1
|
Silveira THRE, Pereira DA, Pereira DA, Calmasini FB, Burnett AL, Costa FF, Silva FH. Impact of intravascular hemolysis on functional and molecular alterations in the urinary bladder: implications for an overactive bladder in sickle cell disease. Front Physiol 2024; 15:1369120. [PMID: 39100273 PMCID: PMC11294091 DOI: 10.3389/fphys.2024.1369120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 05/20/2024] [Indexed: 08/06/2024] Open
Abstract
Patients with sickle cell disease (SCD) display an overactive bladder (OAB). Intravascular hemolysis in SCD is associated with various severe SCD complications. However, no experimental studies have evaluated the effect of intravascular hemolysis on bladder function. This study aimed to assess the effects of intravascular hemolysis on the micturition process and the contractile mechanisms of the detrusor smooth muscle (DSM) in a mouse model with phenylhydrazine (PHZ)-induced hemolysis; furthermore, it aimed to investigate the role of intravascular hemolysis in the dysfunction of nitric oxide (NO) signaling and in increasing oxidative stress in the bladder. Mice underwent a void spot assay, and DSM contractions were evaluated in organ baths. The PHZ group exhibited increased urinary frequency and increased void volumes. DSM contractile responses to carbachol, KCl, α-β-methylene-ATP, and EFS were increased in the PHZ group. Protein expression of phosphorylated endothelial NO synthase (eNOS) (Ser-1177), phosphorylated neuronal NO synthase (nNOS) (Ser-1417), and phosphorylated vasodilator-stimulated phosphoprotein (VASP) (Ser-239) decreased in the bladder of the PHZ group. Protein expression of oxidative stress markers, NOX-2, 3-NT, and 4-HNE, increased in the bladder of the PHZ group. Our study shows that intravascular hemolysis promotes voiding dysfunction correlated with alterations in the NO signaling pathway in the bladder, as evidenced by reduced levels of p-eNOS (Ser-1177), nNOS (Ser-1417), and p-VASP (Ser-239). The study also showed that intravascular hemolysis increases oxidative stress in the bladder. Our study indicates that intravascular hemolysis promotes an OAB phenotype similar to those observed in patients and mice with SCD.
Collapse
Affiliation(s)
| | - Dalila Andrade Pereira
- Laboratory of Pharmacology, São Francisco University Medical School, Bragança Paulista, Brazil
| | - Danillo Andrade Pereira
- Laboratory of Pharmacology, São Francisco University Medical School, Bragança Paulista, Brazil
| | - Fabiano Beraldi Calmasini
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Arthur L. Burnett
- The James Buchanan Brady Urological Institute and Department of Urology, The Johns Hopkins School of Medicine, Baltimore, MD, United States
| | | | - Fábio Henrique Silva
- Laboratory of Pharmacology, São Francisco University Medical School, Bragança Paulista, Brazil
| |
Collapse
|
2
|
Liao Y, Du X, Fu Y, Liu L, Wei J, An Q, Luo X, Gao F, Jia S, Chang Y, Guo M, Liu H. Mechanism of traditional Chinese medicine in treating overactive bladder. Int Urol Nephrol 2023; 55:489-501. [PMID: 36479677 PMCID: PMC9957912 DOI: 10.1007/s11255-022-03434-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
Overactive bladder syndrome (OAB) has made increasing progress in mechanism and treatment research. Traditional Chinese medicine (TCM) is a common complementary therapy for OAB, and it has been found to be effective. However, the intervention mechanism of TCM in the treatment of OAB is still unclear. The aim of this review is to consolidate the current knowledge about the mechanism of TCM: acupuncture, moxibustion, herbs in treating OAB, and the animal models of OAB commonly used in TCM. Finally, we put forward the dilemma of TCM treatment of OAB and discussed the insufficiency and future direction of TCM treatment of OAB.
Collapse
Affiliation(s)
- Yuxiang Liao
- Acupuncture and Moxibustion Department, Beijing Hospital of Traditional Chinese Medicine, Beijing Key Laboratory of Acupuncture Neuromodulation, Capital Medical University, Beijing, People's Republic of China
| | - Xin Du
- Acupuncture and Moxibustion Department, Beijing Hospital of Traditional Chinese Medicine, Beijing Key Laboratory of Acupuncture Neuromodulation, Capital Medical University, Beijing, People's Republic of China
| | - Yuanbo Fu
- Acupuncture and Moxibustion Department, Beijing Hospital of Traditional Chinese Medicine, Beijing Key Laboratory of Acupuncture Neuromodulation, Capital Medical University, Beijing, People's Republic of China
| | - Lu Liu
- Acupuncture and Moxibustion Department, Beijing Hospital of Traditional Chinese Medicine, Beijing Key Laboratory of Acupuncture Neuromodulation, Capital Medical University, Beijing, People's Republic of China
| | - Jiangyan Wei
- Acupuncture and Moxibustion Department, Beijing Hospital of Traditional Chinese Medicine, Beijing Key Laboratory of Acupuncture Neuromodulation, Capital Medical University, Beijing, People's Republic of China
| | - Qi An
- Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Xuanzhi Luo
- Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Fan Gao
- Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Shuhan Jia
- Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Ying Chang
- Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Mengxi Guo
- Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Huilin Liu
- Acupuncture and Moxibustion Department, Beijing Hospital of Traditional Chinese Medicine, Beijing Key Laboratory of Acupuncture Neuromodulation, Capital Medical University, Beijing, People's Republic of China.
