1
|
Cheng M, Qiang Y, Wu Y, Tong X, Tie Y, Sun Z, Guan S, Xu L, Xu P, Li X, Xue M, Zhou X. Multi-omic approaches provide insights into the molecular mechanisms of Sojae semen germinatum water extract against overactive bladder. Food Res Int 2024; 175:113746. [PMID: 38129051 DOI: 10.1016/j.foodres.2023.113746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 11/03/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023]
Abstract
Sojae semen germinatum (SSG) is derived from mature soybean seeds that have been germinated and dried, typically with sprouts measuring approximately 0.5 cm in length. SSG is traditionally known for its properties in clearing heat and moisture. Nevertheless, limited information was reported on the effects and mechanisms of SSG in alleviating urinary symptoms. This study employed urodynamic parameters to investigate the therapeutic effect of SSG water extract on overactive bladder (OAB) in the rat model with benign prostatic hyperplasia. Through a combination of transcriptomic and metabolomic analyses, the pathways and key proteins of the SSG treatment for OAB were identified and validated by ELISA and Western blotting. Furthermore, network pharmacology elucidated the roles of SSG's isoflavones acting on the target which was identified by above-mentioned multi-omics analysis. Our results indicate that SSG water extract significantly mitigated OAB by down-regulating the PGE2/EP1/PLCβ2/p-MLC signaling pathway. It was speculated that the active ingredient in the SSG on EP1 was genistein. This study provided valuable insights into the molecular mechanisms of SSG water extract, emphasizing the multi-target characteristics and critical pathways in improving OAB. Furthermore, this study contributes to the potential utilization of SSG as a functional food.
Collapse
Affiliation(s)
- Mingchang Cheng
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Yining Qiang
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Yushan Wu
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Xinyi Tong
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Yan Tie
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Zhihui Sun
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Shenghan Guan
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Liping Xu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Pingxiang Xu
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Xiaorong Li
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Ming Xue
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Xuelin Zhou
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
2
|
Maxwell SE, Leo MD, Malysz J, Petkov GV. Age-dependent decrease in TRPM4 channel expression but not trafficking alters urinary bladder smooth muscle contractility. Physiol Rep 2021; 9:e14754. [PMID: 33625779 PMCID: PMC7903938 DOI: 10.14814/phy2.14754] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 11/24/2022] Open
Abstract
During development, maturation, or aging, the expression and function of urinary bladder smooth muscle (UBSM) ion channels can change, thus affecting micturition. Increasing evidence supports a novel role of transient receptor potential melastatin‐4 (TRPM4) channels in UBSM physiology. However, it remains unknown whether the functional expression of these key regulatory channels fluctuates in UBSM over different life stages. Here, we examined TRPM4 channel protein expression (Western blot) and the effects of TRPM4 channel inhibitors, 9‐phenanthrol and glibenclamide, on phasic contractions of UBSM isolated strips obtained from juvenile (UBSM‐J, 5–9 weeks old) and adult (UBSM‐A, 6–18 months old) male guinea pigs. Compared to UBSM‐J, UBSM‐A displayed a 50–70% reduction in total TRPM4 protein expression, while the surface‐to‐intracellular expression ratio (channel trafficking) remained the same in both age groups. Consistent with the reduced total TRPM4 protein expression in UBSM‐A, 9‐phenanthrol showed lower potencies and/or maximum efficacies in UBSM‐A than UBSM‐J for inhibiting amplitude and muscle force of spontaneous and 20 mM KCl‐induced phasic contractions. Compared to 9‐phenanthrol, glibenclamide also attenuated both spontaneous and KCl‐induced contractions, but with less pronounced differential effects in UBSM‐A and UBSM‐J. In both age groups, regardless of the overall reduced total TRPM4 protein expression in UBSM‐A, cell surface TRPM4 protein expression (~80%) predominated over its intracellular fraction (~20%), revealing preserved channel trafficking mechanisms toward the cell membrane. Collectively, this study reports novel findings illuminating a fundamental physiological role for TRPM4 channels in UBSM function that fluctuates with age.
