1
|
Nam RK, Benatar T, Wallis CJD, Kobylecky E, Amemiya Y, Sherman C, Seth A. MicroRNA-139 is a predictor of prostate cancer recurrence and inhibits growth and migration of prostate cancer cells through cell cycle arrest and targeting IGF1R and AXL. Prostate 2019; 79:1422-1438. [PMID: 31269290 DOI: 10.1002/pros.23871] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 05/21/2019] [Indexed: 12/27/2022]
Abstract
BACKGROUND We previously identified a panel of five microRNAs (miRNAs) associated with biochemical recurrence and metastasis following prostatectomy from prostate cancer patients using next-generation sequencing-based whole miRNome sequencing and quantitative polymerase chain reaction-based validation analysis. In this study, we examined the mechanism of action of miR-139-5p, one of the downregulated miRNAs identified in the panel. METHODS Using a cohort of 585 patients treated with radical prostatectomy, we examined the prognostic significance of miR-139 (dichotomized around the median) using the Kaplan-Meier method and Cox proportional hazard models. We validated these results using The Cancer Genome Atlas (TCGA) data. We created cell lines that overexpressed miR-139 to confirm its targets as well as examine pathways through which miR-139 may function using cell-based assays. RESULTS Low miR-139 expression was significantly associated with a variety of prognostic factors in prostate cancer, including Gleason score, pathologic stage, margin positivity, and lymph node status. MiR-139 expression was associated with prognosis: the cumulative incidence of biochemical recurrence and metastasis were significantly lower among patients with high miR-139 expression (P = .0004 and .038, respectively). Validation in the TCGA data set showed a significant association between dichotomized miR-139 expression and biochemical recurrence (odds ratio, 0.52; 95% confidence interval, 0.33-0.82). Overexpression of miR-139 in prostate cancer cells led to a significant reduction in cell proliferation and migration compared with control cells, with cells arrested in G2 of cell cycle. IGF1R and AXL were identified as potential targets of miR-139 based on multiple miRNA-binding sites in 3'-untranslated regions of both the genes and their association with prostate cancer growth pathways. Luciferase assays verified AXL and IGF1R as direct targets of miR-139. Furthermore, immunoblotting of prostate cancer cells demonstrated IGF1R and AXL protein expression were inhibited by miR-139 treatment, which was reversed by the addition of miR-139 antagomir. Examination of the molecular mechanism of growth inhibition by miR-139 revealed the downregulation of activated AKT and cyclin D1, with upregulation of the CDK inhibitor p21. CONCLUSIONS miR-139 is associated with improved prognosis in patients with localized prostate cancer, which may be mediated through downregulation of IGF1R and/or AXL and associated signaling pathway components.
Collapse
Affiliation(s)
- Robert K Nam
- Division of Urology, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Tania Benatar
- Platform Biological Sciences, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Christopher J D Wallis
- Division of Urology, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Elizabeth Kobylecky
- Platform Biological Sciences, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Yutaka Amemiya
- Genomics Core Facility, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Christopher Sherman
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Arun Seth
- Platform Biological Sciences, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada
- Genomics Core Facility, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
2
|
Paraboschi EM, Cardamone G, Rimoldi V, Duga S, Soldà G, Asselta R. miR-634 is a Pol III-dependent intronic microRNA regulating alternative-polyadenylated isoforms of its host gene PRKCA. Biochim Biophys Acta Gen Subj 2017; 1861:1046-1056. [PMID: 28212793 DOI: 10.1016/j.bbagen.2017.02.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 02/02/2017] [Accepted: 02/13/2017] [Indexed: 12/20/2022]
Abstract
BACKGROUND The protein kinase C alpha (PRKCA) gene, coding for a Th17-cell-selective kinase, shows a complex splicing pattern, with at least 2 stable alternative transcripts characterized by an alternative upstream polyadenylation site. Polymorphisms in this gene were associated with several conditions, including multiple sclerosis, asthma, schizophrenia, and cancer. The presence of a microRNA (miRNA), i.e. miR-634, within intron 15 of the PRKCA gene, suggests the intriguing possibility that this miRNA might play a role in the susceptibility to these pathologies. METHODS Here, we characterized miR-634 expression profile and searched for its putative targets using a combination of RT-PCR and gene reporter assays. RESULTS The quantitative analysis of PRKCA and miR-634 transcripts in a panel of human tissues and cell lines revealed discordant expression profiles, suggesting the presence of an independent miR-634 promoter and/or a possible direct role of miR-634 in modulating PRKCA expression. Functional studies demonstrated the existence of a miRNA-specific promoter, which was shown to be Pol-III-dependent. Furthermore, transfection experiments showed that miR-634 is able to target its host gene by specifically down-regulating the shorter alternative-polyadenylated isoforms. CONCLUSIONS MiR-634 is a Pol III-dependent intronic miRNA, which could target its host gene through a "first-order" negative feedback. GENERAL SIGNIFICANCE MiR-634 is one of the few characterized examples of Pol-III-dependent intronic miRNAs. Its independent transcription from the host gene suggests caution in using expression profiles of host genes as proxies for the expression of the corresponding intronic miRNAs.
