1
|
Zhang T, Zhou Z, Li W, Xu C, Zhao S, Wei H, Huang Z, Zhao X. Application value of magnetic resonance spectroscopy imaging in the diagnosis of prostate cancer. Sci Rep 2024; 14:22278. [PMID: 39333720 PMCID: PMC11437187 DOI: 10.1038/s41598-024-73605-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 09/19/2024] [Indexed: 09/29/2024] Open
Abstract
Magnetic resonance spectroscopy (MRSI) can distinguish between benign and malignant prostate diseases. This study investigated the potential of MRSI for diagnosing prostate cancer and guiding prostate biopsy. We retrospectively reviewed 234 patients with suspected prostate cancer who underwent MRSI with targeted prostate biopsy. Patients were divided into two groups according to their puncture pathology: prostate cancer (n = 103, 44.02%) and benign prostatic disease (n = 131, 55.98%). The t-test, Mann-Whitney U test, or chi-square test was used to compare the groups. The diagnostic abilities of MRSI, prostate-specific antigen level, digital rectal examination, and magnetic resonance imaging without contrast for prostate cancer were compared using the area under the receiver operating characteristic curve (AUC-ROC); the ARC-ROC values were 0.831, 0.768, 0.692, and 0.656, respectively. The AUC-ROC value for diagnosing prostate cancer using the CC/c ratio was 0.853. CC/c ratio > 0.97 was identified as the optimal threshold for diagnosing prostate cancer (sensitivity, 86.5%; specificity, 78.6%; Youden index, 0.651). Spearman correlation analysis revealed a correlation between the CC/c ratio and Gleason score (r = 0.737, p < 0.001). Using the CC/c ratio of MRSI as an adjunct to targeted prostate biopsy can improve the detection rate of positive biopsies and evaluate prostate cancer invasiveness.
Collapse
Affiliation(s)
- Tianhe Zhang
- Zhengzhou University, The Second Affiliated Hospital of Zhengzhou University, No. 2 Jingba Road, Jinshui District, Zhengzhou, 450014, China
| | - Zhiyong Zhou
- Zhengzhou University, The Second Affiliated Hospital of Zhengzhou University, No. 2 Jingba Road, Jinshui District, Zhengzhou, 450014, China
| | - Wuxue Li
- Zhengzhou University, The Second Affiliated Hospital of Zhengzhou University, No. 2 Jingba Road, Jinshui District, Zhengzhou, 450014, China
| | - Changbao Xu
- Zhengzhou University, The Second Affiliated Hospital of Zhengzhou University, No. 2 Jingba Road, Jinshui District, Zhengzhou, 450014, China
| | - Shuailin Zhao
- Zhengzhou University, The Second Affiliated Hospital of Zhengzhou University, No. 2 Jingba Road, Jinshui District, Zhengzhou, 450014, China
| | - Haiyang Wei
- Zhengzhou University, The Second Affiliated Hospital of Zhengzhou University, No. 2 Jingba Road, Jinshui District, Zhengzhou, 450014, China
| | - Zhiheng Huang
- Zhengzhou University, The Second Affiliated Hospital of Zhengzhou University, No. 2 Jingba Road, Jinshui District, Zhengzhou, 450014, China
| | - Xinghua Zhao
- Zhengzhou University, The Second Affiliated Hospital of Zhengzhou University, No. 2 Jingba Road, Jinshui District, Zhengzhou, 450014, China.
