1
|
Sharif NA, Odani-Kawabata N, Lu F, Pinchuk L. FP and EP2 prostanoid receptor agonist drugs and aqueous humor outflow devices for treating ocular hypertension and glaucoma. Exp Eye Res 2023; 229:109415. [PMID: 36803996 DOI: 10.1016/j.exer.2023.109415] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/21/2022] [Accepted: 02/08/2023] [Indexed: 02/21/2023]
Abstract
Prostaglandin (PG) receptors represent important druggable targets due to the many diverse actions of PGs in the body. From an ocular perspective, the discovery, development, and health agency approvals of prostaglandin F (FP) receptor agonists (FPAs) have revolutionized the medical treatment of ocular hypertension (OHT) and glaucoma. FPAs, such as latanoprost, travoprost, bimatoprost, and tafluprost, powerfully lower and control intraocular pressure (IOP), and became first-line therapeutics to treat this leading cause of blindness in the late 1990s to early 2000s. More recently, a latanoprost-nitric oxide (NO) donor conjugate, latanoprostene bunod, and a novel FP/EP3 receptor dual agonist, sepetaprost (ONO-9054 or DE-126), have also demonstrated robust IOP-reducing activity. Moreover, a selective non-PG prostanoid EP2 receptor agonist, omidenepag isopropyl (OMDI), was discovered, characterized, and has been approved in the United States, Japan and several other Asian countries for treating OHT/glaucoma. FPAs primarily enhance uveoscleral (UVSC) outflow of aqueous humor (AQH) to reduce IOP, but cause darkening of the iris and periorbital skin, uneven thickening and elongation of eyelashes, and deepening of the upper eyelid sulcus during chronic treatment. In contrast, OMDI lowers and controls IOP by activation of both the UVSC and trabecular meshwork outflow pathways, and it has a lower propensity to induce the aforementioned FPA-induced ocular side effects. Another means to address OHT is to physically promote the drainage of the AQH from the anterior chamber of the eye of patients with OHT/glaucoma. This has successfully been achieved by the recent approval and introduction of miniature devices into the anterior chamber by minimally invasive glaucoma surgeries. This review covers the three major aspects mentioned above to highlight the etiology of OHT/glaucoma, and the pharmacotherapeutics and devices that can be used to combat this blinding ocular disease.
Collapse
Affiliation(s)
- Najam A Sharif
- Ophthalmology Innovation Center, Santen Inc., Emeryville, CA, USA; Singapore Eye Research Institute, Singapore; Eye-ACP Duke-National University of Singapore Medical School, Singapore; Department of Pharmacology and Neuroscience, University of North Texas Health Sciences Center, Fort Worth, TX, USA; Department of Pharmacy Sciences, Creighton University, Omaha, NE, USA; Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX, USA; Imperial College of Science and Technology, St. Mary's Campus, London, UK; Institute of Ophthalmology, University College London, London, UK.
| | | | - Fenghe Lu
- Product Development Division, Santen Inc., Emeryville, CA, USA
| | - Leonard Pinchuk
- Ophthalmology Innovation Center, Santen Inc., Emeryville, CA, USA; Biomedical Engineering Department, University of Miami, Miami, FL, USA
| |
Collapse
|
2
|
Tang Y, Chen Y, Chen D. The heterogeneity of astrocytes in glaucoma. Front Neuroanat 2022; 16:995369. [PMID: 36466782 PMCID: PMC9714578 DOI: 10.3389/fnana.2022.995369] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 10/31/2022] [Indexed: 09/10/2023] Open
Abstract
Glaucoma is a leading cause of blindness with progressive degeneration of retinal ganglion cells. Aging and increased intraocular pressure (IOP) are major risk factors. Lowering IOP does not always stop the disease progression. Alternative ways of protecting the optic nerve are intensively studied in glaucoma. Astrocytes are macroglia residing in the retina, optic nerve head (ONH), and visual brain, which keep neuronal homeostasis, regulate neuronal activities and are part of the immune responses to the retina and brain insults. In this brief review, we discuss the activation and heterogeneity of astrocytes in the retina, optic nerve head, and visual brain of glaucoma patients and animal models. We also discuss some recent transgenic and gene knockout studies using glaucoma mouse models to clarify the role of astrocytes in the pathogenesis of glaucoma. Astrocytes are heterogeneous and play crucial roles in the pathogenesis of glaucoma, especially in the process of neuroinflammation and mitochondrial dysfunction. In astrocytes, overexpression of Stat3 or knockdown of IκKβ/p65, caspase-8, and mitochondrial uncoupling proteins (Ucp2) can reduce ganglion cell loss in glaucoma mouse models. Based on these studies, therapeutic strategies targeting the heterogeneity of reactive astrocytes by enhancing their beneficial reactivity or suppressing their detrimental reactivity are alternative options for glaucoma treatment in the future.