Collapse
Affiliation(s)
- Elvezia Maria Paraboschi
- Department of Biomedical Sciences, Humanitas University, Via Manzoni 113, 20089, Rozzano, Milan, Italy
| | - Giulia Cardamone
- Department of Biomedical Sciences, Humanitas University, Via Manzoni 113, 20089, Rozzano, Milan, Italy
| | - Valeria Rimoldi
- Department of Biomedical Sciences, Humanitas University, Via Manzoni 113, 20089, Rozzano, Milan, Italy; Humanitas Clinical and Research Center, Via Manzoni 56, 20089, Rozzano, Milan, Italy
| | - Stefano Duga
- Department of Biomedical Sciences, Humanitas University, Via Manzoni 113, 20089, Rozzano, Milan, Italy; Humanitas Clinical and Research Center, Via Manzoni 56, 20089, Rozzano, Milan, Italy
| | - Giulia Soldà
- Department of Biomedical Sciences, Humanitas University, Via Manzoni 113, 20089, Rozzano, Milan, Italy; Humanitas Clinical and Research Center, Via Manzoni 56, 20089, Rozzano, Milan, Italy
| | - Rosanna Asselta
- Department of Biomedical Sciences, Humanitas University, Via Manzoni 113, 20089, Rozzano, Milan, Italy; Humanitas Clinical and Research Center, Via Manzoni 56, 20089, Rozzano, Milan, Italy.
| |
Collapse
|
3
|
Maurya AK, Vinayak M. Modulation of PKC signaling and induction of apoptosis through suppression of reactive oxygen species and tumor necrosis factor receptor 1 (TNFR1): key role of quercetin in cancer prevention. Tumour Biol 2015; 36:8913-24. [DOI: 10.1007/s13277-015-3634-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 06/01/2015] [Indexed: 02/06/2023] Open
|
4
|
Phorbol ester stimulates ethanolamine release from the metastatic basal prostate cancer cell line PC3 but not from prostate epithelial cell lines LNCaP and P4E6. Br J Cancer 2014; 111:1646-56. [PMID: 25137020 PMCID: PMC4200097 DOI: 10.1038/bjc.2014.457] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 07/09/2014] [Accepted: 07/21/2014] [Indexed: 12/11/2022] Open
Abstract
Background: Malignancy alters cellular complex lipid metabolism and membrane lipid composition and turnover. Here, we investigated whether tumorigenesis in cancer-derived prostate epithelial cell lines influences protein kinase C-linked turnover of ethanolamine phosphoglycerides (EtnPGs) and alters the pattern of ethanolamine (Etn) metabolites released to the medium. Methods: Prostate epithelial cell lines P4E6, LNCaP and PC3 were models of prostate cancer (PCa). PNT2C2 and PNT1A were models of benign prostate epithelia. Cellular EtnPGs were labelled with [1-3H]-Etn hydrochloride. PKC was activated with phorbol ester (TPA) and inhibited with Ro31-8220 and GF109203X. D609 was used to inhibit PLD (phospholipase D). [3H]-labelled Etn metabolites were resolved by ion-exchange chromatography. Sodium oleate and mastoparan were tested as activators of PLD2. Phospholipase D activity was measured by a transphosphatidylation reaction. Cells were treated with ionomycin to raise intracellular Ca2+ levels. Results: Unstimulated cell lines release mainly Etn and glycerylphosphorylEtn (GPEtn) to the medium. Phorbol ester treatment over 3h increased Etn metabolite release from the metastatic PC3 cell line and the benign cell lines PNT2C2 and PNT1A but not from the tumour-derived cell lines P4E6 and LNCaP; this effect was blocked by Ro31-8220 and GF109203X as well as by D609, which inhibited PLD in a transphosphatidylation reaction. Only metastatic PC3 cells specifically upregulated Etn release in response to TPA treatment. Oleate and mastoparan increased GPEtn release from all cell lines at the expense of Etn. Ionomycin stimulated GPEtn release from benign PNT2C2 cells but not from cancer-derived cell lines P4E6 or PC3. Ethanolamine did not stimulate the proliferation of LNCaP or PC3 cell lines but decreased the uptake of choline (Cho). Conclusions: Only the metastatic basal PC3 cell line specifically increased the release of Etn on TPA treatment most probably by PKC activation of PLD1 and increased turnover of EtnPGs. The phosphatidic acid formed will maintain a cancer phenotype through the regulation of mTOR. Ethanolamine released from cells may reduce Cho uptake, regulating the membrane PtdEtn:PtdCho ratio and influencing the action of PtdEtn-binding proteins such as RKIP and the anti-apoptotic hPEBP4. The work highlights a difference between LNCaP cells used as a model of androgen-dependent early stage PCa and androgen-independent PC3 cells used to model later refractory stage disease.