| |
Collapse
|
2
|
Sharma U, Jagannathan NR. Metabolism of prostate cancer by magnetic resonance spectroscopy (MRS). Biophys Rev 2020; 12:1163-1173. [PMID: 32918707 DOI: 10.1007/s12551-020-00758-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 09/04/2020] [Indexed: 12/11/2022] Open
Abstract
Understanding the metabolism of prostate cancer (PCa) is important for developing better diagnostic approaches and also for exploring new therapeutic targets. Magnetic resonance spectroscopy (MRS) techniques have been shown to be useful in the detection and quantification of metabolites. PCa illustrates metabolic phenotype, showing lower levels of citrate (Cit), a key metabolite of oxidative phosphorylation and alteration in several metabolic pathways to sustain tumor growth. Recently, dynamic nuclear polarization (DNP) studies have documented high rates of glycolysis (Warburg phenomenon) in PCa. High-throughput metabolic profiling strategies using MRS on variety of samples including intact tissues, biofluids like prostatic fluid, seminal fluid, blood plasma/sera, and urine have also played a vital role in understanding the abnormal metabolic activity of PCa patients. The enhanced analytical potential of these techniques in the detection and quantification of a large number of metabolites provides an in-depth understanding of metabolic rewiring associated with the tumorigenesis. Metabolomics analysis offers dual advantages of identification of diagnostic and predictive biomarkers as well as in understanding the altered metabolic pathways which can be targeted for inhibiting the cancer progression. This review briefly describes the potential applications of in vivo 1H MRS, high-resolution magic angle spinning spectroscopy (HRMAS) and in vitro MRS methods in understanding the metabolic changes of PCa and its usefulness in the management of PCa patients.
Collapse
Affiliation(s)
- Uma Sharma
- Department of NMR & MRI Facility, All India Institute of Medical Sciences, New Delhi, 110029, India.
| | - Naranamangalam R Jagannathan
- Department of Radiology, Chettinad Hospital & Research Institute, Chettinad Academy of Research & Education, Kelambakkam, TN, 603103, India.
- Department of Radiology, Sri Ramachandra Institute of Higher Education and Research, Chennai, 600116, India.
- Department of Electrical Engineering, Indian Institute Technology Madras, Chennai, 600 036, India.
| |
Collapse
|
3
|
Hung SW, Lin YT, Liu MC. Multiparametric magnetic resonance imaging of prostate cancer. UROLOGICAL SCIENCE 2018. [DOI: 10.4103/uros.uros_57_18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
4
|
Ko YH, Song PH, Moon KH, Jung HC, Cheon J, Sung DJ. The optimal timing of post-prostate biopsy magnetic resonance imaging to guide nerve-sparing surgery. Asian J Androl 2014; 16:280-4. [PMID: 24407179 PMCID: PMC3955341 DOI: 10.4103/1008-682x.122190] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
The goal of our study was to evaluate the impact of the interval between prostate biopsy and magnetic resonance imaging (MRI) on the accuracy of simple tumor localization, which is essential information that enables nerve-sparing surgery. We also sought to determine the optimal timing of a post-biopsy MRI. A total of 184 patients who had undergone MRI before radical prostatectomy at an institution without a predetermined schedule for MRI after a prostate biopsy were enrolled. The mean interval from the biopsy to the MRI was 30.8 ± 18.6 days. The accuracy of the MRI for simplified tumor location (right, left, bilateral and none) was 44.6%. In the group with discordant pathologic and MRI findings, the most common reason recorded was ‘MRI predicted a unilateral lesion, but pathology revealed bilateral lesions’ (58.3%), followed by ‘MRI predicted no lesion, but pathology revealed the presence of a lesion’ (32.0%). Multivariable analysis showed that the discordant group had a shorter interval (25.0 ± 14.3 vs 38.1 ± 20.6 days, P < 0.01) preceding the MRI and a higher rate of hemorrhage as observed by MRI (80.4% vs 54.8%, P < 0.01) in comparison with the accordant group. In receiver operating characteristics analysis, the area under the curve of the MRI interval in accurate prediction of the tumor location was 0.707 (P < 0.001). At the MRI interval's cutoff of 28.5 days, the sensitivity was 73.2% and the specificity was 63.7%. When the MRI was performed within 28 days, the accumulated accuracy was only 26.1% (23/88); however, when it was performed after 28 days, the reversely accumulated accuracy was 61.5% (59/96). These data support a waiting period of at least 4 weeks after a biopsy before performing an MRI for the purposes of surgical refinement.
