1
|
Development, Implementation and Application of Confocal Laser Endomicroscopy in Brain, Head and Neck Surgery—A Review. Diagnostics (Basel) 2022; 12:diagnostics12112697. [PMID: 36359540 PMCID: PMC9689276 DOI: 10.3390/diagnostics12112697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/20/2022] [Accepted: 10/25/2022] [Indexed: 11/09/2022] Open
Abstract
When we talk about visualization methods in surgery, it is important to mention that the diagnosis of tumors and how we define tumor borders intraoperatively in a correct way are two main things that would not be possible to achieve without this grand variety of visualization methods we have at our disposal nowadays. In addition, histopathology also plays a very important role, and its importance cannot be neglected either. Some biopsy specimens, e.g., frozen sections, are examined by a histopathologist and lead to tumor diagnosis and the definition of its borders. Furthermore, surgical resection is a very important point when it comes to prognosis and life survival. Confocal laser endomicroscopy (CLE) is an imaging technique that provides microscopic information on the tissue in real time. CLE of disorders, such as head, neck and brain tumors, has only recently been suggested to contribute to both immediate tumor characterization and detection. It can be used as an additional tool for surgical biopsies during biopsy or surgical procedures and for inspection of resection margins during surgery. In this review, we analyze the development, implementation, advantages and disadvantages as well as the future directions of this technique in neurosurgical and otorhinolaryngological disciplines.
Collapse
|
2
|
Lerner DG, Mencin A, Novak I, Huang C, Ng K, Lirio RA, Khlevner J, Utterson EC, Harris BR, Pitman RT, Mir S, Gugig R, Walsh CM, Fishman D. Advances in Pediatric Diagnostic Endoscopy: A State-of-the-Art Review. JPGN REPORTS 2022; 3:e224. [PMID: 37168622 PMCID: PMC10158303 DOI: 10.1097/pg9.0000000000000224] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 04/20/2022] [Indexed: 05/13/2023]
Abstract
Pediatric endoscopy has revolutionized the way we diagnose and treat gastrointestinal disorders in children. Technological advances in computer processing and imaging continue to affect endoscopic equipment and advance diagnostic tools for pediatric endoscopy. Although commonly used by adult gastroenterologists, modalities, such as endomicroscopy, image-enhanced endoscopy, and impedance planimetry, are not routinely used in pediatric gastroenterology. This state-of-the-art review describes advances in diagnostic modalities, including image-enhanced endoscopy, confocal laser endomicroscopy, optical coherence tomography, endo functional luminal imaging probes, wireless motility/pH capsule, wireless colon capsule endoscopy, endoscopic ultrasound, and discusses the basic principles of each technology, including adult indications and pediatric applications, safety cost, and training data.
Collapse
Affiliation(s)
- Diana G. Lerner
- From the Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology and Nutrition, Medical College of Wisconsin, Milwaukee, WI
| | - Ali Mencin
- Division of Pediatric Gastroenterology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY
| | - Inna Novak
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology and Nutrition, Children’s Hospital at Montefiore, Bronx, NY
| | - Clifton Huang
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology and Nutrition, Cook Children’s Medical Center, Fort Worth, TX
| | - Kenneth Ng
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Richard A. Lirio
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology and Nutrition, UMASS Memorial Children’s Medical Center/UMASS Medical School, Worcester, MA
| | - Julie Khlevner
- Division of Pediatric Gastroenterology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY
| | - Elizabeth C. Utterson
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology and Nutrition, Washington University School of Medicine, St. Louis Children’s Hospital, St. Louis, MO
| | - Brendan R. Harris
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology and Nutrition, Washington University School of Medicine, St. Louis Children’s Hospital, St. Louis, MO
| | - Ryan T. Pitman
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology and Nutrition, Washington University School of Medicine, St. Louis Children’s Hospital, St. Louis, MO
| | - Sabina Mir
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology and Nutrition, UNC School of Medicine, Chapel Hill, NC
| | - Roberto Gugig
- Lucile Packard Children’s Hospital at Stanford, Palo Alto, CA
| | - Catharine M. Walsh
- Department of Paediatrics and the Wilson Centre, Division of Gastroenterology, Hepatology and Nutrition and the Research and Learning Institutes, Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Doug Fishman
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology and Nutrition, Baylor College of Medicine, Houston, TX
| |
Collapse
|
3
|
Shang W, Peng L, He K, Guo P, Deng H, Liu Y, Chen Z, Tian J, Xu W. A clinical study of a CD44v6-targeted fluorescent agent for the detection of non-muscle invasive bladder cancer. Eur J Nucl Med Mol Imaging 2022; 49:3033-3045. [PMID: 35190862 DOI: 10.1007/s00259-022-05701-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 01/20/2022] [Indexed: 01/16/2023]
Abstract
BACKGROUND Bladder cancer is the fifth most common malignancy in humans. Cystoscopy under white light imaging is the gold standard for bladder cancer diagnosis, but some tumors are difficult to visualize and can be overlooked, resulting in high recurrence rates. We previously developed a phage display-derived peptide-based near-infrared imaging probe, PLSWT7-DMI, which binds specifically to bladder cancer cells and is nontoxic to animals. Here, we report a clinical research of this probe for near-infrared fluorescence endoscopic detection of bladder cancer. RESULTS The purity, efficacy, safety, and nontoxicity of PLSWT7-DMI were confirmed prior to its clinical application. Twenty-two patients diagnosed with suspected non-muscle invasive bladder cancer were enrolled in the present study. Following intravesical administration of the probe, the entire mucosa was imaged under white and near-infrared imaging using an in-house developed endoscope that could switch between these two modes. The illuminated lesions under near-infrared light were biopsied and sent for histopathological examination. We observed a 5.1-fold increase in the fluorescence intensity in the tumor samples compared to normal tissue, and the probe demonstrated a sensitivity and specificity of 91.2% and 90%, respectively. Common diagnostic challenges, such as small satellite tumors, carcinoma in situ, and benign suspicious mucosa, were visualized and could be distinguished from cancer. Furthermore, no adverse effects were observed in humans. These first-in-human results indicate that PLSWT7-DMI-based near-infrared fluorescence endoscopy is a safe and effective approach for the improved detection of bladder cancer, and may enable thorough resection to prevent recurrence.