Collapse
|
5
|
O'Brian CA, Chu F, Bornmann WG, Maxwell DS. Protein kinase Cα and ε small-molecule targeted therapeutics: a new roadmap to two Holy Grails in drug discovery? Expert Rev Anticancer Ther 2014; 6:175-86. [PMID: 16445370 DOI: 10.1586/14737140.6.2.175] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Protein kinase (PK)Calpha and epsilon are rational targets for cancer therapy. However, targeted experimental therapeutics that inhibit PKCalpha or epsilon are unavailable. The authors established recently that covalent modification of an active-site cysteine in human PKCepsilon, Cys452, by small molecules, for example 2-mercaptoethanolamine, is necessary and sufficient to render PKCepsilon kinase-dead. Cys452 is conserved in only eleven human protein kinase genes, including PKCalpha. Therefore, the design of small molecules that bind PKC active sites with an electrophile substituent positioned proximal to the Cys452 side chain may lead to targeted therapeutics that selectively inhibit PKCepsilon, PKCalpha or other PKC isozymes.
Collapse
|
6
|
The "memory kinases": roles of PKC isoforms in signal processing and memory formation. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 122:31-59. [PMID: 24484697 DOI: 10.1016/b978-0-12-420170-5.00002-7] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The protein kinase C (PKC) isoforms, which play an essential role in transmembrane signal conduction, can be viewed as a family of "memory kinases." Evidence is emerging that they are critically involved in memory acquisition and maintenance, in addition to their involvement in other functions of cells. Deficits in PKC signal cascades in neurons are one of the earliest abnormalities in the brains of patients suffering from Alzheimer's disease. Their dysfunction is also involved in several other types of memory impairments, including those related to emotion, mental retardation, brain injury, and vascular dementia/ischemic stroke. Inhibition of PKC activity leads to a reduced capacity of many types of learning and memory, but may have therapeutic values in treating substance abuse or aversive memories. PKC activators, on the other hand, have been shown to possess memory-enhancing and antidementia actions. PKC pharmacology may, therefore, represent an attractive area for developing effective cognitive drugs for the treatment of many types of memory disorders and dementias.
Collapse
|
7
|
Lum MA, Pundt KE, Paluch BE, Black AR, Black JD. Agonist-induced down-regulation of endogenous protein kinase c α through an endolysosomal mechanism. J Biol Chem 2013; 288:13093-109. [PMID: 23508961 DOI: 10.1074/jbc.m112.437061] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Protein kinase C (PKC) isozymes undergo down-regulation upon sustained stimulation. Previous studies have pointed to the existence of both proteasome-dependent and -independent pathways of PKCα processing. Here we demonstrate that these down-regulation pathways are engaged in different subcellular compartments; proteasomal degradation occurs mainly at the plasma membrane, whereas non-proteasomal processing occurs in the perinuclear region. Using cholesterol depletion, pharmacological inhibitors, RNA interference, and dominant-negative mutants, we define the mechanisms involved in perinuclear accumulation of PKCα and identify the non-proteasomal mechanism mediating its degradation. We show that intracellular accumulation of PKCα involves at least two clathrin-independent, cholesterol/lipid raft-mediated pathways that do not require ubiquitination of the protein; one is dynamin-dependent and likely involves caveolae, whereas the other is dynamin- and small GTPase-independent. Internalized PKCα traffics through endosomes and is delivered to the lysosome for degradation. Supportive evidence includes (a) detection of the enzyme in EEA1-positive early endosomes, Rab7-positive late endosomes/multivesicular bodies, and LAMP1-positive lysosomes and (b) inhibition of its down-regulation by lysosome-disrupting agents and leupeptin. Only limited dephosphorylation of PKCα occurs during trafficking, with fully mature enzyme being the main target for lysosomal degradation. These studies define a novel and widespread mechanism of desensitization of PKCα signaling that involves endocytic trafficking and lysosome-mediated degradation of the mature, fully phosphorylated protein.