Collapse
Affiliation(s)
- Sarah E Maxwell
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| | - M Dennis Leo
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| | - John Malysz
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Georgi V Petkov
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA.,Department of Pharmacology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA.,Department of Urology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
3
|
Malysz J, Petkov GV. Urinary bladder smooth muscle ion channels: expression, function, and regulation in health and disease. Am J Physiol Renal Physiol 2020; 319:F257-F283. [PMID: 32628539 PMCID: PMC7473901 DOI: 10.1152/ajprenal.00048.2020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 06/21/2020] [Accepted: 06/28/2020] [Indexed: 12/17/2022] Open
Abstract
Urinary bladder smooth muscle (UBSM), also known as detrusor smooth muscle, forms the bladder wall and ultimately determines the two main attributes of the organ: urine storage and voiding. The two functions are facilitated by UBSM relaxation and contraction, respectively, which depend on UBSM excitability shaped by multiple ion channels. In this review, we summarize the current understanding of key ion channels establishing and regulating UBSM excitability and contractility. They include excitation-enhancing voltage-gated Ca2+ (Cav) and transient receptor potential channels, excitation-reducing K+ channels, and still poorly understood Cl- channels. Dynamic interplay among UBSM ion channels determines the overall level of Cav channel activity. The net Ca2+ influx via Cav channels increases global intracellular Ca2+ concentration, which subsequently triggers UBSM contractility. Here, for each ion channel type, we describe UBSM tissue/cell expression (mRNA and protein) profiles and their role in regulating excitability and contractility of UBSM in various animal species, including the mouse, rat, and guinea pig, and, most importantly, humans. The currently available data reveal certain interspecies differences, which complicate the translational value of published animal research results to humans. This review highlights recent developments, findings on genetic knockout models, pharmacological data, reports on UBSM ion channel dysfunction in animal bladder disease models, and the very limited human studies currently available. Among all gaps in present-day knowledge, the unknowns on expression and functional roles for ion channels determined directly in human UBSM tissues and cells under both normal and disease conditions remain key hurdles in the field.
Collapse
Affiliation(s)
- John Malysz
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Georgi V Petkov
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee
- Department of Pharmacology, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee
- Department of Urology, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee
| |
Collapse
|
4
|
Malysz J, Maxwell SE, Yarotskyy V, Petkov GV. TRPM4 channel inhibitors 9-phenanthrol and glibenclamide differentially decrease guinea pig detrusor smooth muscle whole-cell cation currents and phasic contractions. Am J Physiol Cell Physiol 2020; 318:C406-C421. [PMID: 31851526 DOI: 10.1152/ajpcell.00055.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nonselective cation channels, consistent with transient receptor potential melastatin-4 (TRPM4), regulate detrusor smooth muscle (DSM) function. TRPM4 channels can exist as homomers or assemble with sulfonylurea receptors (SURs) as complexes. We evaluated contributions of TRPM4/SUR-TRPM4 channels to DSM excitability and contractility by examining the effects of TRPM4/SUR-TRPM4 channel modulators 9-phenanthrol, glibenclamide, and diazoxide on freshly-isolated guinea pig DSM cells (amphotericin-B perforated patch-clamp electrophysiology) and mucosa-free DSM strips (isometric tension recordings). In DSM cells, complete removal of extracellular Na+ decreased voltage-step-induced cation (non-K+ selective) currents. At high positive membrane potentials, 9-phenanthrol at 100 μM attenuated voltage step-induced currents more effectively than at 30 μM, revealing concentration-dependent, voltage-sensitive inhibition. In comparison to 9-phenanthrol, glibenclamide (100 μM) displayed lower inhibition of cation currents. In the presence of glibenclamide (100 μM), 9-phenanthrol (100 μM) further decreased the currents. The SUR-TRPM4 complex activator diazoxide (100-300 μM) weakly inhibited the currents. 9-Phenanthrol, but not glibenclamide or diazoxide, increased cell capacitance (a cell surface area indicator). In contractility studies, glibenclamide displayed lower potencies than 9-phenanthrol attenuating spontaneous and 20 mM KCl-induced DSM phasic contractions. While both compounds showed similar maximum inhibitions on DSM spontaneous phasic contractions, glibenclamide was generally less efficacious on 20 mM KCl-induced phasic contractions. In summary, the observed differential effects of 9-phenanthrol and glibenclamide on DSM excitability and contractility support unique mechanisms for the two compounds. The data suggest that SUR-TRPM4 complexes do not contribute to DSM function. This study advances our understanding of pharmacological effects of glibenclamide and 9-phenanthrol on DSM cell cation currents.