Collapse
Affiliation(s)
- Wenting Shang
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, the State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Li Peng
- Urology Surgery Department, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, People's Republic of China.,NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Yiyuan Street #37, Nangang District, Harbin, Heilongjiang, 150001, People's Republic of China
| | - Kunshan He
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, the State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China.,Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine and Engineering, Beihang University, Zhongguancun East Road #95, Haidian Dist., Beijing, 100191, China
| | - Pengyu Guo
- Urology Surgery Department, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, People's Republic of China.,NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Yiyuan Street #37, Nangang District, Harbin, Heilongjiang, 150001, People's Republic of China
| | - Han Deng
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, the State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yu Liu
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine and Engineering, Beihang University, Zhongguancun East Road #95, Haidian Dist., Beijing, 100191, China
| | - Ziyin Chen
- Urology Surgery Department, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, People's Republic of China.,NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Yiyuan Street #37, Nangang District, Harbin, Heilongjiang, 150001, People's Republic of China
| | - Jie Tian
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, the State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China. .,Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine and Engineering, Beihang University, Zhongguancun East Road #95, Haidian Dist., Beijing, 100191, China.
| | - Wanhai Xu
- Urology Surgery Department, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, People's Republic of China. .,NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Yiyuan Street #37, Nangang District, Harbin, Heilongjiang, 150001, People's Republic of China.
| |
Collapse
|
4
|
Confocal Laser Endomicroscopy in Oncological Surgery. Diagnostics (Basel) 2021; 11:diagnostics11101813. [PMID: 34679511 PMCID: PMC8535042 DOI: 10.3390/diagnostics11101813] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 09/27/2021] [Indexed: 11/16/2022] Open
Abstract
The therapy of choice in the treatment of abnormalities in the human body, is to attempt a personalized diagnosis and with minimal invasiveness, ideally resulting in total resection (surgery) or turning off (intervention) of the pathology with preservation of normal functional tissue, followed by additional treatments, e [...].
Collapse
|
5
|
Wu J, Wang YC, Luo WJ, Dai B, Ye DW, Zhu YP. Diagnostic Performance of Confocal Laser Endomicroscopy for the Detection of Bladder Cancer: Systematic Review and Meta-Analysis. Urol Int 2020; 104:523-532. [PMID: 32554957 DOI: 10.1159/000508417] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 04/30/2020] [Indexed: 11/19/2022]
Abstract
OBJECTIVE To systematically evaluate the diagnostic efficacy of confocal laser endomicroscopy (CLE) in detection of bladder cancer. METHODS A systematic literature search on CLE in diagnosing bladder cancer in PubMed, Embase, and the Cochrane Library databases was performed. A bivariate meta-regression model was used for meta-analysis to evaluate the pooled diagnostic value of CLE. RESULTS A total of 5 eligible studies involving 302 lesions were available for this meta-analysis. In a per-lesion analysis, pooled sensitivity, specificity, positive likelihood ratio (PLR), negative likelihood ratio (NLR), diagnostic odds ratio (DOR), and summary receiver-operating curve (SROC) area under the curve (AUC) of CLE for malignant lesions were 0.90 (95% confidence interval [CI]: 0.85-0.94), 0.72 (95% CI: 0.59-0.82), 3.20 (95% CI: 2.14-4.79), 0.14 (95% CI: 0.09-0.21), 23.27 (95% CI: 11.71-46.25), and 0.91 (95% CI: 0.89-0.94), respectively. For low-grade urothelial carcinomas, pooled sensitivity, specificity, PLR, NLR, DOR, and AUC for CLE were 0.72 (95% CI: 0.57-0.84), 0.87 (95% CI: 0.77-0.93), 5.48 (95% CI: 3.12-9.62), 0.32 (95% CI: 0.20-0.50), 17.19 (95% CI: 8.01-36.89), and 0.85 (95% CI: 0.82-0.88), respectively. For high-grade urothelial carcinomas, pooled sensitivity, specificity, PLR, NLR, DOR, and AUC for CLE were 0.82 (95% CI: 0.62-0.92), 0.84 (95% CI: 0.73-0.91), 4.96 (95% CI: 2.58-9.54), 0.22 (95% CI: 0.09-0.52), 22.49 (95% CI: 5.33-94.85), and 0.89 (95% CI: 0.86-0.91), respectively. CONCLUSION CLE is a promising endoscopy technique for real-time tumor grading of bladder cancer.
Collapse
Affiliation(s)
- Jie Wu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yu-Chen Wang
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wen-Jie Luo
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Bo Dai
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ding-Wei Ye
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yi-Ping Zhu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China, .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China,
| |
Collapse
|
6
|
Phung MC, Rouse AR, Pangilinan J, Bell RC, Bracamonte ER, Mashi S, Gmitro AF, Lee BR. Investigation of confocal microscopy for differentiation of renal cell carcinoma versus benign tissue. Can an optical biopsy be performed? Asian J Urol 2019; 7:363-368. [PMID: 32995282 PMCID: PMC7498942 DOI: 10.1016/j.ajur.2019.12.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 02/12/2019] [Accepted: 07/17/2019] [Indexed: 01/20/2023] Open
Abstract
Objective Novel optical imaging modalities are under development with the goal of obtaining an “optical biopsy” to efficiently provide pathologic details. One such modality is confocal microscopy which allows in situ visualization of cells within a layer of tissue and imaging of cellular-level structures. The goal of this study is to validate the ability of confocal microscopy to quickly and accurately differentiate between normal renal tissue and cancer. Methods Specimens were obtained from patients who underwent robotic partial nephrectomy for renal mass. Samples of suspected normal and tumor tissue were extracted from the excised portion of the kidney and stained with acridine orange. The stained samples were imaged on a Nikon E600 C1 Confocal Microscope. The samples were then submitted for hematoxylin and eosin processing and read by an expert pathologist to provide a gold-standard diagnosis that can later be compared to the confocal images. Results This study included 11 patients, 17 tissue samples, and 118 confocal images. Of the 17 tissue samples, 10 had a gold-standard diagnosis of cancer and seven were benign. Of 118 confocal images, 66 had a gold-standard diagnosis of cancer and 52 were benign. Six confocal images were used as a training set to train eight observers. The observers were asked to rate the test images on a six point scale and the results were analyzed using a web based receiver operating characteristic curve calculator. The average accuracy, sensitivity, specificity, and area under the empirical receiver operating characteristic curve for this study were 91%, 98%, 81%, and 0.94 respectively. Conclusion This preliminary study suggest that confocal microscopy can be used to distinguish cancer from normal tissue with high sensitivity and specificity. The observers in this study were trained quickly and on only six images. We expect even higher performance as observers become more familiar with the confocal images.