Collapse
Affiliation(s)
- Michelle A Lum
- The Eppley Institute, University of Nebraska Medical Center, Omaha, Nebraska 68198-5950, USA
| | | | | | | | | |
Collapse
|
8
|
Zheng D, Decker KF, Zhou T, Chen J, Qi Z, Jacobs K, Weilbaecher KN, Corey E, Long F, Jia L. Role of WNT7B-induced noncanonical pathway in advanced prostate cancer. Mol Cancer Res 2013; 11:482-93. [PMID: 23386686 DOI: 10.1158/1541-7786.mcr-12-0520] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Advanced prostate cancer is characterized by incurable castration-resistant progression and osteoblastic bone metastasis. While androgen deprivation therapy remains the primary treatment for advanced prostate cancer, resistance inevitably develops. Importantly, mounting evidence indicates that androgen receptor (AR) signaling continues to play a critical role in the growth of advanced prostate cancer despite androgen deprivation. While the mechanisms of aberrant AR activation in advanced prostate cancer have been extensively studied, the downstream AR target genes involved in the progression of castration resistance are largely unknown. Here, we identify WNT7B as a direct AR target gene highly expressed in castration-resistant prostate cancer (CRPC) cells. Our results show that expression of WNT7B is necessary for the growth of prostate cancer cells and that this effect is enhanced under androgen-deprived conditions. Further analyses reveal that WNT7B promotes androgen-independent growth of CRPC cells likely through the activation of protein kinase C isozymes. Our results also show that prostate cancer-produced WNT7B induces osteoblast differentiation in vitro through a direct cell-cell interaction, and that WNT7B is upregulated in human prostate cancer xenografts that cause an osteoblastic reaction when grown in bone. Taken together, these results suggest that AR-regulated WNT7B signaling is critical for the growth of CRPC and development of the osteoblastic bone response characteristic of advanced prostate cancer.
Collapse
Affiliation(s)
- Dali Zheng
- Center for Pharmacogenomics, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Kim H, Han SH, Quan HY, Jung YJ, An J, Kang P, Park JB, Yoon BJ, Seol GH, Min SS. Bryostatin-1 promotes long-term potentiation via activation of PKCα and PKCε in the hippocampus. Neuroscience 2012; 226:348-55. [PMID: 22986161 DOI: 10.1016/j.neuroscience.2012.08.055] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 08/24/2012] [Accepted: 08/27/2012] [Indexed: 11/16/2022]
Abstract
Activation of protein kinase C (PKC) by bryostatin-1 affects various functions of the central nervous system. We explored whether bryostatin-1 influenced synaptic plasticity via a process involving PKC. Our purpose was to examine whether bryostatin-1 affected the induction of hippocampal long-term potentiation (LTP) in Schaffer-collateral fibers (CA1 fibers) of the hippocampus, and/or influenced the intracellular Ca(2+) level of hippocampal neurons. We also determined the PKC isoforms involved in these processes. We found that bryostatin-1 strongly facilitated LTP induction, in a dose-dependent manner, upon single-theta burst stimulation (TBS). Further, intracellular Ca(2+) levels also increased with increasing concentration of bryostatin-1. The facilitative effects of bryostatin-1 in terms of LTP induction and enhancement of intracellular Ca(2+) levels were blocked by specific inhibitors of PKCα and PKCε, but not of PKCδ. Our results suggest that bryostatin-1 is involved in neuronal functioning and facilitates induction of LTP via activation of PKCα and/or PKCε.
Collapse
Affiliation(s)
- H Kim
- Department of Physiology and Biophysics, School of Medicine, Eulji University, Daejeon 301-746, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Human prostate cell lines from normal and tumourigenic epithelia differ in the pattern and control of choline lipid headgroups released into the medium on stimulation of protein kinase C. Br J Cancer 2011; 104:673-84. [PMID: 21266973 PMCID: PMC3049586 DOI: 10.1038/sj.bjc.6606077] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Background: Expression of protein kinase C alpha (PKCα) is elevated in prostate cancer (PCa); thus, we have studied whether the development of tumourigenesis in prostate epithelial cell lines modifies the normal pattern of choline (Cho) metabolite release on PKC activation. Methods: Normal and tumourigenic human prostate epithelial cell lines were incubated with [3H]-Cho to label choline phospholipids. Protein kinase C was activated with phorbol ester and blocked with inhibitors. Choline metabolites were resolved by ion-exchange chromatography. Phospholipase D (PLD) activity was measured by transphosphatidylation. Protein expression was detected by western blotting and/or RT–PCR. Choline uptake was measured on cells in monolayers over 60 min. Results: Normal prostate epithelial cell lines principally released phosphocholine (PCho) in contrast to tumourigenic lines, which released Cho. In addition, only with normal cell lines did PKC activation stimulate Cho metabolite release. Protein kinase C alpha expression varied between normal and tumourigenic cell lines but all showed a PKCα link to myristoylated alanine-rich C kinase substrate (MARCKS) protein. The five cell lines differed in Cho uptake levels, with normal PNT2C2 line cells showing highest uptake over 60 min incubation. Normal and tumourigenic cell lines expressed mRNA for PLD1 and PLD2, and showed similar levels of basal and PKC-activated PLD activity. Conclusions: The transition to tumourigenesis in prostate epithelial cell lines results in major changes to Cho metabolite release into the medium and PKC signalling to phosphatidylcholine turnover. The changes, which reflect the metabolic and proliferative needs of tumourigenic cells compared with untransformed cells, could be significant for both diagnosis and treatment.