Collapse
Affiliation(s)
- John Malysz
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Sarah E Maxwell
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Viktor Yarotskyy
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Georgi V Petkov
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee
| |
Collapse
|
5
|
Fry CH, McCloskey KD. Spontaneous Activity and the Urinary Bladder. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1124:121-147. [PMID: 31183825 DOI: 10.1007/978-981-13-5895-1_5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The urinary bladder has two functions: to store urine, when it is relaxed and highly compliant; and void its contents, when intravesical pressure rises due to co-ordinated contraction of detrusor smooth muscle in the bladder wall. Superimposed on this description are two observations: (1) the normal, relaxed bladder develops small transient increases of intravesical pressure, mirrored by local bladder wall movements; (2) pathological, larger pressure variations (detrusor overactivity) can occur that may cause involuntary urine loss and/or detrusor overactivity. Characterisation of these spontaneous contractions is important to understand: how normal bladder compliance is maintained during filling; and the pathophysiology of detrusor overactivity. Consideration of how spontaneous contractions originate should include the structural complexity of the bladder wall. Detrusor smooth muscle layer is overlain by a mucosa, itself a complex structure of urothelium and a lamina propria containing sensory nerves, micro-vasculature, interstitial cells and diffuse muscular elements.Several theories, not mutually exclusive, have been advanced for the origin of spontaneous contractions. These include intrinsic rhythmicity of detrusor muscle; modulation by non-muscular pacemaking cells in the bladder wall; motor input to detrusor by autonomic nerves; regulation of detrusor muscle excitability and contractility by the adjacent mucosa and spontaneous contraction of elements of the lamina propria. This chapter will consider evidence for each theory in both normal and overactive bladder and how their significance may vary during ageing and development. Further understanding of these mechanisms may also identify novel drug targets to ameliorate the clinical consequences of large contractions associated with detrusor overactivity.
Collapse
Affiliation(s)
- Christopher H Fry
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK.
| | - Karen D McCloskey
- School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| |
Collapse
|
6
|
The Modulation Of Detrusor Contractility By Agents Influencing Ion Channel Activity. EUROPEAN PHARMACEUTICAL JOURNAL 2018. [DOI: 10.2478/afpuc-2018-0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Abstract
Background: This study specified the role of several significant ion channels regulating the metabolism of calcium ions in contraction and relaxation of human detrusor muscle in order to identify possible target for future drugs that are capable of treating diseases resulting from impaired detrusor activity, e.g. overactive bladder. Although this disease can be successfully treated with muscarinic receptor antagonists or β3 agonist, many patients may not be suitable for chronic therapy, especially due to the relatively high side effects of the treatment.
Material and Methods: The study used the isolated detrusor tissue samples, which were obtained from the macroscopic healthy tissue of urinary bladder from 19 patients undergoing a total prostatectomy because of localized prostate cancer. Each biological sample was prepared into 8 strips. We used oxybutynin and mirabegron as control drugs and several blockers of specific subtypes calcium and potassium ion channels as tested substances. The contractility of bladder was investigated by an organ tissue bath method in vitro and contraction was induced by carbachol.
Results: The amplitude of contraction was successfully decreased by positive control drugs and, from tested agents, the comparable effect had the substance capable of influencing IP3 receptors and Orai-STIM channels and combination consisting of drugs possessing an inhibitory effect on IP3 receptors, L- and T-type voltage-gated calcium channels and Orai-STIM channels.
Conclusion: The present work represents a new finding about handling Ca2+ in urinary bladder contraction and pointed to a dominant role of IP3 receptor-mediated pathway in the regulation of Ca2+ metabolism, which may represent a future strategy in pharmacotherapy of impaired detrusor activity.