Collapse
Affiliation(s)
- Yunjing Tang
- Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Yongjiang Chen
- The School of Optometry and Vision Science, University of Waterloo, Waterloo, ON, Canada
| | - Danian Chen
- Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Sharif NA. Degeneration of retina-brain components and connections in glaucoma: Disease causation and treatment options for eyesight preservation. CURRENT RESEARCH IN NEUROBIOLOGY 2022; 3:100037. [PMID: 36685768 PMCID: PMC9846481 DOI: 10.1016/j.crneur.2022.100037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 03/30/2022] [Accepted: 04/01/2022] [Indexed: 01/25/2023] Open
Abstract
Eyesight is the most important of our sensory systems for optimal daily activities and overall survival. Patients who experience visual impairment due to elevated intraocular pressure (IOP) are often those afflicted with primary open-angle glaucoma (POAG) which slowly robs them of their vision unless treatment is administered soon after diagnosis. The hallmark features of POAG and other forms of glaucoma are damaged optic nerve, retinal ganglion cell (RGC) loss and atrophied RGC axons connecting to various brain regions associated with receipt of visual input from the eyes and eventual decoding and perception of images in the visual cortex. Even though increased IOP is the major risk factor for POAG, the disease is caused by many injurious chemicals and events that progress slowly within all components of the eye-brain visual axis. Lowering of IOP mitigates the damage to some extent with existing drugs, surgical and device implantation therapeutic interventions. However, since multifactorial degenerative processes occur during aging and with glaucomatous optic neuropathy, different forms of neuroprotective, nutraceutical and electroceutical regenerative and revitalizing agents and processes are being considered to combat these eye-brain disorders. These aspects form the basis of this short review article.
Collapse
Affiliation(s)
- Najam A. Sharif
- Duke-National University of Singapore Medical School, Singapore,Singapore Eye Research Institute (SERI), Singapore,Department of Pharmacology and Neuroscience, University of North Texas Health Sciences Center, Fort Worth, Texas, USA,Department of Pharmaceutical Sciences, Texas Southern University, Houston, TX, USA,Department of Surgery & Cancer, Imperial College of Science and Technology, St. Mary's Campus, London, UK,Department of Pharmacy Sciences, School of School of Pharmacy and Health Professions, Creighton University, Omaha, NE, USA,Ophthalmology Innovation Center, Santen Incorporated, 6401 Hollis Street (Suite #125), Emeryville, CA, 94608, USA,Ophthalmology Innovation Center, Santen Incorporated, 6401 Hollis Street (Suite #125), Emeryville, CA, 94608, USA.
| |
Collapse
|
4
|
Sharif NA. Therapeutic Drugs and Devices for Tackling Ocular Hypertension and Glaucoma, and Need for Neuroprotection and Cytoprotective Therapies. Front Pharmacol 2021; 12:729249. [PMID: 34603044 PMCID: PMC8484316 DOI: 10.3389/fphar.2021.729249] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/18/2021] [Indexed: 12/11/2022] Open
Abstract
Damage to the optic nerve and the death of associated retinal ganglion cells (RGCs) by elevated intraocular pressure (IOP), also known as glaucoma, is responsible for visual impairment and blindness in millions of people worldwide. The ocular hypertension (OHT) and the deleterious mechanical forces it exerts at the back of the eye, at the level of the optic nerve head/optic disc and lamina cribosa, is the only modifiable risk factor associated with glaucoma that can be treated. The elevated IOP occurs due to the inability of accumulated aqueous humor (AQH) to egress from the anterior chamber of the eye due to occlusion of the major outflow pathway, the trabecular meshwork (TM) and Schlemm’s canal (SC). Several different classes of pharmaceutical agents, surgical techniques and implantable devices have been developed to lower and control IOP. First-line drugs to promote AQH outflow via the uveoscleral outflow pathway include FP-receptor prostaglandin (PG) agonists (e.g., latanoprost, travoprost and tafluprost) and a novel non-PG EP2-receptor agonist (omidenepag isopropyl, Eybelis®). TM/SC outflow enhancing drugs are also effective ocular hypotensive agents (e.g., rho kinase inhibitors like ripasudil and netarsudil; and latanoprostene bunod, a conjugate of a nitric oxide donor and latanoprost). One of the most effective anterior chamber AQH microshunt devices is the Preserflo® microshunt which can lower IOP down to 10–13 mmHg. Other IOP-lowering drugs and devices on the horizon will be also discussed. Additionally, since elevated IOP is only one of many risk factors for development of glaucomatous optic neuropathy, a treatise of the role of inflammatory neurodegeneration of the optic nerve and retinal ganglion cells and appropriate neuroprotective strategies to mitigate this disease will also be reviewed and discussed.