Collapse
|
11
|
Chen L, Giorgianni F, Beranova-Giorgianni S. Characterization of the phosphoproteome in LNCaP prostate cancer cells by in-gel isoelectric focusing and tandem mass spectrometry. J Proteome Res 2010; 9:174-8. [PMID: 20044836 DOI: 10.1021/pr900338q] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Reversible protein phosphorylation forms the basis of cell signaling networks. Aberrations in protein phosphorylation have been linked to human diseases including cancer. Phosphoproteomics has recently emerged as an approach that focuses on analysis of protein phosphorylation on a global scale. We have recently developed a new methodology, termed in-gel IEF LC-MS/MS, and we have adapted this methodology for phosphoproteome analysis. Here, we report on the application of in-gel IEF LC-MS/MS to the mapping of the phosphoproteome in the LNCaP human prostate cancer cell line. The analytical methodology used in the study included separation of the LNCaP proteins by in-gel isoelectric focusing (IEF), digestion of the proteins with trypsin, enrichment of the digests for phosphopeptides with Immobilized Metal Ion Affinity Chromatography (IMAC), analysis of the enriched digests by LC-MS/MS, and identification of the phosphorylated peptides/proteins through searches of a protein sequence database. With this analytical platform, we have characterized over 600 different phosphorylation sites in 296 phosphoproteins. This panel of the LNCaP phosphoproteins is 3-fold larger than the panel obtained in our previous work, which attests to the power of the chosen analytical methodology. The characterized phosphoproteins are functionally diverse and include a number of proteins relevant to cancer.
Collapse
Affiliation(s)
- Li Chen
- Department of Pharmaceutical Sciences, Charles B Stout Neuroscience Mass Spectrometry Laboratory, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | | | | |
Collapse
|
12
|
Protein kinase C is inhibited by bisphosphonates in prostate cancer PC-3 cells. Eur J Pharmacol 2009; 627:348-53. [PMID: 19903468 DOI: 10.1016/j.ejphar.2009.10.067] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Revised: 10/08/2009] [Accepted: 10/26/2009] [Indexed: 11/23/2022]
Abstract
Bisphosphonates are expected to be effective at preventing tumor metastasis to bone tissue. Since protein kinase C (PKC) plays a crucial role in cancer progression, we examined the effect of bisphosphonates on PKC expression to clarify the mechanism behind the inhibition of the bone metastasis of prostate cancer by bisphosphonates. We found that pamidronate inhibits PKC protein expression and PKC activity in prostate cancer PC-3 cells. PKC protein expression was markedly reduced by treatment with 100 microM of pamidronate. The inhibitory effect of PKC expression by pamidronate was specific for PKCalpha and PKCzeta. Nitrogen-containing bisphosphonates are known to inhibit the mevalonate pathway, but the effect of pamidronate on PKC expression was not due to the inhibition of this pathway. Urokinase-type plasminogen activator (uPA) is one of the critical proteins in tumor metastasis and decreased in bisphosphonate-treated PC-3 cells. We also showed that uPA expression was suppressed by PKC inhibitors (calphostin C and staurosporine) and induced by a PKC activator (PMA) in PC-3 cells, suggesting that the inhibition of uPA by bisphosphonates is involved in PKC inhibition. This is the first finding that bisphosphonates suppress PKC expression in cancer cells. These results strongly suggest that one of the mechanisms behind the inhibitory effect of bisphosphonates on tumor bone metastasis is mediated by PKC inhibition.
Collapse
|
13
|
Batarseh A, Giatzakis C, Papadopoulos V. Phorbol-12-myristate 13-acetate acting through protein kinase Cepsilon induces translocator protein (18-kDa) TSPO gene expression. Biochemistry 2009; 47:12886-99. [PMID: 18975922 DOI: 10.1021/bi8012643] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Translocator protein (TSPO) is an 18-kDa cholesterol-binding protein that is expressed at high levels in steroid synthesizing and several cancer cells where it is involved in steroidogenesis and cell proliferation, respectively. The factors regulating Tspo expression are unknown. We analyzed Tspo transcriptional responses to the tumor promoter, phorbol-12-myristate 13-acetate (PMA), in cells with varying TSPO levels. PMA induced Tspo promoter activity and Tspo mRNA levels in TSPO-poor nonsteroidogenic cells (NIH-3T3 fibroblasts and COS-7 kidney) but not in TSPO-rich steroidogenic cells (MA-10 Leydig) with high basal Tspo transcriptional activity. The stimulatory effect of PMA was mediated by an 805-515-bp region upstream of the transcription start site. Electrophoretic mobility shift assay (EMSA) revealed that PMA induced binding of c-jun and GA-binding protein transcription factor (GABP-alpha) to their respective activator protein 1 (AP1) and v-ets erythroblastosis virus E26 oncogene homologue (Ets) sites in this region. Protein kinase C (PKC)-specific inhibitors blocked PMA induction of Tspo promoter activity with an inhibition profile suggestive of involvement of PKCepsilon. PKCepsilon expression correlated with TSPO content in the three cell lines. In NIH-3T3 cells, PKCepsilon overexpression induced Tspo promoter activity and mRNA levels and enhanced PMA-induced up regulation of c-jun and TSPO. In MA-10 cells, a PKCepsilon-specific translocation inhibitor peptide reduced basal Tspo promoter activity. PKCepsilon siRNA pool reduced PKCepsilon and TSPO levels in MA-10 cells indicating a role for PKCepsilon in regulating TSPO expression. Taken together, these data suggest that elevated TSPO expression in steroidogenic cells may be due to high constitutive expression of PKCepsilon that renders them unresponsive to further induction while PMA activation of PKCepsilon drives inducible TSPO expression in nonsteroidogenic cells, likely through AP1 and Ets.