| |
Collapse
|
3
|
Kaur J, Dora S. Purinergic signaling: Diverse effects and therapeutic potential in cancer. Front Oncol 2023; 13:1058371. [PMID: 36741002 PMCID: PMC9889871 DOI: 10.3389/fonc.2023.1058371] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/02/2023] [Indexed: 01/19/2023] Open
Abstract
Regardless of improved biological insights and therapeutic advances, cancer is consuming multiple lives worldwide. Cancer is a complex disease with diverse cellular, metabolic, and physiological parameters as its hallmarks. This instigates a need to uncover the latest therapeutic targets to advance the treatment of cancer patients. Purines are building blocks of nucleic acids but also function as metabolic intermediates and messengers, as part of a signaling pathway known as purinergic signaling. Purinergic signaling comprises primarily adenosine triphosphate (ATP) and adenosine (ADO), their analogous membrane receptors, and a set of ectonucleotidases, and has both short- and long-term (trophic) effects. Cells release ATP and ADO to modulate cellular function in an autocrine or paracrine manner by activating membrane-localized purinergic receptors (purinoceptors, P1 and P2). P1 receptors are selective for ADO and have four recognized subtypes-A1, A2A, A2B, and A3. Purines and pyrimidines activate P2 receptors, and the P2X subtype is ligand-gated ion channel receptors. P2X has seven subtypes (P2X1-7) and forms homo- and heterotrimers. The P2Y subtype is a G protein-coupled receptor with eight subtypes (P2Y1/2/4/6/11/12/13/14). ATP, its derivatives, and purinoceptors are widely distributed in all cell types for cellular communication, and any imbalance compromises the homeostasis of the cell. Neurotransmission, neuromodulation, and secretion employ fast purinergic signaling, while trophic purinergic signaling regulates cell metabolism, proliferation, differentiation, survival, migration, invasion, and immune response during tumor progression. Thus, purinergic signaling is a prospective therapeutic target in cancer and therapy resistance.
Collapse
Affiliation(s)
- Jasmeet Kaur
- Department of Biophysics, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Sanchit Dora
- Department of Biophysics, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| |
Collapse
|
4
|
Morice A, Dicpinigaitis P, McGarvey L, Birring SS. Chronic cough: new insights and future prospects. Eur Respir Rev 2021; 30:210127. [PMID: 34853095 PMCID: PMC9488126 DOI: 10.1183/16000617.0127-2021] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/20/2021] [Indexed: 11/25/2022] Open
Abstract
Chronic cough is defined in adults as a cough that lasts for ≥8 weeks. When it proves intractable to standard-of-care treatment, it can be referred to as refractory chronic cough (RCC). Chronic cough is now understood to be a condition of neural dysregulation. Chronic cough and RCC result in a serious, often unrecognized, disease burden, which forms the focus of the current review.The estimated global prevalence of chronic cough is 2-18%. Patients with chronic cough and RCC report many physical and psychological effects, which impair their quality of life. Chronic cough also has a significant economic burden for the patient and healthcare systems. RCC diagnosis and treatment are often delayed for many years as potential treatable triggers must be excluded first and a stepwise empirical therapeutic regimen is recommended.Evidence supporting most currently recommended treatments is limited. Many treatments do not address the underlying pathology, are used off-label, have limited efficacy and produce significant side-effects. There is therefore a significant unmet need for alternative therapies for RCC that target the underlying disease mechanisms. Early clinical data suggest that antagonists of the purinergic P2X3 receptor, an important mediator of RCC, are promising, though more evidence is needed.
Collapse
Affiliation(s)
- Alyn Morice
- Centre for Clinical Sciences, Hull York Medical School, University of Hull, Hull, UK
| | - Peter Dicpinigaitis
- Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, USA
| | - Lorcan McGarvey
- Centre for Experimental Medicine, Dentistry, and Biomedical Sciences, Queen's University, Belfast, UK
| | - Surinder S Birring
- Centre for Human & Applied Physiological Sciences, School of Basic & Medical Biosciences, Faculty of Life Sciences & Medicine, King's College Hospital, London, UK
| |
Collapse
|
5
|
Electroacupuncture Alleviates Bladder Overactivity via Inhabiting Bladder P2X 3 Receptor. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:4080891. [PMID: 32256644 PMCID: PMC7103056 DOI: 10.1155/2020/4080891] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 11/20/2019] [Accepted: 11/29/2019] [Indexed: 11/18/2022]
Abstract
Electroacupuncture (EA) has been widely applied for overactive bladder, but the mechanism of its action remains to be clarified. This study was aimed to investigate EA regulating the effect of purinergic signaling in the OAB of rats. Electroacupuncture (continuous wave, 30 Hz, 1 mA) was applied to stimulate the Ciliao point (BL32) and the Huiyang point (BL35) of rats. Results showed that when the P2X3 receptor in bladder peripheral level and the spinal cord central level was involved in the bladder micturition reflex of the afferent signaling, intravenous administration P2X3 antagonist AF-353 can significantly inhibit urination in naive rats and OAB of rats and increase bladder volume and micturition pressure. EA stimulation alleviated bladder overactivity significantly and after the P2X3 receptor was blocked, the EA effect was weakened. EA stimulation can effectively reduce the P2X3 mRNA and protein expression in OAB of rats, spinal cord (L6-S1), and DRG (L6-S1) and can significantly reduce the number of positive P2X3 cells in OAB of rats, spinal cord (L6-S1), and DRG (L6-S1). These findings suggest that EA stimulation could alleviate bladder overactivity, and the function is closely related to the inhabited P2X3 receptor in the bladder.