Collapse
Affiliation(s)
- Michael C Phung
- Department of Urology, University of Arizona College of Medicine, Arizona, USA
| | - Andrew R Rouse
- Department of Medical Imaging, University of Arizona College of Medicine, Arizona, USA
| | - Jayce Pangilinan
- Department of Pathology, University of Arizona College of Medicine, Arizona, USA
| | - Robert C Bell
- Department of Pathology, University of Arizona College of Medicine, Arizona, USA
| | - Erika R Bracamonte
- Department of Pathology, University of Arizona College of Medicine, Arizona, USA
| | - Sharfuddeen Mashi
- Ringgold Standard Institution, Aminu Kano Teaching Hospital, Kano, Nigeria
| | - Arthur F Gmitro
- Biomedical Engineering, University of Arizona College of Medicine, Arizona, USA
| | - Benjamin R Lee
- Department of Urology, University of Arizona College of Medicine, Arizona, USA
| |
Collapse
|
7
|
Charalampaki P, Nakamura M, Athanasopoulos D, Heimann A. Confocal-Assisted Multispectral Fluorescent Microscopy for Brain Tumor Surgery. Front Oncol 2019; 9:583. [PMID: 31380264 PMCID: PMC6657348 DOI: 10.3389/fonc.2019.00583] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 06/14/2019] [Indexed: 01/14/2023] Open
Abstract
Optimal surgical therapy for brain tumors is the combination of complete resection with minimal invasion and damage to the adjacent normal tissue. To achieve this goal, we need advanced imaging techniques on a scale from macro- to microscopic resolution. In the last decade, the development of fluorescence-guided surgery has been the most influential breakthrough, marginally improving outcomes in brain tumor surgery. Multispectral fluorescence microscopy (MFL) is a novel imaging technique that allows the overlapping of a fluorescent image and a white light image in real-time, with delivery of the merged image to the surgeon through the eyepieces of a surgical microscope. MFL permits the detection and characterization of brain tumors using fluorescent molecular markers such as 5-aminolevulinic acid (5-ALA) or indocyanine green (ICG), while simultaneously obtaining high definition white light images to create a pseudo-colored composite image in real-time. Limitations associated with the use of MFL include decreased light imaging intensity and decreased levels of magnification that may compromise maximal tumor resection on a cellular scale. Confocal laser endomicroscopy (CLE) is another novel advanced imaging technique that is based on miniaturization of the microscope imaging head in order to provide the possibility of in vivo microscopy at the cellular level. Clear visualization of the cellular cytoarchitecture can be achieved with 400-fold-1,000-fold magnification. CLE allows on the one hand the intra-operative detection and differentiation of single tumor cells (without the need for intra-operative histologic analysis of biopsy specimens) as well as the definition of borders between tumor and normal tissue at a cellular level, dramatically improving the accuracy of surgical resection. The application and implementation of CLE-assisted surgery in surgical oncology increases not only the number of options for real-time diagnostic imaging, but also the therapeutic options by extending the resection borders of cancer at a cellular level and, more importantly, by protecting the functionality of normal tissue in the adjacent areas of the human brain. In this article, we describe our experience using these new techniques of confocal-assisted fluorescent surgery including analysis on the technology, usability, indications, limitations, and further developments.
Collapse
Affiliation(s)
- Patra Charalampaki
- Department of Neurosurgery, Cologne Medical Center, University Witten-Herdecke, Witten, Germany
| | - Makoto Nakamura
- Department of Neurosurgery, Cologne Medical Center, University Witten-Herdecke, Witten, Germany
| | | | - Axel Heimann
- Institute of Neurosurgical Pathophysiology, Medical University Mainz, Mainz, Germany
| |
Collapse
|
8
|
Lee J, Jeh SU, Koh DH, Chung DY, Kim MS, Goh HJ, Lee JY, Choi YD. Probe-Based Confocal Laser Endomicroscopy During Transurethral Resection of Bladder Tumors Improves the Diagnostic Accuracy and Therapeutic Efficacy. Ann Surg Oncol 2019; 26:1158-1165. [PMID: 30719635 PMCID: PMC6399171 DOI: 10.1245/s10434-019-07200-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Indexed: 11/18/2022]
Abstract
Purpose This study was designed to assess the diagnostic accuracy and therapeutic efficacy of probe-based confocal laser endomicroscopy (pCLE), which provides real-time, in vivo histological information during transurethral resection of bladder tumors. Methods We performed a prospective study between August 2013 and August 2014. pCLE was performed on a total of 119 lesions in 75 patients. We analyzed the diagnostic accuracy of pCLE by comparing the confocal image reports with the pathology reports of surgical specimen. Confocal images were interpreted by a single urologist blinded to the pathology reports. The therapeutic efficacy was analyzed by comparing the outcomes in pCLE and non-pCLE groups. Results In a total of 119 lesions, 23 were benign and 96 were malignant. The detection accuracy for malignant lesions with pCLE was determined with a sensitivity and a positive predictive value (PPV) of 91.7% and 93.6%, respectively. For high-grade versus low-grade bladder cancer, sensitivity and PPV of pCLE were 94.5% and 89.7%, respectively. Distinguishing carcinoma in situ from inflammatory lesions also was accurate with sensitivity, specificity, and PPV of 71.4%, 81.3%, and 83.3%, respectively. The Kaplan–Meier curves revealed that the recurrence-free survival rate was significantly higher in the pCLE group than in the non-pCLE group (p = 0.031). Conclusions Probe-based confocal laser endomicroscopy is a promising method to provide the surgeon during the transurethral resection of a bladder tumor with real-time tumor histology, regardless of the tumor’s gross appearance. Furthermore, it also may improve the therapeutic efficacy with longer recurrence-free periods.