Collapse
Affiliation(s)
- Amani Batarseh
- Department of Biochemistry & Molecular and Cell Biology, Georgetown University Medical Center, Washington, DC 20057, USA
| | | | | |
Collapse
|
14
|
Cameron AJ, Procyk KJ, Leitges M, Parker PJ. PKC alpha protein but not kinase activity is critical for glioma cell proliferation and survival. Int J Cancer 2008; 123:769-79. [PMID: 18508315 DOI: 10.1002/ijc.23560] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Protein kinase C alpha (PKCalpha) has been implicated in tumor development with high levels of PKCalpha expression being associated with various malignancies including glioblastomas and tumors of the breast and prostate. To account for its upregulation in these cancers, studies have suggested that PKCalpha plays a role in promoting cell survival. Here we show by siRNA depletion in U87MG glioma cells that a critical threshold level of PKCalpha protein expression is essential for their growth in the presence of serum and for their survival following serum deprivation. Derivation of PKCalpha wt and KO mouse embryo fibroblast cell lines confirms a role for PKCalpha in protecting cells from apoptosis induced by serum deprivation. Notably, PKCalpha was found to mediate chemo-protection in these fibroblastic cell lines. In U87MG cells PKCalpha does not confer chemoprotection though this likely reflects growth arrest associated with its depletion. To determine the requirements for catalytic function, comparison was made between distinct classes of PKC inhibitors. In contrast to loss of PKCalpha protein, inhibition of PKC kinase activity in glioma cell lines does not significantly inhibit growth or survival. Conversely, inhibition with calphostin C, which targets the regulatory domain of PKC, potently inhibits proliferation and induces apoptosis. Evidence is presented that it is the fully phosphorylated, folded form of PKCalpha that confers this activity-independent behaviour. These results indicate an essential pro-proliferative and pro-survival role for PKCalpha in glioma but question the use of ATP competitive inhibitors as therapeutics, either alone, or in combination with chemotoxic agents.
Collapse
Affiliation(s)
- Angus J Cameron
- Protein Phosphorylation Laboratory, Cancer Research UK, London Research Institute, Lincoln's Inn Fields Laboratories, 44 Lincoln's Inn Fields, WC2A 3PX London, United Kingdom
| | | | | | | |
Collapse
|
15
|
Win HY, Acevedo-Duncan M. Atypical protein kinase C phosphorylates IKKalphabeta in transformed non-malignant and malignant prostate cell survival. Cancer Lett 2008; 270:302-11. [PMID: 18571841 DOI: 10.1016/j.canlet.2008.05.023] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Revised: 04/01/2008] [Accepted: 05/15/2008] [Indexed: 11/19/2022]
Abstract
Mechanistic pathways involving atypical protein kinase C-iota (aPKC-iota) have been targeted in various cancer cells such as lung cancer, brain and prostate due to PKCiota's antiapoptotic function, and role in cell proliferation and cell survival. In the current study, we examined the involvement of PKC-iota in the NF-kappaB pathway following treatment of prostate cells with the pro-inflammatory cytokine tumor necrosis factor alpha (TNFalpha). Results demonstrated that androgen-independent DU-145 prostate carcinoma is insensitive to TNFalpha while transformed non-tumorigenic prostate RWPE-1 cells showed a slight sensitivity to TNFalpha. However, androgen-dependent LNCaP prostate cells are more sensitive to TNFalpha treatment and undergo apoptosis. Results demonstrated that in DU-145 cells, TNFalpha-induced PKC-iota in phosphorylation of IKKalphabeta. In RWPE-1 cells, PKC-zeta phosphorylates IKKalphabeta. Degradation of IkappaBalpha was observed in all three cell lines, allowing NF-kappaB/p65 translocation to the nucleus. Although, IKKalpha is weakly activated in LNCaP cells, the upstream kinase phosphorylation of IKKalphabeta via aPKCs was not observed. Hence, aPKCs may play a role in activation of NFkappaB pathway in prostate cancer cells.