Collapse
Affiliation(s)
- Najam A Sharif
- Global Alliances and External Research, Ophthalmology Innovation Center, Santen Inc., Emeryville, CA, United States
| |
Collapse
|
5
|
Wang Q, Qu X, Chen W, Wang H, Huang C, Li T, Wang N, Xian J. Altered coupling of cerebral blood flow and functional connectivity strength in visual and higher order cognitive cortices in primary open angle glaucoma. J Cereb Blood Flow Metab 2021; 41:901-913. [PMID: 32580669 PMCID: PMC7983497 DOI: 10.1177/0271678x20935274] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 05/08/2020] [Accepted: 05/26/2020] [Indexed: 01/30/2023]
Abstract
Primary open-angle glaucoma (POAG) has been suggested to be a neurodegenerative disease associated with altered cerebral vascular hemodynamics and widespread disruption of neuronal activity within the visual, working memory, attention and executive networks. We hypothesized that disturbed neurovascular coupling in visual and higher order cognitive cortices exists in POAG patients and correlates with glaucoma stage and visual field defects. Through multimodal magnetic resonance imaging, we evaluated the cerebral blood flow (CBF)-functional connectivity strength (FCS) correlations of the whole gray matter and CBF/FCS ratio per voxel for all subjects. Compared with normal controls, POAG patients showed reduced global CBF-FCS coupling and altered CBF/FCS ratios, predominantly in regions in the visual cortex, salience network, default mode network, and dorsal attentional network. The CBF/FCS ratio was negatively correlated with glaucoma stage, and positively correlated with visual field defects in the lingual gyrus in POAG patients. Moreover, early brain changes were detected in early POAG. These findings indicate neurovascular coupling dysfunction might exist in the visual and higher order cognitive cortices in POAG patients and its clinical relevance. The results may contribute to the monitoring of POAG progression and provide insight into the pathophysiology of the neurodegenerative process in POAG.
Collapse
Affiliation(s)
- Qian Wang
- Department of Radiology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Xiaoxia Qu
- Department of Radiology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Weiwei Chen
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University
| | - Huaizhou Wang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University
| | - Caiyun Huang
- Department of Radiology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Ting Li
- Department of Radiology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Ningli Wang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University
| | - Junfang Xian
- Department of Radiology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
6
|
Fujishiro T, Honjo M, Kawasaki H, Asaoka R, Yamagishi R, Aihara M. Structural Changes and Astrocyte Response of the Lateral Geniculate Nucleus in a Ferret Model of Ocular Hypertension. Int J Mol Sci 2020; 21:ijms21041339. [PMID: 32079216 PMCID: PMC7072923 DOI: 10.3390/ijms21041339] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/04/2020] [Accepted: 02/12/2020] [Indexed: 01/09/2023] Open
Abstract
We investigated structural changes and astrocyte responses of the lateral geniculate nucleus (LGN) in a ferret model of ocular hypertension (OH). In 10 ferrets, OH was induced via the injection of cultured conjunctival cells into the anterior chamber of the right eye; six normal ferrets were used as controls. Anterograde axonal tracing with cholera toxin B revealed that atrophic damage was evident in the LGN layers receiving projections from OH eyes. Immunohistochemical analysis with antibodies against NeuN, glial fibrillary acidic protein (GFAP), and Iba-1 was performed to specifically label neurons, astrocytes, and microglia in the LGN. Significantly decreased NeuN immunoreactivity and increased GFAP and Iba-1 immunoreactivities were observed in the LGN layers receiving projections from OH eyes. Interestingly, the changes in the immunoreactivities were significantly different among the LGN layers. The C layers showed more severe damage than the A and A1 layers. Secondary degenerative changes in the LGN were also observed, including neuronal damage and astrocyte reactions in each LGN layer. These results suggest that our ferret model of OH is valuable for investigating damages during the retina–brain transmission of the visual pathway in glaucoma. The vulnerability of the C layers was revealed for the first time.