Collapse
Affiliation(s)
| | | | | | | | | | - Deuk Jae Sung
- Department of Radiology, Korea University School of Medicine, Seoul, Korea
| |
Collapse
|
5
|
Srimathveeravalli G, Kim C, Petrisor D, Ezell P, Coleman J, Hricak H, Solomon SB, Stoianovici D. MRI-safe robot for targeted transrectal prostate biopsy: animal experiments. BJU Int 2013; 113:977-85. [PMID: 24118992 DOI: 10.1111/bju.12335] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVES To study the feasibility and safety of using a magnetic resonance imaging (MRI)-safe robot for assisting MRI-guided transrectal needle placement and biopsy in the prostate, using a canine model. To determine the accuracy and precision afforded by the use of the robot while targeting a desired location in the organ. MATERIALS AND METHODS In a study approved by the Institutional Animal Care and Use Committee, six healthy adult male beagles with prostates of at least 15 × 15 mm in size at the largest transverse section were chosen for the procedure. The probe portion of the robot was placed into the rectum of the dog, images were acquired and image-to-robot registration was performed. Images acquired after placement of the robot were reviewed and a radiologist selected targets for needle placement in the gland. Depending on the size of the prostate, up to a maximum of six needle placements were performed on each dog. After needle placement, robot-assisted core biopsies were performed on four dogs that had larger prostate volumes and extracted cores were analysed for potential diagnostic value. RESULTS Robot-assisted MRI-guided needle placements were performed to target a total of 30 locations in six dogs, achieving a targeting accuracy of 2.58 mm (mean) and precision of 1.31 mm (SD). All needle placements were successfully completed on the first attempt. The mean time required to select a desired target location in the prostate, align the needle guide to that point, insert the needle and perform the biopsy was ∼ 3 min. For this targeting accuracy study, the inserted needle was also imaged after its placement in the prostate, which took an additional 6-8 min. Signal-to-noise ratio analysis indicated that the presence of the robot within the scanner bore had minimal impact on the quality of the images acquired. Analysis of intact biopsy core samples indicated that the samples contained prostatic tissues, appropriate for making a potential diagnosis. Dogs used in the study did not experience device- or procedure-related complications. CONCLUSIONS Results from this preclinical pilot animal study suggest that MRI-targeted transrectal biopsies are feasible to perform and this procedure may be safely assisted by an MRI-safe robotic device.
Collapse
|
6
|
Wright AJ, Buydens LMC, Heerschap A. A phase and frequency alignment protocol for 1H MRSI data of the prostate. NMR IN BIOMEDICINE 2012; 25:755-765. [PMID: 21953616 DOI: 10.1002/nbm.1790] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Revised: 08/15/2011] [Accepted: 08/16/2011] [Indexed: 05/31/2023]
Abstract
(1)H MRSI of the prostate reveals relative metabolite levels that vary according to the presence or absence of tumour, providing a sensitive method for the identification of patients with cancer. Current interpretations of prostate data rely on quantification algorithms that fit model metabolite resonances to individual voxel spectra and calculate relative levels of metabolites, such as choline, creatine, citrate and polyamines. Statistical pattern recognition techniques can potentially improve the detection of prostate cancer, but these analyses are hampered by artefacts and sources of noise in the data, such as variations in phase and frequency of resonances. Phase and frequency variations may arise as a result of spatial field gradients or local physiological conditions affecting the frequency of resonances, in particular those of citrate. Thus, there are unique challenges in developing a peak alignment algorithm for these data. We have developed a frequency and phase correction algorithm for automatic alignment of the resonances in prostate MRSI spectra. We demonstrate, with a simulated dataset, that alignment can be achieved to a phase standard deviation of 0.095 rad and a frequency standard deviation of 0.68 Hz for the citrate resonances. Three parameters were used to assess the improvement in peak alignment in the MRSI data of five patients: the percentage of variance in all MRSI spectra explained by their first principal component; the signal-to-noise ratio of a spectrum formed by taking the median value of the entire set at each spectral point; and the mean cross-correlation between all pairs of spectra. These parameters showed a greater similarity between spectra in all five datasets and the simulated data, demonstrating improved alignment for phase and frequency in these spectra. This peak alignment program is expected to improve pattern recognition significantly, enabling accurate detection and localisation of prostate cancer with MRSI.