Collapse
Affiliation(s)
- Jongsoo Lee
- Department of Urology, Severance Hospital, Urological Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Seong Uk Jeh
- Department of Urology, Gyeong-Sang National University College of Medicine, Jinju, Korea
| | - Dong Hoon Koh
- Department of Urology, Severance Hospital, Urological Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Doo Yong Chung
- Department of Urology, Severance Hospital, Urological Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Min Seok Kim
- Department of Urology, Severance Hospital, Urological Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Hyeok Jun Goh
- Department of Urology, Severance Hospital, Urological Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Joo Yong Lee
- Department of Urology, Severance Hospital, Urological Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Young Deuk Choi
- Department of Urology, Severance Hospital, Urological Science Institute, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
9
|
Wells WA, Thrall M, Sorokina A, Fine J, Krishnamurthy S, Haroon A, Rao B, Shevchuk MM, Wolfsen HC, Tearney GJ, Hariri LP. In Vivo and Ex Vivo Microscopy: Moving Toward the Integration of Optical Imaging Technologies Into Pathology Practice. Arch Pathol Lab Med 2018; 143:288-298. [PMID: 30525931 DOI: 10.5858/arpa.2018-0298-ra] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The traditional surgical pathology assessment requires tissue to be removed from the patient, then processed, sectioned, stained, and interpreted by a pathologist using a light microscope. Today, an array of alternate optical imaging technologies allow tissue to be viewed at high resolution, in real time, without the need for processing, fixation, freezing, or staining. Optical imaging can be done in living patients without tissue removal, termed in vivo microscopy, or also in freshly excised tissue, termed ex vivo microscopy. Both in vivo and ex vivo microscopy have tremendous potential for clinical impact in a wide variety of applications. However, in order for these technologies to enter mainstream clinical care, an expert will be required to assess and interpret the imaging data. The optical images generated from these imaging techniques are often similar to the light microscopic images that pathologists already have expertise in interpreting. Other clinical specialists do not have this same expertise in microscopy, therefore, pathologists are a logical choice to step into the developing role of microscopic imaging expert. Here, we review the emerging technologies of in vivo and ex vivo microscopy in terms of the technical aspects and potential clinical applications. We also discuss why pathologists are essential to the successful clinical adoption of such technologies and the educational resources available to help them step into this emerging role.
Collapse
Affiliation(s)
- Wendy A Wells
- From the Department of Pathology, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire (Dr Wells); the Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas (Dr Thrall); the Department of Pathology, University of Illinois at Chicago, Chicago (Dr Sorokina); the Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (Dr Fine); the Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston (Dr Krishnamurthy); the Department of Dermatology, Rutgers-Robert Wood Johnson Medical School, Somerset, New Jersey (Drs Haroon and Rao); the Department of Pathology, Weill Cornell Medical College, New York, New York (Dr Shevchuk); the Division of Gastroenterology & Hepatology, Mayo Clinic, Jacksonville, Florida (Dr Wolfsen); and the Wellman Center for Photomedicine (Dr Tearney) and the Department of Pathology (Drs Tearney and Hariri), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Michael Thrall
- From the Department of Pathology, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire (Dr Wells); the Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas (Dr Thrall); the Department of Pathology, University of Illinois at Chicago, Chicago (Dr Sorokina); the Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (Dr Fine); the Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston (Dr Krishnamurthy); the Department of Dermatology, Rutgers-Robert Wood Johnson Medical School, Somerset, New Jersey (Drs Haroon and Rao); the Department of Pathology, Weill Cornell Medical College, New York, New York (Dr Shevchuk); the Division of Gastroenterology & Hepatology, Mayo Clinic, Jacksonville, Florida (Dr Wolfsen); and the Wellman Center for Photomedicine (Dr Tearney) and the Department of Pathology (Drs Tearney and Hariri), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Anastasia Sorokina
- From the Department of Pathology, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire (Dr Wells); the Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas (Dr Thrall); the Department of Pathology, University of Illinois at Chicago, Chicago (Dr Sorokina); the Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (Dr Fine); the Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston (Dr Krishnamurthy); the Department of Dermatology, Rutgers-Robert Wood Johnson Medical School, Somerset, New Jersey (Drs Haroon and Rao); the Department of Pathology, Weill Cornell Medical College, New York, New York (Dr Shevchuk); the Division of Gastroenterology & Hepatology, Mayo Clinic, Jacksonville, Florida (Dr Wolfsen); and the Wellman Center for Photomedicine (Dr Tearney) and the Department of Pathology (Drs Tearney and Hariri), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Jeffrey Fine
- From the Department of Pathology, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire (Dr Wells); the Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas (Dr Thrall); the Department of Pathology, University of Illinois at Chicago, Chicago (Dr Sorokina); the Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (Dr Fine); the Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston (Dr Krishnamurthy); the Department of Dermatology, Rutgers-Robert Wood Johnson Medical School, Somerset, New Jersey (Drs Haroon and Rao); the Department of Pathology, Weill Cornell Medical College, New York, New York (Dr Shevchuk); the Division of Gastroenterology & Hepatology, Mayo Clinic, Jacksonville, Florida (Dr Wolfsen); and the Wellman Center for Photomedicine (Dr Tearney) and the Department of Pathology (Drs Tearney and Hariri), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Savitri Krishnamurthy
- From the Department of Pathology, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire (Dr Wells); the Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas (Dr Thrall); the Department of Pathology, University of Illinois at Chicago, Chicago (Dr Sorokina); the Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (Dr Fine); the Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston (Dr Krishnamurthy); the Department of Dermatology, Rutgers-Robert Wood Johnson Medical School, Somerset, New Jersey (Drs Haroon and Rao); the Department of Pathology, Weill Cornell Medical College, New York, New York (Dr Shevchuk); the Division of Gastroenterology & Hepatology, Mayo Clinic, Jacksonville, Florida (Dr Wolfsen); and the Wellman Center for Photomedicine (Dr Tearney) and the Department of Pathology (Drs Tearney and Hariri), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Attiya Haroon