Collapse
|
7
|
Mahapatra C, Brain KL, Manchanda R. A biophysically constrained computational model of the action potential of mouse urinary bladder smooth muscle. PLoS One 2018; 13:e0200712. [PMID: 30048468 PMCID: PMC6061979 DOI: 10.1371/journal.pone.0200712] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 07/02/2018] [Indexed: 11/19/2022] Open
Abstract
Urinary incontinence is associated with enhanced spontaneous phasic contractions of the detrusor smooth muscle (DSM). Although a complete understanding of the etiology of these spontaneous contractions is not yet established, it is suggested that the spontaneously evoked action potentials (sAPs) in DSM cells initiate and modulate the contractions. In order to further our understanding of the ionic mechanisms underlying sAP generation, we present here a biophysically detailed computational model of a single DSM cell. First, we constructed mathematical models for nine ion channels found in DSM cells based on published experimental data: two voltage gated Ca2+ ion channels, an hyperpolarization-activated ion channel, two voltage-gated K+ ion channels, three Ca2+-activated K+ ion channels and a non-specific background leak ion channel. The ion channels' kinetics were characterized in terms of maximal conductances and differential equations based on voltage or calcium-dependent activation and inactivation. All ion channel models were validated by comparing the simulated currents and current-voltage relations with those reported in experimental work. Incorporating these channels, our DSM model is capable of reproducing experimentally recorded spike-type sAPs of varying configurations, ranging from sAPs displaying after-hyperpolarizations to sAPs displaying after-depolarizations. The contributions of the principal ion channels to spike generation and configuration were also investigated as a means of mimicking the effects of selected pharmacological agents on DSM cell excitability. Additionally, the features of propagation of an AP along a length of electrically continuous smooth muscle tissue were investigated. To date, a biophysically detailed computational model does not exist for DSM cells. Our model, constrained heavily by physiological data, provides a powerful tool to investigate the ionic mechanisms underlying the genesis of DSM electrical activity, which can further shed light on certain aspects of urinary bladder function and dysfunction.
Collapse
Affiliation(s)
- Chitaranjan Mahapatra
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Keith L. Brain
- School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, England, United Kingdom
| | - Rohit Manchanda
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| |
Collapse
|
8
|
Hurtado R, Smith CS. Hyperpolarization-activated cation and T-type calcium ion channel expression in porcine and human renal pacemaker tissues. J Anat 2016; 228:812-25. [PMID: 26805464 DOI: 10.1111/joa.12444] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2015] [Indexed: 02/06/2023] Open
Abstract
Renal pacemaker activity triggers peristaltic upper urinary tract contractions that propel waste from the kidney to the bladder, a process prone to congenital defects that are the leading cause of pediatric kidney failure. Recently, studies have discovered that hyperpolarization-activated cation (HCN) and T-type calcium (TTC) channel conductances underlie murine renal pacemaker activity, setting the origin and frequency and coordinating upper urinary tract peristalsis. Here, we determined whether this ion channel expression is conserved in the porcine and human urinary tracts, which share a distinct multicalyceal anatomy with multiple pacemaker sites. Double chromagenic immunohistochemistry revealed that HCN isoform 3 is highly expressed at the porcine minor calyces, the renal pacemaker tissues, whereas the kidney and urinary tract smooth muscle lacked this HCN expression. Immunofluorescent staining demonstrated that HCN(+) cells are integrated within the porcine calyx smooth muscle, and that they co-express TTC channel isoform Cav3.2. In humans, the anatomic structure of the minor calyx pacemaker was assayed via hematoxylin and eosin analyses, and enabled the visualization of the calyx smooth muscle surrounding adjacent papillae. Strikingly, immunofluorescence revealed that HCN3(+) /Cav3.2(+) cells are also localized to the human minor calyx smooth muscle. Collectively, these data have elucidated a conserved molecular signature of HCN and TTC channel expression in porcine and human calyx pacemaker tissues. These findings provide evidence for the mechanisms that can drive renal pacemaker activity in the multi-calyceal urinary tract, and potential causes of obstructive uropathies.