Collapse
|
6
|
Elevated release of inflammatory but not sensory mediators from the urothelium is maintained following epirubicin treatment. Eur J Pharmacol 2019; 863:172703. [DOI: 10.1016/j.ejphar.2019.172703] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/25/2019] [Accepted: 09/26/2019] [Indexed: 11/20/2022]
|
7
|
Silva-Ramos M, Silva I, Faria M, Ferreirinha F, Correia-de-Sá P. Activation of Prejunctional P2x2/3 Heterotrimers by ATP Enhances the Cholinergic Tone in Obstructed Human Urinary Bladders. J Pharmacol Exp Ther 2019; 372:63-72. [PMID: 31636173 DOI: 10.1124/jpet.119.261610] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 10/15/2019] [Indexed: 12/13/2022] Open
Abstract
The objective of this study was to investigate the role of ATP in cholinergic neurotransmission in the urinary bladder of control men and of patients obstructed as a result of benign prostatic hyperplasia (BPH). Human detrusor samples were collected from 41 patients who submitted to transvesical prostatectomy resulting from BPH and 26 male organ donors. The release of [3H]acetylcholine ([3H]ACh) was evoked by electrical field stimulation (10 Hz, 200 pulses) in urothelium-denuded detrusor strips. Myographic recordings were performed to test detrusor strip sensitivity to ACh and ATP. Nerve-evoked [3H]ACh release was 1.5-fold higher in detrusor strips from BPH patients compared with controls. This difference was abolished after desensitization of ionotropic P2X1-3 receptors with an ATP analog, α,β-methylene ATP (30 μM, applied for 15 minutes). TNP-ATP (10 nM, a preferential P2X2/3 antagonist) and A317491 (100 nM, a selective P2X3 antagonist) were about equipotent in decreasing nerve-evoked [3H]ACh release in control detrusor strips, but the selective P2X1 receptor antagonist NF023 (3 μM) was devoid of effect. The inhibitory effect of TNP-ATP (10 nM) increased from 27% ± 9% to 43% ± 6% in detrusor strips of BPH patients, but the effect of A317491 (100 nM) [3H]ACh release unaltered (20% ± 2% vs. 24% ± 4%). The amplitude of ACh (0.1-100 μM)-induced myographic recordings decreased, whereas sensitivity to ATP (0.01-3 mM) increased in detrusor strips from BPH patients. Besides the well characterized P2X1 receptor-mediated contractile activity of ATP in pathologic human bladders, we show here for the first time that cholinergic hyperactivity in the detrusor of BPH patients is facilitated by activation of ATP-sensitive P2X2/3 heterotrimers. SIGNIFICANCE STATEMENT: Bladder outlet obstruction often leads to detrusor overactivity and reduced bladder compliance in parallel to atropine-resistant increased purinergic tone. Our data show that P2X1 purinoceptors are overexpressed in the detrusor of patients with benign prostatic hyperplasia. Besides the P2X1 receptor-mediated detrusor contractions, ATP favors nerve-evoked acetylcholine release via the activation of prejunctional P2X2/3 excitatory receptors in these patients Thus, our hypothesis is that manipulation of the purinergic tone may be therapeutically useful to counteract cholinergic overstimulation in obstructed patients.
Collapse
Affiliation(s)
- M Silva-Ramos
- Laboratório de Farmacologia e Neurobiologia and Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal (M.S.-R., I.S., M.F., F.F., P.C.-S.); and Serviço de Urologia, Centro Hospitalar Universitário do Porto (CHUP), Porto, Portugal (M.S.-R.)
| | - I Silva
- Laboratório de Farmacologia e Neurobiologia and Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal (M.S.-R., I.S., M.F., F.F., P.C.-S.); and Serviço de Urologia, Centro Hospitalar Universitário do Porto (CHUP), Porto, Portugal (M.S.-R.)
| | - M Faria
- Laboratório de Farmacologia e Neurobiologia and Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal (M.S.-R., I.S., M.F., F.F., P.C.-S.); and Serviço de Urologia, Centro Hospitalar Universitário do Porto (CHUP), Porto, Portugal (M.S.-R.)
| | - F Ferreirinha
- Laboratório de Farmacologia e Neurobiologia and Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal (M.S.-R., I.S., M.F., F.F., P.C.-S.); and Serviço de Urologia, Centro Hospitalar Universitário do Porto (CHUP), Porto, Portugal (M.S.-R.)
| | - P Correia-de-Sá
- Laboratório de Farmacologia e Neurobiologia and Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal (M.S.-R., I.S., M.F., F.F., P.C.-S.); and Serviço de Urologia, Centro Hospitalar Universitário do Porto (CHUP), Porto, Portugal (M.S.-R.)
| |
Collapse
|
8
|
Mills KA, Chess-Williams R, McDermott C. Novel insights into the mechanism of cyclophosphamide-induced bladder toxicity: chloroacetaldehyde's contribution to urothelial dysfunction in vitro. Arch Toxicol 2019; 93:3291-3303. [PMID: 31598736 DOI: 10.1007/s00204-019-02589-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 10/01/2019] [Indexed: 12/31/2022]
Abstract
The clinical use of cyclophosphamide and ifosfamide is limited by a resultant bladder toxicity which has been attributed to the metabolite acrolein. Another metabolite chloroacetaldehyde (CAA) associated with nephrotoxicity, has not been investigated for toxicity in the bladder and this study investigates the effects of acrolein and CAA on human urothelial cells in vitro. Human urothelial cells (RT4 and T24) were treated with acrolein or CAA and changes in cell viability, reactive oxygen species, caspase-3 activity and release of urothelial mediators ATP, acetylcholine, PGE2 were measured. The protective effects of N-acetyl cysteine (NAC) were also assessed. Both metabolites were toxic to human urothelial cells, however, CAA significantly decreased cell viability at a ten-fold lower concentration (10 µM) than acrolein (100 µM). This was associated with increased ROS production and caspase-3 activity. NAC protected cells from these changes. In RT4 cells 100 µM acrolein caused a significant increase in basal and stretch-induced ATP, Ach and PGE2 release. In T24 cells chloroacetaldehyde (10 µM) increased basal and stimulated ATP and PGE2 levels. Again, NAC protected against changes in urothelial mediator release following acrolein or CAA. This study is the first to report that CAA in addition to acrolein contributes to the urotoxicity of cyclophosphamide and ifosfamide. Both metabolites altered urothelial mediator levels which could contribute to the sensory and functional bladder changes experienced by patients after treatment with cyclophosphamide or ifosfamide. Alterations in urothelial cell viability and mediator release may be causally linked to oxidative stress, with NAC providing protection against these changes.