- From the Department of Pathology, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire (Dr Wells); the Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas (Dr Thrall); the Department of Pathology, University of Illinois at Chicago, Chicago (Dr Sorokina); the Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (Dr Fine); the Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston (Dr Krishnamurthy); the Department of Dermatology, Rutgers-Robert Wood Johnson Medical School, Somerset, New Jersey (Drs Haroon and Rao); the Department of Pathology, Weill Cornell Medical College, New York, New York (Dr Shevchuk); the Division of Gastroenterology & Hepatology, Mayo Clinic, Jacksonville, Florida (Dr Wolfsen); and the Wellman Center for Photomedicine (Dr Tearney) and the Department of Pathology (Drs Tearney and Hariri), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Babar Rao
- From the Department of Pathology, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire (Dr Wells); the Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas (Dr Thrall); the Department of Pathology, University of Illinois at Chicago, Chicago (Dr Sorokina); the Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (Dr Fine); the Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston (Dr Krishnamurthy); the Department of Dermatology, Rutgers-Robert Wood Johnson Medical School, Somerset, New Jersey (Drs Haroon and Rao); the Department of Pathology, Weill Cornell Medical College, New York, New York (Dr Shevchuk); the Division of Gastroenterology & Hepatology, Mayo Clinic, Jacksonville, Florida (Dr Wolfsen); and the Wellman Center for Photomedicine (Dr Tearney) and the Department of Pathology (Drs Tearney and Hariri), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Maria M Shevchuk
- From the Department of Pathology, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire (Dr Wells); the Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas (Dr Thrall); the Department of Pathology, University of Illinois at Chicago, Chicago (Dr Sorokina); the Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (Dr Fine); the Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston (Dr Krishnamurthy); the Department of Dermatology, Rutgers-Robert Wood Johnson Medical School, Somerset, New Jersey (Drs Haroon and Rao); the Department of Pathology, Weill Cornell Medical College, New York, New York (Dr Shevchuk); the Division of Gastroenterology & Hepatology, Mayo Clinic, Jacksonville, Florida (Dr Wolfsen); and the Wellman Center for Photomedicine (Dr Tearney) and the Department of Pathology (Drs Tearney and Hariri), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Herbert C Wolfsen
- From the Department of Pathology, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire (Dr Wells); the Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas (Dr Thrall); the Department of Pathology, University of Illinois at Chicago, Chicago (Dr Sorokina); the Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (Dr Fine); the Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston (Dr Krishnamurthy); the Department of Dermatology, Rutgers-Robert Wood Johnson Medical School, Somerset, New Jersey (Drs Haroon and Rao); the Department of Pathology, Weill Cornell Medical College, New York, New York (Dr Shevchuk); the Division of Gastroenterology & Hepatology, Mayo Clinic, Jacksonville, Florida (Dr Wolfsen); and the Wellman Center for Photomedicine (Dr Tearney) and the Department of Pathology (Drs Tearney and Hariri), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Guillermo J Tearney
- From the Department of Pathology, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire (Dr Wells); the Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas (Dr Thrall); the Department of Pathology, University of Illinois at Chicago, Chicago (Dr Sorokina); the Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (Dr Fine); the Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston (Dr Krishnamurthy); the Department of Dermatology, Rutgers-Robert Wood Johnson Medical School, Somerset, New Jersey (Drs Haroon and Rao); the Department of Pathology, Weill Cornell Medical College, New York, New York (Dr Shevchuk); the Division of Gastroenterology & Hepatology, Mayo Clinic, Jacksonville, Florida (Dr Wolfsen); and the Wellman Center for Photomedicine (Dr Tearney) and the Department of Pathology (Drs Tearney and Hariri), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Lida P Hariri
- From the Department of Pathology, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire (Dr Wells); the Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas (Dr Thrall); the Department of Pathology, University of Illinois at Chicago, Chicago (Dr Sorokina); the Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (Dr Fine); the Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston (Dr Krishnamurthy); the Department of Dermatology, Rutgers-Robert Wood Johnson Medical School, Somerset, New Jersey (Drs Haroon and Rao); the Department of Pathology, Weill Cornell Medical College, New York, New York (Dr Shevchuk); the Division of Gastroenterology & Hepatology, Mayo Clinic, Jacksonville, Florida (Dr Wolfsen); and the Wellman Center for Photomedicine (Dr Tearney) and the Department of Pathology (Drs Tearney and Hariri), Massachusetts General Hospital, Harvard Medical School, Boston
| |
Collapse
|
10
|
Aubreville M, Stoeve M, Oetter N, Goncalves M, Knipfer C, Neumann H, Bohr C, Stelzle F, Maier A. Deep learning-based detection of motion artifacts in probe-based confocal laser endomicroscopy images. Int J Comput Assist Radiol Surg 2018; 14:31-42. [DOI: 10.1007/s11548-018-1836-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 07/26/2018] [Indexed: 12/11/2022]
|
11
|
Noninvasive histological imaging of head and neck squamous cell carcinomas using confocal laser endomicroscopy. Eur Arch Otorhinolaryngol 2016; 273:4473-4483. [PMID: 27307282 DOI: 10.1007/s00405-016-4145-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 06/11/2016] [Indexed: 01/27/2023]
Abstract
Confocal laser endomicroscopy (CLE) is an imaging technique that uses miniaturized fiberoptic probes to allow real-time histological imaging of human tissue. An application of CLE in otorhinolaryngology has hardly been investigated so far. In our study, we analyzed the applicability of CLE to visualize cancerous and healthy tissue of the head and neck region. Formalin-fixed tissue specimens from 135 head and neck squamous cell carcinoma (HNSCC) patients and 50 healthy controls were investigated using CLE with and without topical application of acriflavine. Four head and neck surgeons, four pathologists, and four laymen evaluated the CLE images of the HNSCC cases regarding the tumor localization and its border to healthy tissue. The tumor localization and the tumor border were correctly identified in 97 % by the pathologists, 85 % by the head and neck surgeons, and 70 % by the laymen. The main difference in evaluation results was seen in the correct identification of the tumor site (p < 0.05), while there was no significant difference in the identification of the tumor border. CLE is a valuable tool for real-time histological imaging of HNSCCs. It can help to visualize the tumor border and, thereby, facilitate a more precise tumor surgery.