Collapse
Affiliation(s)
- Takashi Fujishiro
- Department of Ophthalmology, University of Tokyo School of Medicine, Tokyo 113-8655, Japan; (T.F.); (M.H.); (R.A.); (R.Y.)
| | - Megumi Honjo
- Department of Ophthalmology, University of Tokyo School of Medicine, Tokyo 113-8655, Japan; (T.F.); (M.H.); (R.A.); (R.Y.)
| | - Hiroshi Kawasaki
- Department of Medical Neuroscience, Graduate School of Medical Sciences, Kanazawa University, Kanazawa 920-1192, Japan;
| | - Ryo Asaoka
- Department of Ophthalmology, University of Tokyo School of Medicine, Tokyo 113-8655, Japan; (T.F.); (M.H.); (R.A.); (R.Y.)
| | - Reiko Yamagishi
- Department of Ophthalmology, University of Tokyo School of Medicine, Tokyo 113-8655, Japan; (T.F.); (M.H.); (R.A.); (R.Y.)
| | - Makoto Aihara
- Department of Ophthalmology, University of Tokyo School of Medicine, Tokyo 113-8655, Japan; (T.F.); (M.H.); (R.A.); (R.Y.)
- Correspondence: ; Tel.: +81-3-3815-5411; Fax: +81-3-3817-0798
| |
Collapse
|
7
|
Nguyen HT, Tangutooru SM, Rountree CM, Kantzos AJK, Tarlochan F, Yoon WJ, Troy JB. Thalamic Visual Prosthesis. IEEE Trans Biomed Eng 2016; 63:1573-80. [DOI: 10.1109/tbme.2016.2567300] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
8
|
Yucel YH, Gupta N. A framework to explore the visual brain in glaucoma with lessons from models and man. Exp Eye Res 2015; 141:171-8. [DOI: 10.1016/j.exer.2015.07.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 06/29/2015] [Accepted: 07/09/2015] [Indexed: 01/13/2023]
|
9
|
Analysis of a method for establishing a model with more stable chronic glaucoma in rhesus monkeys. Exp Eye Res 2015; 131:56-62. [DOI: 10.1016/j.exer.2014.12.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Revised: 11/03/2014] [Accepted: 12/19/2014] [Indexed: 11/30/2022]
|
10
|
Abstract
In glaucoma, regardless of its etiology, retinal ganglion cells degenerate and eventually die. Although age and elevated intraocular pressure (IOP) are the main risk factors, there are still many mysteries in the pathogenesis of glaucoma. The advent of genome-wide microarray expression screening together with the availability of animal models of the disease has allowed analysis of differential gene expression in all parts of the eye in glaucoma. This review will outline the findings of recent genome-wide expression studies and discuss their commonalities and differences. A common finding was the differential regulation of genes involved in inflammation and immunity, including the complement system and the cytokines transforming growth factor β (TGFβ) and tumor necrosis factor α (TNFα). Other genes of interest have roles in the extracellular matrix, cell-matrix interactions and adhesion, the cell cycle, and the endothelin system.
