genetic model systems such as C. elegans) and vice versa (in the case of the yet uncultured Stilbonematinae) will deepen our understanding of how microbial symbioses evolved and how they impact our environment. Nematode–bacterium associations are major research subjects. Complementing genetic studies with ecological ones is necessary to boost our understanding of how microbial symbioses evolved and how they impact the environment.
Collapse
Affiliation(s)
- Silvia Bulgheresi
- Department of Ecogenomics and Systems Biology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| |
Collapse
|
41
|
|
42
|
Jones RS, Fenton A, Speed MP. "Parasite-induced aposematism" protects entomopathogenic nematode parasites against invertebrate enemies. Behav Ecol 2015; 27:645-651. [PMID: 27004015 PMCID: PMC4797382 DOI: 10.1093/beheco/arv202] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 10/26/2015] [Accepted: 10/29/2015] [Indexed: 11/16/2022] Open
Abstract
Parasites can manipulate their hosts to ward off predators, by making them glow, become smelly, and toxic. We show this experimentally. Odors protect young infections particularly well. Aposematism is a well-known strategy in which prey defend themselves from predation by pairing defenses such as toxins, with warning signals that are often visually conspicuous color patterns. Here, we examine the possibility that aposematism can be induced in a host by colonies of infectious parasites in order to protect the parasites from the consequences of attacks on the host. Earlier studies show that avian predators are reluctant to feed on carcasses of host prey that are infected with the entomopathogenic nematode, Heterorhabditis bacteriophora. As the age of infection increases, the parasites kill and preserve the host and subsequently cause its color to change, becoming bright pink then red. Nematode colonies in dead hosts may also be vulnerable, however, to nocturnally active foragers that do not use vision in prey detection. Here, then we test a novel hypothesis that the nematode parasites also produce a warning odor, which functions to repel nocturnally active predators (in this case, the beetle Pterostichus madidus). We show that beetles decrease their feeding on infected insect prey as the age of infection increases and that olfactory cues associated with the infections are effective mechanisms for deterring beetle predation, even at very early stages of infection. We propose that “parasite-induced aposematism” from the nematodes serves to replace the antipredator defenses of the recently killed host. Because sessile carcasses are exposed to a greater range of predators than the live hosts, several alternative defense mechanisms are required to protect the colony, hence aposematic signals are likely diverse in such “parasite-induced aposematism.”
Collapse
Affiliation(s)
- Rebecca S Jones
- Department of Evolution, Ecology and Behaviour, Institute of Integrative Biology, University of Liverpool , Crown Street, Liverpool L69 7ZB, Merseyside , UK
| | - Andy Fenton
- Department of Evolution, Ecology and Behaviour, Institute of Integrative Biology, University of Liverpool , Crown Street, Liverpool L69 7ZB, Merseyside , UK
| | - Michael P Speed
- Department of Evolution, Ecology and Behaviour, Institute of Integrative Biology, University of Liverpool , Crown Street, Liverpool L69 7ZB, Merseyside , UK
| |
Collapse
|
43
|
Lacey L, Grzywacz D, Shapiro-Ilan D, Frutos R, Brownbridge M, Goettel M. Insect pathogens as biological control agents: Back to the future. J Invertebr Pathol 2015. [DOI: 10.1016/j.jip.2015.07.009] [Citation(s) in RCA: 545] [Impact Index Per Article: 60.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
44
|
Complete genome sequence of Photorhabdus temperata subsp. thracensis 39-8 T, an entomopathogenic bacterium for the improved commercial bioinsecticide. J Biotechnol 2015; 214:115-6. [PMID: 26415660 DOI: 10.1016/j.jbiotec.2015.09.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 09/22/2015] [Indexed: 11/24/2022]
Abstract
Photorhabdus temperata subsp. thracensis 39-8(T), a symbiotic bacterium from an entomopathogenic nematode Heterorhabditis bacteriophora, is a novel bacterium harboring insect pathogenicity. Herein, we present the complete genome sequence of strain 39-8(T), which consists of one circular chromosome of 5,147,098 bp with a GC content of 44.10%. This genetic information will provide insights into biotechnological applications of the genus Photorhabdus producing insecticidal toxins, leading to the enhanced commercial bioinsecticide in agricultural pest control.
Collapse
|
45
|
Glaeser A, Heermann R. A novel tool for stable genomic reporter gene integration to analyze heterogeneity in Photorhabdus luminescens at the single-cell level. Biotechniques 2015; 59:74-81. [PMID: 26260085 DOI: 10.2144/000114317] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 05/28/2015] [Indexed: 11/23/2022] Open
Abstract
Determination of reporter gene activity at the single-cell level is a prerequisite for analyzing heterogeneous gene expression in bacteria. The insect pathogenic enteric bacterium Photorhabdus luminescens is an excellent organism in which to study heterogeneity since it exists in two phenotypically different forms, called the primary and secondary variant. A tool for generating stable genomic integrations of reporter genes has been lacking for these bacteria, and this has hampered the acquisition of reliable data sets for promoter activities at the single-cell level. We therefore generated a plasmid tool named pPINT-mCherry for the easy and stable introduction of gene fragments upstream of an mCherry reporter gene followed by stable integration of the plasmid into the P. luminescens genome at the rpmE/glmS intergenic region. We demonstrate that the genomic integration of reporter genes for single-cell analysis is necessary in P. luminescens since plasmid-borne reporter genes mimic heterogeneity and are therefore not applicable in these bacteria, in contrast to their use in single-cell analysis in other bacteria like Escherichia coli.