Collapse
Affiliation(s)
- Hla Y Win
- Department of Chemistry, University of South Florida, James A. Haley Veteran Hospital, 13000 Bruce B. Downs Blvd. VAR 151, Tampa, FL 33612, USA
| | | |
Collapse
|
16
|
Shenouda NS, Sakla MS, Newton LG, Besch-Williford C, Greenberg NM, MacDonald RS, Lubahn DB. Phytosterol Pygeum africanum regulates prostate cancer in vitro and in vivo. Endocrine 2007; 31:72-81. [PMID: 17709901 DOI: 10.1007/s12020-007-0014-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 11/27/2022]
Abstract
BACKGROUND Prostate cancer is an important public health problem. It is an excellent candidate disease for chemoprevention because prostate cancer is typically slow growing and is usually diagnosed in elderly males. Pygeum africanum (Prunus africana or Rosaceae) is an African prune (plum) tree found in tropical Africa. An extract from the bark of Pygeum africanum has been used in Europe as a prevention and treatment of prostate disorders including benign prostatic hypertrophy (BPH). More recently in the USA, the phytotherapeutic preparations of Pygeum africanum and Saw palmetto have been marketed for prostate health including prostate cancer prevention and treatment. METHODS The anti-cancer potential of Pygeum africanum has been tested both in vitro (PC-3 and LNCaP cells) and in vivo (TRAMP mouse model). RESULTS In tissue culture, ethanolic extracts (30%) of Pygeum africanum inhibited the growth of PC-3 and LNCaP cells; induced apoptosis and altered cell kinetics; down regulated ERalpha and PKC-alpha protein, and demonstrated good binding ability to both mouse uterine estrogen receptors and LNCaP human androgen receptors. TRAMP mice fed Pygeum africanum showed a significant reduction (P = 0.034) in prostate cancer incidence (35%) compared to casein fed mice (62.5%). CONCLUSION Pygeum africanum, which is widely used in Europe and USA for treatment of BPH, has a significant role in regulation of prostate cancer both in vitro and in vivo and therefore may be a useful supplement for people at high risk for developing prostate cancer.
Collapse
Affiliation(s)
- Nader S Shenouda
- Department of Biochemistry, University of Missouri-Columbia, 920 East Campus Drive, 110A ASRC, Columbia, MO 65211, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Bemis DL, Capodice JL, Anastasiadis AG, Katz AE, Buttyan R. Zyflamend, a unique herbal preparation with nonselective COX inhibitory activity, induces apoptosis of prostate cancer cells that lack COX-2 expression. Nutr Cancer 2006; 52:202-12. [PMID: 16201851 DOI: 10.1207/s15327914nc5202_10] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Cyclooxygenase (COX) inhibitors have suppressive effects on several types of cancer cells including prostate cancer. In this study, we considered the potential COX-inhibitory activity of a unique anti-inflammatory herbal preparation (Zyflamend; New Chapter, Inc., Brattleboro, VT) and analyzed its effects on the human prostate cancer cell line LNCaP. COX inhibitory activity of Zyflamend was determined by a spectrophotometric-based assay using purified ovine COX-1 and COX-2 enzymes. Effects of Zyflamend on LNCaP cell growth and apoptosis in vitro were assessed by cell counting, Western blot detection of poly ADP-ribose polymerase (PARP) cleavage, and measurement of caspase-3 activity in treated and control cell extracts. Western blotting techniques were conducted to determine the effects of this herbal preparation on the expression of the cell signaling proteins, p21, androgen receptor (AR), phospho-protein kinase C (pPKC)(alpha/beta), and phospho (p)Stat3. The phospohorylation status of several signal transduction phosphoproteins was profiled using a high-throughput phosphoprotein screening assay in treated cells and compared to controls. Zyflamend dramatically decreased COX-1 and COX-2 enzymatic activity. Elevated p21 expression coincided with attenuated cell growth following treatment of LNCaP cells with Zyflamend. PARP cleavage fragments were evident, and caspase-3 activity was upregulated over the control indicating the ability of Zyflamend to induce apoptosis of these cells. Androgen receptor expression levels declined by 40%, and decreases were observed in the active forms of Stat3 and PKC(alpha/beta) in Zyflamend-treated LNCaP cells. Zyflamend inhibited both COX-1 and COX-2 enzymatic activities, suppressed cell growth, and induced apoptosis in LNCaP cells. However, our data suggests that the effects are likely due to COX-independent mechanisms potentially involving enhanced expression of p21 and reduced expression of AR, pStat3, and pPKC(alpha/beta).