Collapse
Affiliation(s)
- Tatjana C Jakobs
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts 02114
| |
Collapse
|
11
|
Song Y, Mu K, Wang J, Lin F, Chen Z, Yan X, Hao Y, Zhu W, Zhang H. Altered spontaneous brain activity in primary open angle glaucoma: a resting-state functional magnetic resonance imaging study. PLoS One 2014; 9:e89493. [PMID: 24586822 PMCID: PMC3933564 DOI: 10.1371/journal.pone.0089493] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Accepted: 01/22/2014] [Indexed: 02/07/2023] Open
Abstract
Background Previous studies demonstrated that primary open angle glaucoma (POAG) is associated with abnormal brain structure; however, little is known about the changes in the local synchronization of spontaneous activity. The main objective of this study was to investigate spontaneous brain activity in patients with POAG using regional homogeneity (ReHo) analysis based on resting state functional magnetic resonance imaging (rs-fMRI). Methodology/Principal Findings Thirty-nine POAG patients and forty-one age- and gender- matched healthy controls were finally included in the study. ReHo values were used to evaluate spontaneous brain activity and whole brain voxel-wise analysis of ReHo was carried out to detect differences by region in spontaneous brain activity between groups. Compared to controls, POAG patients showed increased ReHo in the right dorsal anterior cingulated cortex, the bilateral medial frontal gyrus and the right cerebellar anterior lobe, and decreased ReHo in the bilateral calcarine, bilateral precuneus gryus, bilateral pre/postcentral gyrus, left inferior parietal lobule and left cerebellum posterior lobe. A multiple linear regression analysis was performed to explore the relationships between clinical measures and ReHo by region showed significant group differences in the POAG group. Negative correlations were found between age and the ReHo values of the superior frontal gyrus (r = −0.323, p = 0.045), left calcarine (r = −0.357, p = 0.026) and inferior parietal lobule (r = −0.362, p = 0.024). A negative correlation was found between the ReHo values of the left precuneus and the cumulative mean defect (r = −0.400, p = 0.012). Conclusions POAG was associated with abnormal brain spontaneous activity in some brain regions and such changed regional activity may be associated with clinical parameters. Spontaneous brain activity may play a role in POAG initiation and progression.
Collapse
Affiliation(s)
- Yinwei Song
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ketao Mu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junming Wang
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fuchun Lin
- Wuhan Center for Magnetic Resonance, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
- * E-mail: (FL); (WZ); (HZ)
| | - Zhiqi Chen
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoqin Yan
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yonghong Hao
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenzhen Zhu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- * E-mail: (FL); (WZ); (HZ)
| | - Hong Zhang
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- * E-mail: (FL); (WZ); (HZ)
| |
Collapse
|
12
|
Formichella CR, Abella SK, Sims SM, Cathcart HM, Sappington RM. Astrocyte Reactivity: A Biomarker for Retinal Ganglion Cell Health in Retinal Neurodegeneration. ACTA ACUST UNITED AC 2014; 5. [PMID: 25133067 PMCID: PMC4131747 DOI: 10.4172/2155-9899.1000188] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Retinal ganglion cell (RGC) loss in glaucoma is sectorial in nature and preceded by deficits in axonal transport. Neuroinflammation plays an important role in the pathophysiology of glaucoma in the retina, optic nerve and visual centers of the brain, where it similarly appears to be regulated spatially. In a murine model, we examined the spatial characteristics of astrocyte reactivity (migration/proliferation, hypertrophy and GFAP expression) in healthy retina, retina with two glaucoma-related risk factors (aging and genetic predisposition) and glaucomatous retina and established relationships between these reactivity indices and the spatial organization of astrocytes as well as RGC health. Astrocyte reactivity was quantified by morphological techniques and RGC health was determined by uptake and transport of the neural tracer cholera toxin beta subunit (CTB). We found that: (1) astrocyte reactivity occurs in microdomains throughout glaucomatous retina as well as retina with risk factors for glaucoma, (2) these astrocyte microdomains are primarily differentiated by the degree of retinal area covered by the astrocytes within them and (3) percent retinal area covered by astrocytes is highly predictive of RGC health. Our findings suggest that microdomains of astrocyte reactivity are biomarkers for functional decline of RGCs. Based on current and emerging imaging technologies, diagnostic assessment of astrocytes in the nerve fiber layer could succeed in translating axonal transport deficits to a feasible clinical application.
Collapse
Affiliation(s)
- Cathryn R Formichella
- Department of Ophthalmology and Visual Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Simone K Abella
- Department of Ophthalmology and Visual Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Stephanie M Sims
- Department of Ophthalmology and Visual Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Heather M Cathcart
- Department of Ophthalmology and Visual Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Rebecca M Sappington
- Department of Ophthalmology and Visual Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee, USA ; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| |
Collapse
|
13
|
Affiliation(s)
- Caroline J. Zeiss
- Section of Comparative Medicine; Yale University School of Medicine; 375 Congress Ave New Haven CT 06520 USA
| |
Collapse
|