Collapse
Affiliation(s)
- Angela Glaeser
- Ludwig-Maximilians-Universität München, Biozentrum, Bereich Mikrobiologie, Martinsried/München, Germany
| | - Ralf Heermann
- Ludwig-Maximilians-Universität München, Biozentrum, Bereich Mikrobiologie, Martinsried/München, Germany
| |
Collapse
|
46
|
Müller CA, Oberauner-Wappis L, Peyman A, Amos GCA, Wellington EMH, Berg G. Mining for Nonribosomal Peptide Synthetase and Polyketide Synthase Genes Revealed a High Level of Diversity in the Sphagnum Bog Metagenome. Appl Environ Microbiol 2015; 81:5064-72. [PMID: 26002894 PMCID: PMC4495229 DOI: 10.1128/aem.00631-15] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 05/12/2015] [Indexed: 01/01/2023] Open
Abstract
Sphagnum bog ecosystems are among the oldest vegetation forms harboring a specific microbial community and are known to produce an exceptionally wide variety of bioactive substances. Although the Sphagnum metagenome shows a rich secondary metabolism, the genes have not yet been explored. To analyze nonribosomal peptide synthetases (NRPSs) and polyketide synthases (PKSs), the diversity of NRPS and PKS genes in Sphagnum-associated metagenomes was investigated by in silico data mining and sequence-based screening (PCR amplification of 9,500 fosmid clones). The in silico Illumina-based metagenomic approach resulted in the identification of 279 NRPSs and 346 PKSs, as well as 40 PKS-NRPS hybrid gene sequences. The occurrence of NRPS sequences was strongly dominated by the members of the Protebacteria phylum, especially by species of the Burkholderia genus, while PKS sequences were mainly affiliated with Actinobacteria. Thirteen novel NRPS-related sequences were identified by PCR amplification screening, displaying amino acid identities of 48% to 91% to annotated sequences of members of the phyla Proteobacteria, Actinobacteria, and Cyanobacteria. Some of the identified metagenomic clones showed the closest similarity to peptide synthases from Burkholderia or Lysobacter, which are emerging bacterial sources of as-yet-undescribed bioactive metabolites. This report highlights the role of the extreme natural ecosystems as a promising source for detection of secondary compounds and enzymes, serving as a source for biotechnological applications.
Collapse
Affiliation(s)
- Christina A Müller
- Austrian Centre of Industrial Biotechnology (ACIB GmbH), Graz, Austria Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria
| | - Lisa Oberauner-Wappis
- Austrian Centre of Industrial Biotechnology (ACIB GmbH), Graz, Austria Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria
| | - Armin Peyman
- Austrian Centre of Industrial Biotechnology (ACIB GmbH), Graz, Austria Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria
| | - Gregory C A Amos
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | | | - Gabriele Berg
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria
| |
Collapse
|
47
|
Abebe-Akele F, Tisa LS, Cooper VS, Hatcher PJ, Abebe E, Thomas WK. Genome sequence and comparative analysis of a putative entomopathogenic Serratia isolated from Caenorhabditis briggsae. BMC Genomics 2015; 16:531. [PMID: 26187596 PMCID: PMC4506600 DOI: 10.1186/s12864-015-1697-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 06/12/2015] [Indexed: 12/21/2022] Open
Abstract
Background Entomopathogenic associations between nematodes in the genera Steinernema and Heterorhabdus with their cognate bacteria from the bacterial genera Xenorhabdus and Photorhabdus, respectively, are extensively studied for their potential as biological control agents against invasive insect species. These two highly coevolved associations were results of convergent evolution. Given the natural abundance of bacteria, nematodes and insects, it is surprising that only these two associations with no intermediate forms are widely studied in the entomopathogenic context. Discovering analogous systems involving novel bacterial and nematode species would shed light on the evolutionary processes involved in the transition from free living organisms to obligatory partners in entomopathogenicity. Results We report the complete genome sequence of a new member of the enterobacterial genus Serratia that forms a putative entomopathogenic complex with Caenorhabditis briggsae. Analysis of the 5.04 MB chromosomal genome predicts 4599 protein coding genes, seven sets of ribosomal RNA genes, 84 tRNA genes and a 64.8 KB plasmid encoding 74 genes. Comparative genomic analysis with three of the previously sequenced Serratia species, S. marcescens DB11 and S. proteamaculans 568, and Serratia sp. AS12, revealed that these four representatives of the genus share a core set of ~3100 genes and extensive structural conservation. The newly identified species shares a more recent common ancestor with S. marcescens with 99 % sequence identity in rDNA sequence and orthology across 85.6 % of predicted genes. Of the 39 genes/operons implicated in the virulence, symbiosis, recolonization, immune evasion and bioconversion, 21 (53.8 %) were present in Serratia while 33 (84.6 %) and 35 (89 %) were present in Xenorhabdus and Photorhabdus EPN bacteria respectively. Conclusion The majority of unique sequences in Serratia sp. SCBI (South African Caenorhabditis briggsae Isolate) are found in ~29 genomic islands of 5 to 65 genes and are enriched in putative functions that are biologically relevant to an entomopathogenic lifestyle, including non-ribosomal peptide synthetases, bacteriocins, fimbrial biogenesis, ushering proteins, toxins, secondary metabolite secretion and multiple drug resistance/efflux systems. By revealing the early stages of adaptation to this lifestyle, the Serratia sp. SCBI genome underscores the fact that in EPN formation the composite end result – killing, bioconversion, cadaver protection and recolonization- can be achieved by dissimilar mechanisms. This genome sequence will enable further study of the evolution of entomopathogenic nematode-bacteria complexes. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1697-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Feseha Abebe-Akele
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH, USA. .,Hubbard Center for Genome Studies, 444 Gregg Hall, University of New Hampshire, 35 Colovos Road, Durham, NH, 03824, USA.