Collapse
Affiliation(s)
- Kylie A Mills
- Centre for Urology Research, Faculty of Health Sciences and Medicine, Bond University, Robina, QLD, 4229, Australia
| | - Russ Chess-Williams
- Centre for Urology Research, Faculty of Health Sciences and Medicine, Bond University, Robina, QLD, 4229, Australia
| | - Catherine McDermott
- Centre for Urology Research, Faculty of Health Sciences and Medicine, Bond University, Robina, QLD, 4229, Australia.
| |
Collapse
|
9
|
Gong D, Zhang J, Chen Y, Xu Y, Ma J, Hu G, Huang Y, Zheng J, Zhai W, Xue W. The m 6A-suppressed P2RX6 activation promotes renal cancer cells migration and invasion through ATP-induced Ca 2+ influx modulating ERK1/2 phosphorylation and MMP9 signaling pathway. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:233. [PMID: 31159832 PMCID: PMC6547495 DOI: 10.1186/s13046-019-1223-y] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 05/09/2019] [Indexed: 12/24/2022]
Abstract
Background Previous study demonstrated that extracellular ATP could promote cell migration and invasion in multiple human cancers. Till now, the pro-invasive mechanisms of ATP and P2RX6, a preferred receptor for ATP, are still poorly studied in RCC. Methods Bioinformatics analysis was performed to identify the differentially expressed genes during RCC different stages. Tissue microarray, IHC staining and survival analysis was respectively used to evaluate potential clinical function. In vitro and in vivo assays were performed to explore the P2RX6 biological effects in RCC progression. Results We found that ATP might increase RCC cells migration and invasion through P2RX6. Mechanism dissection revealed that ATP-P2RX6 might modulate the Ca2+-mediated p-ERK1/2/MMP9 signaling to increase the RCC cells migration and invasion. Furthermore, METTL14 implicated m6A modification in RCC and down-regulated P2RX6 protein translation. In addition, human clinical survey also indicated the positive correlation of this newly identified signaling in RCC progression and prognosis. Conclusions Our findings revealed that the newly identified ATP-P2RX6-Ca2+-p-ERK1/2-MMP9 signaling facilitates RCC cell invasion and metastasis. Targeting this novel signaling pathway with small molecules might help us to develop a new approach to better suppress RCC progression. Electronic supplementary material The online version of this article (10.1186/s13046-019-1223-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dongkui Gong
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine in Tongji University, Shanghai, 200072, China
| | - Jin Zhang
- Department of Urology, Renji Hospital, School of Medicine in Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yonghui Chen
- Department of Urology, Renji Hospital, School of Medicine in Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yunfei Xu
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine in Tongji University, Shanghai, 200072, China
| | - Junjie Ma
- Department of Urology, Pudong Hospital, School of Medicine in Fudan University, Shanghai, 201300, China
| | - Guanghui Hu
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine in Tongji University, Shanghai, 200072, China
| | - Yiran Huang
- Department of Urology, Renji Hospital, School of Medicine in Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Junhua Zheng
- Department of Urology, Shanghai First People's Hospital, School of Medicine in Shanghai Jiao Tong University, Shanghai, 200080, China.
| | - Wei Zhai
- Department of Urology, Renji Hospital, School of Medicine in Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Wei Xue
- Department of Urology, Renji Hospital, School of Medicine in Shanghai Jiao Tong University, Shanghai, 200127, China.
| |
Collapse
|
10
|
Mora AG, Furquim SR, Tartarotti SP, Andrade DR, Janussi SC, Krikorian K, Rocha T, Franco-Penteado CF, Priolli DG, Priviero FBM, Claudino MA. Progression of micturition dysfunction associated with the development of heart failure in rats: Model of overactive bladder. Life Sci 2019; 226:107-116. [PMID: 30965053 DOI: 10.1016/j.lfs.2019.04.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/03/2019] [Accepted: 04/05/2019] [Indexed: 10/27/2022]
Abstract
Heart failure (HF) has a strong association with the development of lower urinary tract symptoms, especially overactive bladder (OAB); although this condition remains poorly investigated. In this study, we assess the aortocaval fistula (ACF) model as a novel experimental model of micturition dysfunction, associated with HF, focused on the molecular and functional studies to evaluate the autonomic nervous system and urinary bladder remodeling. Male rats were submitted to ACF for HF induction. Echocardiography, cystometric, histomorphometry and molecular analysis, as well as concentration-response curves to carbachol and ATP and frequency-response curves to electrical field stimulation (EFS) were evaluated in Sham and HF (4- and 12-weeksendpoint) groups. Compared to SHAM, HF groups exhibited progressive increases in the left ventricle (LV) mass and fractional shortening which indicates cardiac dysfunction, although HF was characterized only after 12 weeks by the reduced ejection fraction. For micturition function, HF groups presented increased non-voiding contractions (NVC) and decreased bladder capacity; however, when comparing HF groups, these urinary parameters were significantly impaired over the weeks (12-weeks). The contractile responses induced by CCh, ATP and EFS were greater in detrusor muscle (DSM) from HF rats. mRNA expression for muscarinic receptors (M2 and M3) was higher in DSM only after 12 weeks of ACF, in addition to MMP9 and TGF-beta. Histomorphometric revealed increased urothelium thickness in both HF groups, whereas DSM thickness occurred only after 12 weeks. Thus, the ACF model induced cardiac dyfunction with progressive micturition dysfunction over the weeks, characterized by increased DSM contractile mechanisms as well as extracellular matrix remodeling in the urinary bladder, representing a useful tool to evaluate the OAB associated with HF.