Collapse
Affiliation(s)
- Debra L Bemis
- Department of Urology, Columbia University Medical Center, New York, NY 10032, USA.
| | | | | | | | | |
Collapse
|
18
|
Stangelberger A, Schally AV, Varga JL, Zarandi M, Cai RZ, Baker B, Hammann BD, Armatis P, Kanashiro CA. Inhibition of human androgen-independent PC-3 and DU-145 prostate cancers by antagonists of bombesin and growth hormone releasing hormone is linked to PKC, MAPK and c-jun intracellular signalling. Eur J Cancer 2005; 41:2735-44. [PMID: 16291086 DOI: 10.1016/j.ejca.2005.08.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2005] [Revised: 07/26/2005] [Accepted: 08/02/2005] [Indexed: 11/29/2022]
Abstract
Bombesin/gastrin-releasing peptide (BN/GRP) antagonists RC-3940-II and RC-3940-Et, and growth hormone-releasing hormone (GHRH) antagonists MZ-J-7-118 and RC-J-29-18 inhibit the growth of human androgen-independent PC-3 and DU-145 prostate cancers in nude mice. Additive inhibitory effects were observed after treatment with both classes of analogs. In the present study, we investigated the effects of these antagonists on intracellular signalling pathways of protein kinase C (PKC), mitogen activated protein kinases (MAPK) and c-fos and c-jun oncogenes that are involved in tumour cell proliferation. In PC-3 tumours, antagonists of BN/GRP and GHRH decreased significantly the expression of PKC isoforms alpha (alpha), eta (eta) and zeta (zeta) and increased that of delta (delta) PKC protein. MAPK was not detectable. In DU-145 tumours, which constitutively express MAPK, all treatments strongly decreased the levels of p42/44 MAPK. Treatment with the antagonists tended to reduce m-RNA for c-jun in both tumour models. In proliferation assays in vitro, inhibitors of PKC and MAPK diminished growth of DU-145 and PC-3 cells. These findings suggest that antagonists of BN/GRP and GHRH inhibit the growth of androgen-independent prostate cancer by affecting intracellular signalling mechanisms of PKC, MAPK and c-jun.
Collapse
Affiliation(s)
- Anton Stangelberger
- Endocrine, Polypeptide and Cancer Institute, Veterans Affairs Medical Center, 1601 Perdido St., New Orleans, LA 70112-1262, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Powell CT, Yin L. Overexpression of PKCε sensitizes LNCaP human prostate cancer cells to induction of apoptosis by bryostatin 1. Int J Cancer 2005; 118:1572-6. [PMID: 16184549 DOI: 10.1002/ijc.21511] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Phorbol 12-myristate 13-acetate (PMA)-induced apoptosis of androgen sensitive LNCaP human prostate cancer cells is a well known phenomenon that involves prolonged translocation of multiple protein kinase C (PKC) isozymes to nonnuclear membranes. We have shown recently that PMA-induced death of C4-2 cells, androgen hypersensitive derivatives of LNCaP cells, requires both PKCdelta and a redundant pathway that includes PKCs alpha and epsilon. In contrast, it has been reported that overexpression of murine PKCepsilon in LNCaP cells renders those cells resistant to PMA-induced death, as well as androgen insensitive. Here we report that inducible or constitutive overexpression of human PKCepsilon does not alter the sensitivity of LNCaP cells to either PMA or androgen, nor does it alter expression of caveolin-1 or phosphorylated Rb, reported effects of overexpression of murine PKCepsilon. Moreover, overexpression of very high amounts of PKCepsilon sensitized LNCaP cells to induction of apoptosis by bryostatin 1, a non tumor-promoting activator and down-regulator of PKC isozymes that blocks PMA-induced apoptosis of parental LNCaP cells, mimicked our previous results with overexpression of PKCalpha in LNCaP cells. Given reports that overexpression of PKCepsilon is frequent in human prostate tumors, our results may have important implications for a potential prostate cancer therapy.
Collapse
Affiliation(s)
- C Thomas Powell
- Department of Cancer Biology, Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, OH 44195, USA.
| | | |
Collapse
|
20
|
Edwards J, Bartlett JMS. The androgen receptor and signal-transduction pathways in hormone-refractory prostate cancer. Part 1: Modifications to the androgen receptor. BJU Int 2005; 95:1320-6. [PMID: 15892825 DOI: 10.1111/j.1464-410x.2005.05526.x] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Joanne Edwards
- Section of Surgical and Translational Research, Division of Cancer and Molecular Pathology, University Department of Surgery, Glasgow Royal Infirmary, Glasgow, Scotland, UK.
| | | |
Collapse
|
21
|
Edwards J, Bartlett JMS. The androgen receptor and signal-transduction pathways in hormone-refractory prostate cancer. Part 2: Androgen-receptor cofactors and bypass pathways. BJU Int 2005; 95:1327-35. [PMID: 15892826 DOI: 10.1111/j.1464-410x.2005.05527.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Joanne Edwards
- Section of Surgical and Translational Research, Division of Cancer and Molecular Pathology, University Department of Surgery, Glasgow Royal Infirmary, Glasgow, Scotland, UK.
| | | |
Collapse
|