Collapse
Affiliation(s)
- Alan J Wright
- Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands.
| | | | | |
Collapse
|
7
|
Venugopal N, McCurdy B, Al Mehairi S, Alamri A, Sandhu GS, Sivalingam S, Drachenberg D, Ryner L. Short echo time in vivo prostate 1H-MRSI. Magn Reson Imaging 2012; 30:195-204. [DOI: 10.1016/j.mri.2011.09.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Revised: 07/28/2011] [Accepted: 09/18/2011] [Indexed: 10/14/2022]
|
8
|
Wright AJ, Heerschap A. Simple baseline correction for1H MRSI data of the prostate. Magn Reson Med 2012; 68:1724-30. [DOI: 10.1002/mrm.24182] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 12/13/2011] [Accepted: 01/03/2012] [Indexed: 11/10/2022]
|
9
|
Pinto F, Totaro A, Palermo G, Calarco A, Sacco E, D'Addessi A, Racioppi M, Valentini A, Gui B, Bassi P. Imaging in prostate cancer staging: present role and future perspectives. Urol Int 2012; 88:125-36. [PMID: 22286304 DOI: 10.1159/000335205] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Despite recent improvements in detection and treatment, prostate cancer continues to be the most common malignancy and the second leading cause of cancer-related mortality. Thus, although survival rate continues to improve, prostate cancer remains a compelling medical health problem. The major goal of prostate cancer imaging in the next decade will be more accurate disease characterization through the synthesis of anatomic, functional, and molecular imaging information in order to plan the most appropriate therapeutic strategy. No consensus exists regarding the use of imaging for evaluating primary prostate cancer. However, conventional and functional imaging are expanding their role in detection and local staging and, moreover, functional imaging is becoming of great importance in oncologic management and monitoring of therapy response. This review presents a multidisciplinary perspective on the role of conventional and functional imaging methods in prostate cancer staging.
Collapse
Affiliation(s)
- Francesco Pinto
- Department of Urology, Catholic University of the Sacred Heart, Rome, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Gürses B, Tasdelen N, Yencilek F, Kılıckesmez NO, Alp T, Fırat Z, Albayrak MS, Uluğ AM, Gürmen AN. Diagnostic utility of DTI in prostate cancer. Eur J Radiol 2010; 79:172-6. [PMID: 20138721 DOI: 10.1016/j.ejrad.2010.01.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Revised: 01/05/2010] [Accepted: 01/08/2010] [Indexed: 12/22/2022]
Abstract
PURPOSE The aim of this study was to compare the diffusion tensor parameters of prostate cancer, prostatitis and normal prostate tissue. MATERIALS AND METHODS A total of 25 patients with the suspicion of prostate cancer were included in the study. MRI was performed with 3 T system (Intera Achieva, Philips Medical Systems, The Netherlands). T2 TSE and DTI with ss-EPI were obtained in each subject. TRUS-guided prostate biopsy was performed after the MRI examination. Images were analyzed by two radiologists using a special software system. ROI's were drawn according to biopsy zones which are apex, midgland, base and central zone on each sides of the gland. FA and ADC values in areas of cancer, chronic prostatitis and normal prostate tissue were compared using Student's t-test. RESULTS Histopathological analysis revealed carcinoma in 68, chronic prostatitis in 67 and was reported as normal in 65 zones. The mean FA of cancerous tissue was significantly higher (p<0.01) than the FA of chronic prostatitis and normal gland. The mean ADC of cancerous tissue was found to be significantly lower (p<0.01), compared with non-cancerous tissue. CONCLUSION Decreased ADC and increased FA are compatible with the hypercellular nature of prostate tumors. These differences may increase the accuracy of MRI in the detection of carcinoma and to differentiate between cancer and prostatitis.
Collapse
Affiliation(s)
- Bengi Gürses
- Yeditepe University Medical Faculty, Department of Radiology, İstanbul, Turkey.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Kawamorita N, Saito S, Ishidoya S, Ito A, Saito H, Kato M, Arai Y. Radical prostatectomy for high-risk prostate cancer: Biochemical outcome. Int J Urol 2009; 16:733-8. [DOI: 10.1111/j.1442-2042.2009.02352.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|