Collapse
|
12
|
Abstract
First developed in 1957, confocal microscopy is a powerful imaging tool that can be used to obtain near real-time reflected light images of untreated human tissue with nearly histologic resolution. Besides its research applications, in the last decades, confocal microscopy technology has been proposed as a useful device to improve clinical diagnosis, especially in ophthalmology, dermatology, and endomicroscopy settings, thanks to advances in instrument development. Compared with the wider use of the in vivo tissue assessment, ex vivo applications of confocal microscopy are not fully explored. A comprehensive review of the current literature was performed here, focusing on the reliable applications of ex vivo confocal microscopy in surgical pathology and on some potential evolutions of this new technique from pathologists' viewpoint.
Collapse
|
13
|
Zehri AH, Ramey W, Georges JF, Mooney MA, Martirosyan NL, Preul MC, Nakaji P. Neurosurgical confocal endomicroscopy: A review of contrast agents, confocal systems, and future imaging modalities. Surg Neurol Int 2014; 5:60. [PMID: 24872922 PMCID: PMC4033764 DOI: 10.4103/2152-7806.131638] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 02/13/2014] [Indexed: 01/15/2023] Open
Abstract
Background: The clinical application of fluorescent contrast agents (fluorescein, indocyanine green, and aminolevulinic acid) with intraoperative microscopy has led to advances in intraoperative brain tumor imaging. Their properties, mechanism of action, history of use, and safety are analyzed in this report along with a review of current laser scanning confocal endomicroscopy systems. Additional imaging modalities with potential neurosurgical utility are also analyzed. Methods: A comprehensive literature search was performed utilizing PubMed and key words: In vivo confocal microscopy, confocal endomicroscopy, fluorescence imaging, in vivo diagnostics/neoplasm, in vivo molecular imaging, and optical imaging. Articles were reviewed that discussed clinically available fluorophores in neurosurgery, confocal endomicroscopy instrumentation, confocal microscopy systems, and intraoperative cancer diagnostics. Results: Current clinically available fluorescent contrast agents have specific properties that provide microscopic delineation of tumors when imaged with laser scanning confocal endomicroscopes. Other imaging modalities such as coherent anti-Stokes Raman scattering (CARS) microscopy, confocal reflectance microscopy, fluorescent lifetime imaging (FLIM), two-photon microscopy, and second harmonic generation may also have potential in neurosurgical applications. Conclusion: In addition to guiding tumor resection, intraoperative fluorescence and microscopy have the potential to facilitate tumor identification and complement frozen section analysis during surgery by providing real-time histological assessment. Further research, including clinical trials, is necessary to test the efficacy of fluorescent contrast agents and optical imaging instrumentation in order to establish their role in neurosurgery.
Collapse
Affiliation(s)
- Aqib H Zehri
- Neurosurgery Research Laboratory, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Wyatt Ramey
- Division of Neurological Surgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Joseph F Georges
- Neurosurgery Research Laboratory, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA ; School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | - Michael A Mooney
- Division of Neurological Surgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Nikolay L Martirosyan
- Division of Neurological Surgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA ; Division of Neurosurgery, Department of Surgery, The University of Arizona, Tucson, AZ, Arizona, USA
| | - Mark C Preul
- Neurosurgery Research Laboratory, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Peter Nakaji
- Division of Neurological Surgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| |
Collapse
|
14
|
Fluorescein-guided surgery for malignant gliomas: a review. Neurosurg Rev 2014; 37:547-57. [DOI: 10.1007/s10143-014-0546-6] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 01/08/2014] [Accepted: 01/26/2014] [Indexed: 01/11/2023]
|
15
|
Nakai Y, Isayama H, Shinoura S, Iwashita T, Samarasena JB, Chang KJ, Koike K. Confocal laser endomicroscopy in gastrointestinal and pancreatobiliary diseases. Dig Endosc 2014; 26 Suppl 1:86-94. [PMID: 24033351 DOI: 10.1111/den.12152] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 07/02/2013] [Indexed: 12/20/2022]
Abstract
Confocal laser endomicroscopy (CLE) is an emerging diagnostic procedure that enables in vivo pathological evaluation during ongoing endoscopy. There are two types of CLE: endoscope-based CLE (eCLE), which is integrated in the tip of the endoscope, and probe-based CLE (pCLE), which goes through the accessory channel of the endoscope. Clinical data of CLE have been reported mainly in gastrointestinal (GI) diseases including Barrett's esophagus, gastric neoplasms, and colon polyps, but, recently, a smaller pCLE, which goes through a catheter or a fine-needle aspiration needle, was developed and clinical data in the diagnosis of biliary stricture or pancreatic cysts have been increasingly reported. The future application of this novel technique expands beyond the pathological diagnosis to functional or molecular imaging. Despite these promising data, the generalizability of the procedure should be confirmed especially in Japan and other Asian countries, where the current diagnostic yield for GI luminal diseases is high. Given the high cost of CLE devices, cost-benefit analysis should also be considered.