Collapse
Affiliation(s)
- A G Mora
- Laboratory of Multidisciplinary Research, São Francisco University Medical School, Bragança Paulista, SP, Brazil
| | - S R Furquim
- Laboratory of Multidisciplinary Research, São Francisco University Medical School, Bragança Paulista, SP, Brazil
| | - S P Tartarotti
- Laboratory of Multidisciplinary Research, São Francisco University Medical School, Bragança Paulista, SP, Brazil
| | - D R Andrade
- Laboratory of Multidisciplinary Research, São Francisco University Medical School, Bragança Paulista, SP, Brazil
| | - S C Janussi
- Laboratory of Multidisciplinary Research, São Francisco University Medical School, Bragança Paulista, SP, Brazil
| | - K Krikorian
- Laboratory of Multidisciplinary Research, São Francisco University Medical School, Bragança Paulista, SP, Brazil
| | - T Rocha
- Laboratory of Multidisciplinary Research, São Francisco University Medical School, Bragança Paulista, SP, Brazil
| | - C F Franco-Penteado
- Hematology and Hemotherapy Center, University of Campinas, Campinas, SP, Brazil; Faculty of Medical Sciences, University of Campinas, Campinas, SP, Brazil
| | - D G Priolli
- Laboratory of Multidisciplinary Research, São Francisco University Medical School, Bragança Paulista, SP, Brazil
| | - F B M Priviero
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - M A Claudino
- Laboratory of Multidisciplinary Research, São Francisco University Medical School, Bragança Paulista, SP, Brazil.
| |
Collapse
|
11
|
Abstract
Adenosine 5′-triphosphate acts as an extracellular signalling molecule (purinergic signalling), as well as an intracellular energy source. Adenosine 5′-triphosphate receptors have been cloned and characterised. P1 receptors are selective for adenosine, a breakdown product of adenosine 5′-triphosphate after degradation by ectonucleotidases. Four subtypes are recognised, A1, A2A, A2B and A3 receptors. P2 receptors are activated by purine and by pyrimidine nucleotides. P2X receptors are ligand-gated ion channel receptors (seven subunits (P2X1-7)), which form trimers as both homomultimers and heteromultimers. P2Y receptors are G protein-coupled receptors (eight subtypes (P2Y1/2/4/6/11/12/13/14)). There is both purinergic short-term signalling and long-term (trophic) signalling. The cloning of P2X-like receptors in primitive invertebrates suggests that adenosine 5′-triphosphate is an early evolutionary extracellular signalling molecule. Selective purinoceptor agonists and antagonists with therapeutic potential have been developed for a wide range of diseases, including thrombosis and stroke, dry eye, atherosclerosis, kidney failure, osteoporosis, bladder incontinence, colitis, neurodegenerative diseases and cancer.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, London, UK.,Department of Pharmacology and Therapeutics, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
12
|
Traish AM, Johansen V. Impact of Testosterone Deficiency and Testosterone Therapy on Lower Urinary Tract Symptoms in Men with Metabolic Syndrome. World J Mens Health 2018; 36:199-222. [PMID: 30079638 PMCID: PMC6119850 DOI: 10.5534/wjmh.180032] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 05/10/2018] [Indexed: 12/11/2022] Open
Abstract
Lower urinary tract function is modulated by neural, vascular and urethral and bladder structural elements. The pathophysiological mechanisms of lower urinary tract symptoms (LUTS) encompass prostate enlargement, alterations in urethra histological structure bladder fibrosis and alterations in pelvic neuronal and vascular networks, The complex pathophysiological relationship between testosterone (T) deficiency (TD) and the constellations LUTS, and metabolic dysfunction manifested in the metabolic syndrome (Met S) remains poorly understood. TD has emerged as one the potential targets by which Met S may contribute to the onset and development as well as worsening of LUTS. Because it has been recognized that treatment of men with Met S with T therapy ameliorates Met S components, it is postulated that T therapy may represent a therapeutic target in improving LUTS. Furthermore, the effect of TD on the prostate remains unclear, and often debatable. It is believed that T exclusively promotes prostate growth, however recent evidence has strongly contradicted this belief. The true relationship between benign prostatic hyperplasia, TD, and LUTS remains elusive and further research will be required to clarify the role of T in both benign prostatic hypertrophy (BPH) and LUTS as a whole. Although there is conflicting evidence about the benefits of T therapy in men with BPH and LUTS, the current body of literature supports the safety of using this therapy in men with enlarged prostate. As the population afflicted with obesity epidemic continues to age, the number of men suffering from Met S and LUTS together is expected to increase.