Collapse
Affiliation(s)
- Romulo Hurtado
- Department of Physiology and Biophysics, Weill Medical College of Cornell University, New York, NY, USA.,The Core for Smooth Muscle Analysis, Weill Medical College of Cornell University, New York, NY, USA
| | - Carl S Smith
- Department of Urologic Surgery, University of Minnesota School of Medicine, Minneapolis, MN, USA
| |
Collapse
|
9
|
Chacko S, Cortes E, Drake MJ, Fry CH. Does altered myogenic activity contribute to OAB symptoms from detrusor overactivity? ICI-RS 2013. Neurourol Urodyn 2014; 33:577-80. [DOI: 10.1002/nau.22599] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Accepted: 03/03/2014] [Indexed: 12/19/2022]
Affiliation(s)
- Sam Chacko
- Department of Pathobiology; Division of Urology; University of Pennsylvania; Philadelphia Pennsylvania
| | - Eduard Cortes
- Women's Health Academic Centre; King's College London; London United Kingdom
| | - Marcus J. Drake
- School of Clinical Sciences; University of Bristol; Bristol United Kingdom
| | - Christopher H. Fry
- Department of Biochemistry and Physiology; FHMS; University of Surrey; Guildford United Kingdom
| |
Collapse
|
10
|
Fry CH, Jabr RI. T-type Ca2+ channels and the urinary and male genital tracts. Pflugers Arch 2014; 466:781-9. [PMID: 24463704 DOI: 10.1007/s00424-014-1446-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 01/06/2014] [Accepted: 01/07/2014] [Indexed: 11/26/2022]
Abstract
T-type Ca(2+) channels are widely expressed throughout the urinary and male genital tracts, generally alongside L-type Ca(2+) channels. The use of pharmacological blockers of these channels has suggested functional roles in all regions, with the possible exception of the ureter. Their functional expression is apparent not just in smooth muscle cells but also in interstitial cells that lie in close proximity to muscle, nerve and epithelial components of these tissues. Thus, T-type Ca(2+) channels can contribute directly to modulation of muscle function and indirectly to changes of epithelial and nerve function. T-type Ca(2+) channel activity modulates phasic contractile activity, especially in conjunction with Ca(2+)-activated K(+) channels, and also to agonist-dependent responses in different tissues. Upregulation of channel density occurs in pathological conditions associated with enhanced contractile responses, e.g. overactive bladder, but it is unclear if this is causal or a response to the pathological state. Moreover, T-type Ca(2+) channels may have a role in the development of prostate tumours regulating the secretion of mitogens from neuroendocrine cells. Although a number of selective channel blockers exist, their relative selectivity over L-type Ca(2+) channels is often low and makes evaluation of T-type Ca(2+) channel function in the whole organism difficult.
Collapse
Affiliation(s)
- C H Fry
- Department of Biochemistry and Physiology, University of Surrey, Guildford, GU2 7XH, UK,
| | | |
Collapse
|
11
|
Malysz J, Afeli SAY, Provence A, Petkov GV. Ethanol-mediated relaxation of guinea pig urinary bladder smooth muscle: involvement of BK and L-type Ca2+ channels. Am J Physiol Cell Physiol 2013; 306:C45-58. [PMID: 24153429 DOI: 10.1152/ajpcell.00047.2013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mechanisms underlying ethanol (EtOH)-induced detrusor smooth muscle (DSM) relaxation and increased urinary bladder capacity remain unknown. We investigated whether the large conductance Ca(2+)-activated K(+) (BK) channels or L-type voltage-dependent Ca(2+) channels (VDCCs), major regulators of DSM excitability and contractility, are targets for EtOH by patch-clamp electrophysiology (conventional and perforated whole cell and excised patch single channel) and isometric tension recordings using guinea pig DSM cells and isolated tissue strips, respectively. EtOH at 0.3% vol/vol (~50 mM) enhanced whole cell BK currents at +30 mV and above, determined by the selective BK channel blocker paxilline. In excised patches recorded at +40 mV and ~300 nM intracellular Ca(2+) concentration ([Ca(2+)]), EtOH (0.1-0.3%) affected single BK channels (mean conductance ~210 pS and blocked by paxilline) by increasing the open channel probability, number of open channel events, and open dwell-time constants. The amplitude of single BK channel currents and unitary conductance were not altered by EtOH. Conversely, at ~10 μM but not ~2 μM intracellular [Ca(2+)], EtOH (0.3%) decreased the single BK channel activity. EtOH (0.3%) affected transient BK currents (TBKCs) by either increasing frequency or decreasing amplitude, depending on the basal level of TBKC frequency. In isolated DSM strips, EtOH (0.1-1%) reduced the amplitude and muscle force of spontaneous phasic contractions. The EtOH-induced DSM relaxation, except at 1%, was attenuated by paxilline. EtOH (1%) inhibited L-type VDCC currents in DSM cells. In summary, we reveal the involvement of BK channels and L-type VDCCs in mediating EtOH-induced urinary bladder relaxation accommodating alcohol-induced diuresis.