Collapse
Affiliation(s)
- Yousuke Nakai
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
16
|
van Lingen AV, Witjes JA. Current intravesical therapy for non-muscle invasive bladder cancer. Expert Opin Biol Ther 2013; 13:1371-85. [DOI: 10.1517/14712598.2013.824421] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
17
|
Chang TC, Liu JJ, Liao JC. Probe-based confocal laser endomicroscopy of the urinary tract: the technique. J Vis Exp 2013:e4409. [PMID: 23354133 DOI: 10.3791/4409] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Probe-based confocal laser endomicroscopy (CLE) is an emerging optical imaging technology that enables real-time in vivo microscopy of mucosal surfaces during standard endoscopy. With applications currently in the respiratory and gastrointestinal tracts, CLE has also been explored in the urinary tract for bladder cancer diagnosis. Cellular morphology and tissue microarchitecture can be resolved with micron scale resolution in real time, in addition to dynamic imaging of the normal and pathological vasculature. The probe-based CLE system (Cellvizio, Mauna Kea Technologies, France) consists of a reusable fiberoptic imaging probe coupled to a 488 nm laser scanning unit. The imaging probe is inserted in the working channels of standard flexible and rigid endoscopes. An endoscope-based CLE system (Optiscan, Australia), in which the confocal endomicroscopy functionality is integrated onto the endoscope, is also used in the gastrointestinal tract. Given the larger scope diameter, however, application in the urinary tract is currently limited to ex vivo use. Confocal image acquisition is done through direct contact of the imaging probe with the target tissue and recorded as video sequences. As in the gastrointestinal tract, endomicroscopy of the urinary tract requires an exogenenous contrast agent-most commonly fluorescein, which can be administered intravenously or intravesically. Intravesical administration is a well-established method to introduce pharmacological agents locally with minimal systemic toxicity that is unique to the urinary tract. Fluorescein rapidly stains the extracellular matrix and has an established safety profile. Imaging probes of various diameters enable compatibility with different caliber endoscopes. To date, 1.4 and 2.6 mm probes have been evaluated with flexible and rigid cystoscopy. Recent availability of a < 1 mm imaging probe opens up the possibility of CLE in the upper urinary tract during ureteroscopy. Fluorescence cystoscopy (i.e. photodynamic diagnosis) and narrow band imaging are additional endoscope-based optical imaging modalities that can be combined with CLE to achieve multimodal imaging of the urinary tract. In the future, CLE may be coupled with molecular contrast agents such as fluorescently labeled peptides and antibodies for endoscopic imaging of disease processes with molecular specificity.
Collapse
Affiliation(s)
- Timothy C Chang
- Department of Urology, Stanford University School of Medicine, USA
| | | | | |
Collapse
|
18
|
Goetz M. Confocal Laser Endomicroscopy: Applications in Clinical and Translational Science—A Comprehensive Review. ACTA ACUST UNITED AC 2012. [DOI: 10.5402/2012/387145] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Confocal laser endomicroscopy (CLE) is a novel tool in the endoscopist’s armamentarium. It allows on-site histological information. The ability of gastroenterologists to interpret such microscopic information has been demonstrated in multiple studies from the upper and lower gastrointestinal tract. Recently, the field of application has expanded to provide hepatobiliary and intra-abdominal CLE imaging. CLE allows “smart,” targeted biopsies and is able to guide endoscopic interventions. But CLE is also translational in its approach and permits functional imaging that significantly impacts on our understanding of gastrointestinal diseases. Molecular imaging with CLE allows detection and characterization of lesions and may even be used for prediction of response to targeted therapy. This paper provides a comprehensive review over current applications of CLE in clinical applications and translational science.
Collapse
Affiliation(s)
- Martin Goetz
- Innere Medizin I, Universitätsklinikum Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
19
|
Confocal Laser Endomicroscopy of Bladder Tumors Associated With Photodynamic Diagnosis: An Ex Vivo Pilot Study. Urology 2012; 80:1162.e1-5. [DOI: 10.1016/j.urology.2012.06.035] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Revised: 05/20/2012] [Accepted: 06/15/2012] [Indexed: 01/11/2023]
|
20
|
Confocal laser endomicroscopy for diagnosis and histomorphologic imaging of brain tumors in vivo. PLoS One 2012; 7:e41760. [PMID: 22911853 PMCID: PMC3404071 DOI: 10.1371/journal.pone.0041760] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 06/25/2012] [Indexed: 01/30/2023] Open
Abstract
Early detection and evaluation of brain tumors during surgery is crucial for accurate resection. Currently cryosections during surgery are regularly performed. Confocal laser endomicroscopy (CLE) is a novel technique permitting in vivo histologic imaging with miniaturized endoscopic probes at excellent resolution. Aim of the current study was to evaluate CLE for in vivo diagnosis in different types and models of intracranial neoplasia. In vivo histomorphology of healthy brains and two different C6 glioma cell line allografts was evaluated in rats. One cell line expressed EYFP, the other cell line was used for staining with fluorescent dyes (fluorescein, acriflavine, FITC-dextran and Indocyanine green). To evaluate future application in patients, fresh surgical resection specimen of human intracranial tumors (n = 15) were examined (glioblastoma multiforme, meningioma, craniopharyngioma, acoustic neurinoma, brain metastasis, medulloblastoma, epidermoid tumor). Healthy brain tissue adjacent to the samples served as control. CLE yielded high-quality histomorphology of normal brain tissue and tumors. Different fluorescent agents revealed distinct aspects of tissue and cell structure (nuclear pattern, axonal pathways, hemorrhages). CLE discrimination of neoplastic from healthy brain tissue was easy to perform based on tissue and cellular architecture and resemblance with histopathology was excellent. Confocal laser endomicroscopy allows immediate in vivo imaging of normal and neoplastic brain tissue at high resolution. The technology might be transferred to scientific and clinical application in neurosurgery and neuropathology. It may become helpful to screen for tumor free margins and to improve the surgical resection of malignant brain tumors, and opens the door to in vivo molecular imaging of tumors and other neurologic disorders.