Collapse
Affiliation(s)
- Abdulmaged M Traish
- Department of Urology, Boston University School of Medicine, Boston, MA, USA.
| | - Vanessa Johansen
- Department of Urology, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
13
|
The therapeutic potential of purinergic signalling. Biochem Pharmacol 2018; 151:157-165. [DOI: 10.1016/j.bcp.2017.07.016] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 07/18/2017] [Indexed: 01/05/2023]
|
14
|
Urine: Waste product or biologically active tissue? Neurourol Urodyn 2018; 37:1162-1168. [PMID: 29464759 DOI: 10.1002/nau.23414] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 08/18/2017] [Indexed: 01/01/2023]
Abstract
AIMS Historically, urine has been viewed primarily as a waste product with little biological role in the overall health of an individual. Increasingly, data suggest that urine plays a role in human health beyond waste excretion. For example, urine might act as an irritant and contribute to symptoms through interaction with-and potential compromise of-the urothelium. METHODS To explore the concept that urine may be a vehicle for agents with potential or occult bioactivity and to discuss existing evidence and novel research questions that may yield insight into such a role, the National Institute of Diabetes and Digestive and Kidney Disease invited experts in the fields of comparative evolutionary physiology, basic science, nephrology, urology, pediatrics, metabolomics, and proteomics (among others) to a Urinology Think Tank meeting on February 9, 2015. RESULTS This report reflects ideas that evolved from this meeting and current literature, including the concept of urine quality, the biological, chemical, and physical characteristics of urine, including the microbiota, cells, exosomes, pH, metabolites, proteins, and specific gravity (among others). Additionally, the manuscript presents speculative, and hopefully testable, ideas about the functional roles of urine constituents in health and disease. CONCLUSION Moving forward, there are several questions that need further understanding and pursuit. There were suggestions to consider actively using various animal models and their biological specimens to elaborate on basic mechanistic information regarding human bladder dysfunction.
Collapse
|
15
|
Guan NN, Sharma N, Hallén-Grufman K, Jager EWH, Svennersten K. The role of ATP signalling in response to mechanical stimulation studied in T24 cells using new microphysiological tools. J Cell Mol Med 2018; 22:2319-2328. [PMID: 29392898 PMCID: PMC5867107 DOI: 10.1111/jcmm.13520] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Accepted: 12/01/2017] [Indexed: 01/06/2023] Open
Abstract
The capacity to store urine and initiate voiding is a valued characteristic of the human urinary bladder. To maintain this feature, it is necessary that the bladder can sense when it is full and when it is time to void. The bladder has a specialized epithelium called urothelium that is believed to be important for its sensory function. It has been suggested that autocrine ATP signalling contributes to this sensory function of the urothelium. There is well‐established evidence that ATP is released via vesicular exocytosis as well as by pannexin hemichannels upon mechanical stimulation. However, there are still many details that need elucidation and therefore there is a need for the development of new tools to further explore this fascinating field. In this work, we use new microphysiological systems to study mechanostimulation at a cellular level: a mechanostimulation microchip and a silicone‐based cell stretcher. Using these tools, we show that ATP is released upon cell stretching and that extracellular ATP contributes to a major part of Ca2+ signalling induced by stretching in T24 cells. These results contribute to the increasing body of evidence for ATP signalling as an important component for the sensory function of urothelial cells. This encourages the development of drugs targeting P2 receptors to relieve suffering from overactive bladder disorder and incontinence.
Collapse
Affiliation(s)
- Na N Guan
- Department of Molecular Medicine and Surgery, Section of Urology, Karolinska Institutet, Stockholm, Sweden.,Department of Urology, Karolinska University Hospital, Stockholm, Sweden.,Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Nimish Sharma
- Department of Molecular Medicine and Surgery, Section of Urology, Karolinska Institutet, Stockholm, Sweden.,Department of Urology, Karolinska University Hospital, Stockholm, Sweden
| | - Katarina Hallén-Grufman
- Department of Molecular Medicine and Surgery, Section of Urology, Karolinska Institutet, Stockholm, Sweden.,Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Edwin W H Jager
- Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping, Sweden
| | - Karl Svennersten
- Department of Molecular Medicine and Surgery, Section of Urology, Karolinska Institutet, Stockholm, Sweden.,Department of Urology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
16
|
Dal Ben D, Marchenkova A, Thomas A, Lambertucci C, Spinaci A, Marucci G, Nistri A, Volpini R. 2',3'-O-Substituted ATP derivatives as potent antagonists of purinergic P2X3 receptors and potential analgesic agents. Purinergic Signal 2017; 13:61-74. [PMID: 27757785 PMCID: PMC5334199 DOI: 10.1007/s11302-016-9539-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 09/19/2016] [Indexed: 11/29/2022] Open
Abstract
Blocking membrane currents evoked by the activation of purinergic P2X3 receptors localized on nociceptive neurons represents a promising strategy for the development of agents useful for the treatment of chronic pain conditions. Among compounds endowed with such antagonistic action, 2',3'-O-(2,4,6-trinitrophenyl)-ATP (TNP-ATP) is an ATP analogue, whose inhibitory activity on P2X receptors has been previously reported. Based on the results of molecular modelling studies performed with homology models of the P2X3 receptor, novel adenosine nucleotide analogues bearing cycloalkyl or arylalkyl substituents replacing the trinitrophenyl moiety of TNP-ATP were designed and synthesized. These new compounds were functionally evaluated on native P2X3 receptors from mouse trigeminal ganglion (TG) sensory neurons using patch clamp recordings under voltage clamp configuration. Our data show that some of these molecules are potent (nanomolar range) and reversible inhibitors of P2X3 receptors, without any apparent effect on trigeminal GABAA and 5-HT3 receptors, whose membrane currents were unaffected by the tested compounds.