Collapse
Affiliation(s)
- John Malysz
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, South Carolina
| | | | | | | |
Collapse
|
12
|
Jiang X, Luttrell I, Chitaley K, Yang CC. T- and L-Type Voltage-Gated Calcium Channels: Their Role in Diabetic Bladder Dysfunction. Neurourol Urodyn 2013; 33:147-52. [DOI: 10.1002/nau.22391] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2012] [Accepted: 02/07/2013] [Indexed: 01/15/2023]
Affiliation(s)
- Xiaogang Jiang
- Department of Urology; University of Washington; Seattle, Washington
| | - Ian Luttrell
- Department of Urology; University of Washington; Seattle, Washington
| | - Kanchan Chitaley
- Department of Urology; University of Washington; Seattle, Washington
| | - Claire C. Yang
- Department of Urology; University of Washington; Seattle, Washington
| |
Collapse
|
13
|
Deng J, He P, Zhong X, Wang Q, Li L, Song B. Identification of T-type calcium channels in the interstitial cells of Cajal in rat bladder. Urology 2012; 80:1389.e1-7. [PMID: 22995572 DOI: 10.1016/j.urology.2012.07.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 06/30/2012] [Accepted: 07/21/2012] [Indexed: 01/12/2023]
Abstract
OBJECTIVE To investigate the expression and function of T-type calcium channels in the interstitial cells of Cajal in rat bladders. METHODS Bladders were harvested from Sprague-Dawley rats. The expression of T-type calcium channels subtypes (α1G, α1H, and α1I) in interstitial cells of Cajal were identified by double-labeled immunofluorescence analysis and reverse transcription-polymerase chain reaction analysis in whole mount preparations of rat bladders. The function of T-type calcium channels in freshly isolated interstitial cells of Cajal was assessed by detecting the changes of intracellular calcium ([Ca(2+)](i)) with preloading fluo-3 AM, and by evaluating the changes of the phasic contractions of rat bladder strips after treating with mibefradil and glivec. RESULTS Three T-type calcium channels subtypes, α1G, α1H, and α1I, colocalized with c-kit in bladder interstitial cells of Cajal by double-labeled immunofluorescence analysis, and this was confirmed using reverse transcription-polymerase chain reaction. The T-type calcium channels selective blocker, mibefradil (1 μM), significantly decreased the intracellular calcium concentration ([Ca(2+)](i)) in isolated interstitial cells of Cajal (P < .01) and inhibited the spontaneous phasic contraction of bladder strips (P < .01). Moreover, the c-kit receptor blocker, glivec, significantly decreased the [Ca(2+)](i) of interstitial cells of Cajal further (P < .01) and the spontaneous phasic contraction of bladder strips. CONCLUSION T-type calcium channel subtypes were confirmed to colocalize in interstitial cells of Cajal in rats bladders, which might participate in the spontaneous activity of interstitial cells of Cajal and phasic contractions of bladder strips by modulating [Ca(2+)](i) in interstitial cells of Cajal.