Collapse
|
21
|
Thong PSP, Tandjung SS, Movania MM, Chiew WM, Olivo M, Bhuvaneswari R, Seah HS, Lin F, Qian K, Soo KC. Toward real-time virtual biopsy of oral lesions using confocal laser endomicroscopy interfaced with embedded computing. JOURNAL OF BIOMEDICAL OPTICS 2012; 17:056009. [PMID: 22612132 DOI: 10.1117/1.jbo.17.5.056009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Oral lesions are conventionally diagnosed using white light endoscopy and histopathology. This can pose a challenge because the lesions may be difficult to visualise under white light illumination. Confocal laser endomicroscopy can be used for confocal fluorescence imaging of surface and subsurface cellular and tissue structures. To move toward real-time "virtual" biopsy of oral lesions, we interfaced an embedded computing system to a confocal laser endomicroscope to achieve a prototype three-dimensional (3-D) fluorescence imaging system. A field-programmable gated array computing platform was programmed to enable synchronization of cross-sectional image grabbing and Z-depth scanning, automate the acquisition of confocal image stacks and perform volume rendering. Fluorescence imaging of the human and murine oral cavities was carried out using the fluorescent dyes fluorescein sodium and hypericin. Volume rendering of cellular and tissue structures from the oral cavity demonstrate the potential of the system for 3-D fluorescence visualization of the oral cavity in real-time. We aim toward achieving a real-time virtual biopsy technique that can complement current diagnostic techniques and aid in targeted biopsy for better clinical outcomes.
Collapse
|
22
|
Probe-based confocal laser endomicroscopy evaluation of colon preneoplastic lesions, with particular attention to the aberrant crypt foci, and comparative assessment with histological features obtained by conventional endoscopy. Gastroenterol Res Pract 2012; 2012:645173. [PMID: 22566999 PMCID: PMC3328946 DOI: 10.1155/2012/645173] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2011] [Revised: 01/12/2012] [Accepted: 01/13/2012] [Indexed: 01/03/2023] Open
Abstract
The colorectal carcinoma represents one of the most common and aggressive malignancies, still characterized by an unacceptable mortality rate, mainly due to the high metastatic potential and to a late diagnosis. In the last years, the research community focused on the chance of improving the endoscopic screening to detect neoplastic lesions in a very early stage. Several studies proposed aberrant colonic crypt foci as the earliest recognizable step of transformation in colonic multiphase carcinogenesis. We previously demonstrated the clinical applicability and predictive power of probe-based confocal laser endoscopy (pCLE) in superficial colorectal neoplastic lesions and also characterized in vivo a case of dysplasia-associated lesional mass (DALM) in ulcerative colitis. Now, we aim to evaluate the accuracy of pCLE in the detection of ACF comparing in double-blind manner the microendoscopic and histopathological features resulting from colonic biopsy. By pCLE, we identified specific crypt architecture modifications associated with changes in cellular infiltration and vessels architecture, highlighting a good correspondence between pCLE features and histology.
Collapse
|
23
|
Eschbacher J, Martirosyan NL, Nakaji P, Sanai N, Preul MC, Smith KA, Coons SW, Spetzler RF. In vivo intraoperative confocal microscopy for real-time histopathological imaging of brain tumors. J Neurosurg 2012; 116:854-60. [PMID: 22283191 DOI: 10.3171/2011.12.jns11696] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
OBJECT Frozen-section analysis is the current standard for the intraoperative diagnosis of brain tumors. Intraoperative confocal microscopy is an emerging technology with the potential to visualize tumor histopathological features and cell morphology in real time. The authors report their findings using this new intraoperative technology in vivo with sodium fluorescein contrast during the course of 50 microsurgical tumor resections. METHODS Eighty-eight regions were visualized with confocal microscopy, and corresponding biopsy samples were examined with routine neuropathological analysis. The tumors studied included meningiomas, schwannomas, gliomas of various grades, and a hemangioblastoma. The confocal microscopic features of each tumor and of various artifacts inherent to the technology were documented. A pathologist working in a blinded fashion reviewed a subset of the images in a further evaluation of the usefulness of the device as a diagnostic tool. RESULTS Overall, intraoperative confocal imaging correlated surprisingly well with corresponding traditional histological findings, including the identification of many pathognomonic cytoarchitectural features of various brain tumors. In the blinded study, 26 (92.9%) of 28 lesions were diagnosed correctly. CONCLUSIONS Further study will be necessary for better definition of the role of intraoperative confocal microscopy as a routine adjunct for intraoperative brain tumor diagnosis.
Collapse
|
24
|
Goetz M, Watson A, Kiesslich R. Confocal laser endomicroscopy in gastrointestinal diseases. JOURNAL OF BIOPHOTONICS 2011; 4:498-508. [PMID: 21567975 DOI: 10.1002/jbio.201100022] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Revised: 04/19/2011] [Accepted: 04/25/2011] [Indexed: 05/30/2023]
Abstract
Confocal laser endomicroscopy (CLE) is a novel endoscopic technique permitting in vivo microscopy (optical biopsies) of the gastrointestinal mucosa. CLE has been studied in a multitude of diseases of the upper and lower gastrointestinal tract, including Barrett's esophagus, gastric inflammation and cancer, celiac disease, colorectal adenoma and carcinoma, and inflammatory bowel diseases. CLE has recently evolved and been studied for bile duct and liver imaging. CLE has shown overall high accuracy and enabled smart, targeted biopsies rather than untargeted sampling. Furthermore, the availability of real time microscopic information during endoscopy has immediate impact on therapeutic decisions and guides endoscopic interventions. CLE is also a unique tool for observation of (patho-)physiologic events in their natural environment (functional imaging) and has been linked to molecular imaging of gastrointestinal neoplasia in vivo, thereby broadening our understanding of mucosal pathology in clinical and basic science.
Collapse
Affiliation(s)
- Martin Goetz
- Medizinische Klinik und Poliklinik, Universitätsmedizin Mainz, Mainz, Germany
| | | | | |
Collapse
|