Collapse
Affiliation(s)
- Diego Dal Ben
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, via S. Agostino 1, 62032, Camerino, (MC), Italy
| | - Anna Marchenkova
- Neuroscience Department, International School for Advanced Studies (SISSA), Via Bonomea 265, 34136, Trieste, Italy
| | - Ajiroghene Thomas
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, via S. Agostino 1, 62032, Camerino, (MC), Italy
| | - Catia Lambertucci
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, via S. Agostino 1, 62032, Camerino, (MC), Italy
| | - Andrea Spinaci
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, via S. Agostino 1, 62032, Camerino, (MC), Italy
| | - Gabriella Marucci
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, via S. Agostino 1, 62032, Camerino, (MC), Italy
| | - Andrea Nistri
- Neuroscience Department, International School for Advanced Studies (SISSA), Via Bonomea 265, 34136, Trieste, Italy
| | - Rosaria Volpini
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, via S. Agostino 1, 62032, Camerino, (MC), Italy.
| |
Collapse
|
17
|
Bravo G, Massa H, Rose'Meyer R, Chess-Williams R, McDermott C, Sellers DJ. Effect of short-term androgen deficiency on bladder contractility and urothelial mediator release. Naunyn Schmiedebergs Arch Pharmacol 2017; 390:547-556. [PMID: 28190243 DOI: 10.1007/s00210-017-1355-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 01/31/2017] [Indexed: 01/23/2023]
Abstract
In men, testosterone levels decline by 1% per year after the age of 40. Reduced androgen levels may directly contribute to lower urinary tract symptoms and bladder dysfunction, although the mechanisms are unclear. This study examined the effect of low testosterone and testosterone replacement on key mechanisms involved in local bladder function. Intraluminal release of the mediators ATP and ACh in response to bladder distension was measured in whole bladders from rats 8 weeks following castration, whilst bladder contractility was assessed using isolated strips. Human urothelial cells were cultured under low, physiological and supra-physiological testosterone conditions for 24 h or 5 days, and stretch-induced release of ATP and ACh was measured. Phasic contractile activity of bladder strips, agonist-induced reponses to carbachol and isoprenaline and nerve-evoked contractions were unaffected by castration. The acetylcholinesterase inhibitor neostigmine significantly increased amplitude of phasic activity only in bladder strips following castration, and this was prevented by testosterone replacement. Intraluminal ACh release following bladder distension was significantly reduced following castration, whilst ATP release was unaffected. In contrast, stretch-induced ATP release from urothelial cells was significantly enhanced in low testosterone conditions, whilst ACh release was unaltered. Testosterone-replacement to physiological levels prevented these changes. Whilst androgen deficiency of 8 weeks does not directly affect contractility of bladder smooth muscle, urothelial mediator release is sensitive to changes in testosterone. These changes in mediator release may be an early effect of the decline in testosterone and could affect sensory pathways in the longer term, contributing to the urinary symptoms and bladder dysfunction seen in androgen-deficient men.
Collapse
Affiliation(s)
- Giselle Bravo
- Centre for Urology Research, Faculty of Health Sciences and Medicine, Bond University, Queensland, Australia
| | - Helen Massa
- School of Medical Science, Griffith University, Queensland, Australia
| | | | - Russ Chess-Williams
- Centre for Urology Research, Faculty of Health Sciences and Medicine, Bond University, Queensland, Australia
| | - Catherine McDermott
- Centre for Urology Research, Faculty of Health Sciences and Medicine, Bond University, Queensland, Australia
| | - Donna J Sellers
- Centre for Urology Research, Faculty of Health Sciences and Medicine, Bond University, Queensland, Australia.
| |
Collapse
|
18
|
Silva-Ramos M, Silva I, Oliveira JC, Correia-de-Sá P. Increased Urinary Adenosine Triphosphate in Patients With Bladder Outlet Obstruction Due to Benign Prostate Hyperplasia. Prostate 2016; 76:1353-63. [PMID: 27418113 DOI: 10.1002/pros.23207] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 05/09/2016] [Indexed: 01/15/2023]
Abstract
BACKGROUND Diagnosis of bladder outflow obstruction (BOO) in patients with lower urinary tract (LUT) symptoms is challenging without using invasive urodynamic tests. Recently, we showed in vitro that urothelial strips from patients with benign prostatic hyperplasia (BPH) release more ATP than controls. Here, we tested whether urinary ATP can be used as a wall tension transducer non-invasive biomarker to detect BOO in patients with BPH. METHODS 79 male patients with BOO and 22 asymptomatic controls were recruited prospectively. Patients were asked to complete the International Prostate Symptom Score (IPSS) questionnaire and to void at normal desire into a urinary flowmeter; the postvoid residual volume was determined by suprapubic ultrasonography. Urine samples from all individuals were examined for ATP, creatinine, and lactate dehydrogenase. RESULTS BOO patients had significantly higher (P < 0.001) urinary ATP normalized by the voided volume (456 ± 36 nmol) than age-matched controls (209 ± 35 nmol). Urinary ATP amounts increased with the voided volume, but the slope of this rise was higher in BOO patients than in controls. A negative correlation was detected between urinary ATP and flow rate parameters, namely maximal flow rate (r = -0.310, P = 0.005), Siroky flow-volume normalization (r = -0.324, P = 0.004), and volume-normalized flow rate index (r = -0.320, P = 0.012). We found no correlation with LUT symptoms IPSS score. Areas under the receiver operator characteristics (ROC) curves were 0.91 (95%CI 0.86-0.96, P < 0.001) for ATP alone and 0.88 (95%CI 0.81-0.94, P < 0,001) when adjusted to urinary creatinine. CONCLUSIONS Patients with BOO release higher amounts of ATP into the urine than the control group. The high area under the ROC curve suggests that urinary ATP can be a high-sensitive non-invasive biomarker of BOO, which may have a discriminative value of detrusor competence when comparing BPH patients with low urinary flow rates. Prostate 76:1353-1363, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Miguel Silva-Ramos
- Laboratório de Farmacologia e Neurobiologia, Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
- Serviço de Urologia, Centro Hospitalar do Porto (CHP), Porto, Portugal
| | - Isabel Silva
- Laboratório de Farmacologia e Neurobiologia, Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | | | - Paulo Correia-de-Sá
- Laboratório de Farmacologia e Neurobiologia, Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal.