| | - Louis S Tisa
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH, USA
| | - Vaughn S Cooper
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH, USA
| | - Philip J Hatcher
- Department of Computer Science, University of New Hampshire, Durham, NH, USA
| | - Eyualem Abebe
- Department of Biology, Elizabeth City State University, 1704 Weeksville Road, Jenkins Science Center 421, Elizabeth City, NC, 27909, USA
| | - W Kelley Thomas
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH, USA.,Hubbard Center for Genome Studies, 444 Gregg Hall, University of New Hampshire, 35 Colovos Road, Durham, NH, 03824, USA
| |
Collapse
|
48
|
Elucidation of the Photorhabdus temperata Genome and Generation of a Transposon Mutant Library To Identify Motility Mutants Altered in Pathogenesis. J Bacteriol 2015; 197:2201-2216. [PMID: 25917908 DOI: 10.1128/jb.00197-15] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 04/17/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The entomopathogenic nematode Heterorhabditis bacteriophora forms a specific mutualistic association with its bacterial partner Photorhabdus temperata. The microbial symbiont is required for nematode growth and development, and symbiont recognition is strain specific. The aim of this study was to sequence the genome of P. temperata and identify genes that plays a role in the pathogenesis of the Photorhabdus-Heterorhabditis symbiosis. A draft genome sequence of P. temperata strain NC19 was generated. The 5.2-Mb genome was organized into 17 scaffolds and contained 4,808 coding sequences (CDS). A genetic approach was also pursued to identify mutants with altered motility. A bank of 10,000 P. temperata transposon mutants was generated and screened for altered motility patterns. Five classes of motility mutants were identified: (i) nonmotile mutants, (ii) mutants with defective or aberrant swimming motility, (iii) mutant swimmers that do not require NaCl or KCl, (iv) hyperswimmer mutants that swim at an accelerated rate, and (v) hyperswarmer mutants that are able to swarm on the surface of 1.25% agar. The transposon insertion sites for these mutants were identified and used to investigate other physiological properties, including insect pathogenesis. The motility-defective mutant P13-7 had an insertion in the RNase II gene and showed reduced virulence and production of extracellular factors. Genetic complementation of this mutant restored wild-type activity. These results demonstrate a role for RNA turnover in insect pathogenesis and other physiological functions. IMPORTANCE The relationship between Photorhabdus and entomopathogenic nematode Heterorhabditis represents a well-known mutualistic system that has potential as a biological control agent. The elucidation of the genome of the bacterial partner and role that RNase II plays in its life cycle has provided a greater understanding of Photorhabdus as both an insect pathogen and a nematode symbiont.
Collapse
|
49
|
Ullah I, Khan AL, Ali L, Khan AR, Waqas M, Hussain J, Lee IJ, Shin JH. Benzaldehyde as an insecticidal, antimicrobial, and antioxidant compound produced by Photorhabdus temperata M1021. J Microbiol 2015; 53:127-33. [DOI: 10.1007/s12275-015-4632-4] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 12/12/2014] [Accepted: 12/13/2014] [Indexed: 11/29/2022]
|
50
|
Draft Genome Sequence and Annotation of the Entomopathogenic Bacterium Photorhabdus luminescens LN2, Which Shows Nematicidal Activity against
Heterorhabditis bacteriophora
H06 Nematodes. GENOME ANNOUNCEMENTS 2014; 2:2/6/e01268-14. [PMID: 25502667 PMCID: PMC4263829 DOI: 10.1128/genomea.01268-14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We present here the 5.6-Mb genome sequence of Photorhabdus luminescens strain LN2, a Gram-negative bacterium that is a symbiont of Heterorhabditis indica LN2 and shows nematicidal activity against Heterorhabditis bacteriophora H06 nematodes.
Collapse
|