Collapse
Affiliation(s)
- Jianping Deng
- Department of Urology, First Affiliated Hospital, Third Military Medical University, Chongqing, China
| | | | | | | | | | | |
Collapse
|
14
|
Kubota Y, Kojima Y, Shibata Y, Imura M, Sasaki S, Kohri K. Role of KIT-Positive Interstitial Cells of Cajal in the Urinary Bladder and Possible Therapeutic Target for Overactive Bladder. Adv Urol 2011; 2011:816342. [PMID: 21785586 PMCID: PMC3139881 DOI: 10.1155/2011/816342] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 04/04/2011] [Accepted: 06/05/2011] [Indexed: 11/18/2022] Open
Abstract
In the gastrointestinal tract, interstitial cells of Cajal (ICCs) act as pacemaker cells to generate slow wave activity. Interstitial cells that resemble ICCs in the gastrointestinal tract have been identified by their morphological characteristics in the bladder. KIT is used as an identification marker of ICCs. ICCs in the bladder may be involved in signal transmission between smooth muscle bundles, from efferent nerves to smooth muscles, and from the urothelium to afferent nerves. Recent research has suggested that not only the disturbance of spontaneous contractility caused by altered detrusor ICC signal transduction between nerves and smooth muscle cells but also the disturbance of signal transduction between urothelial cells and sensory nerves via suburothelial ICC may induce overactive bladder (OAB). Recent reports have suggested that KIT is not only a detection marker of these cells, but also may play a crucial role in the control of bladder function. Research into the effect of a c-kit receptor inhibitor, imatinib mesylate, on bladder function implies that KIT-positive ICCs may be therapeutic target cells to reduce bladder overactivity and that the blockage of c-kit receptor may offer a new therapeutic strategy for OAB treatment, although further study will be needed.
Collapse
Affiliation(s)
- Yasue Kubota
- Department of Nephro-Urology, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | | | | | | | | | | |
Collapse
|
15
|
Fry C, Meng E, Young J. The physiological function of lower urinary tract smooth muscle. Auton Neurosci 2010; 154:3-13. [DOI: 10.1016/j.autneu.2009.10.006] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2009] [Revised: 10/25/2009] [Accepted: 10/27/2009] [Indexed: 11/15/2022]
|
16
|
|
17
|
Sui G, Fry C, Malone-Lee J, Wu C. Aberrant Ca2+ oscillations in smooth muscle cells from overactive human bladders. Cell Calcium 2009; 45:456-64. [DOI: 10.1016/j.ceca.2009.03.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2008] [Revised: 02/25/2009] [Accepted: 03/03/2009] [Indexed: 11/24/2022]
|
18
|
Drake MJ. Emerging drugs for treatment of overactive bladder and detrusor overactivity. Expert Opin Emerg Drugs 2008; 13:431-46. [PMID: 18764721 DOI: 10.1517/14728214.13.3.431] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
BACKGROUND Overactive bladder (OAB) signifies the presence of urinary urgency and can have major effects on quality of life and social functioning. Standard antimuscarinic drugs have good initial response rates but substantial adverse effects and long-term compliance problems. OBJECTIVES To review the complexities of the mechanisms underlying OAB and the current drugs available for treating its symptoms. METHODS The literature was reviewed to define current therapies and drugs in clinical trials. Articles were identified by means of a computerised PubMed and Cochrane Library search (using the following keywords: overactive bladder, detrusor overactivity, urgency and bladder), supported by a search of the PharmaProjects database. CONCLUSIONS New drug classes, such as beta-3 adrenergic agonists, may work by reducing contractility or excitability of bladder muscle. Moderation of afferent activity may allow improved OAB symptoms, with lower risk of affecting voiding function. Agents acting on the CNS could influence OAB favourably, but target selection and adverse effects are an issue. The recognition of the functional contribution of the urothelium and the diversity of nerve transmitters has sparked interest in both peripheral and central modulation of OAB pathophysiology.
Collapse
Affiliation(s)
- Marcus J Drake
- Bristol Urological Institute, Southmead Hospital, Bristol, BS10 5NB, UK.
| |
Collapse
|