| |
Collapse
|
19
|
Kendig DM, Ets HK, Moreland RS. Effect of type II diabetes on male rat bladder contractility. Am J Physiol Renal Physiol 2016; 310:F909-22. [PMID: 26823284 PMCID: PMC4867315 DOI: 10.1152/ajprenal.00511.2015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 01/20/2016] [Indexed: 12/17/2022] Open
Abstract
Type II diabetes is the most prevalent form of diabetes. One of the primary complications of diabetes that significantly affects quality of life is bladder dysfunction. Many studies on diabetic bladder dysfunction have been performed in models of type I diabetes; however, few have been performed in animal models of type II diabetes. Using the Zucker Diabetic Fatty (ZDF) rat model of type II diabetes, we examined the contractility and sensitivity of bladder smooth muscle in response to mediators of depolarization-induced contraction, muscarinic receptor-mediated contraction, ATP-induced contraction, and neurogenic contraction. Studies were performed at 16 and 27 wk of age to monitor the progression of diabetic bladder dysfunction. Voiding behavior was also quantified. The entire bladder walls of diabetic rats were hypertrophied compared with that of control rats. Contractility and sensitivity to carbachol and ATP were increased at 27 wk in bladder smooth muscle strips from diabetic rats, suggesting a compensated state of diabetic bladder dysfunction. Purinergic signaling was increased in response to exogenous ATP in bladders from diabetic animals; however, the purinergic component of neurogenic contractions was decreased. The purinergic component of neurogenic contraction was reduced by P2X receptor desensitization, but was unchanged by P2X receptor inhibition in diabetic rats. Residual and tetrodotoxin-resistant components of neurogenic contraction were increased in bladder strips from diabetic animals. Overall, our results suggest that in the male ZDF rat model, the bladder reaches the compensated stage of function by 27 wk and has increased responsiveness to ATP.
Collapse
Affiliation(s)
- Derek M Kendig
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania; and
| | - Hillevi K Ets
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania; and
| | - Robert S Moreland
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania; and Department of Pathology and Laboratory Medicine, Drexel University College of Medicine, Philadelphia, Pennsylvnia
| |
Collapse
|
20
|
Merrill L, Gonzalez EJ, Girard BM, Vizzard MA. Receptors, channels, and signalling in the urothelial sensory system in the bladder. Nat Rev Urol 2016; 13:193-204. [PMID: 26926246 DOI: 10.1038/nrurol.2016.13] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The storage and periodic elimination of urine, termed micturition, requires a complex neural control system to coordinate the activities of the urinary bladder, urethra, and urethral sphincters. At the level of the lumbosacral spinal cord, lower urinary tract reflex mechanisms are modulated by supraspinal controls with mechanosensory input from the urothelium, resulting in regulation of bladder contractile activity. The specific identity of the mechanical sensor is not yet known, but considerable interest exists in the contribution of transient receptor potential (TRP) channels to the mechanosensory functions of the urothelium. The sensory, transduction, and signalling properties of the urothelium can influence adjacent urinary bladder tissues including the suburothelial nerve plexus, interstitial cells of Cajal, and detrusor smooth muscle cells. Diverse stimuli, including those that activate TRP channels expressed by the urothelium, can influence urothelial release of chemical mediators (such as ATP). Changes to the urothelium are associated with a number of bladder pathologies that underlie urinary bladder dysfunction. Urothelial receptor and/or ion channel expression and the release of signalling molecules (such as ATP and nitric oxide) can be altered with bladder disease, neural injury, target organ inflammation, or psychogenic stress. Urothelial receptors and channels represent novel targets for potential therapies that are intended to modulate micturition function or bladder sensation.
Collapse
Affiliation(s)
- Liana Merrill
- Department of Neurological Sciences, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, Vermont 05405, USA
| | - Eric J Gonzalez
- Department of Neurological Sciences, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, Vermont 05405, USA
| | - Beatrice M Girard
- Department of Neurological Sciences, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, Vermont 05405, USA
| | - Margaret A Vizzard
- Department of Neurological Sciences, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, Vermont 05405, USA
| |
Collapse
|
21
|
Park T, Lee S. Clinical Experiences of Korean Medicine Treatment against Urinary Bladder Cancer in General Practice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2016; 2016:3759069. [PMID: 27190532 PMCID: PMC4844875 DOI: 10.1155/2016/3759069] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 03/13/2016] [Indexed: 11/23/2022]
Abstract
Urinary bladder cancer (UBC) is one of the most common cancers, with 1 out of every 26 men and 1 out of every 80 women worldwide developing the disease during their lifetime. Moreover, it is a disease that predominantly affects the elderly and is becoming a major health problem as the elderly population continues to rapidly increase. In spite of the rapid development of medical science, the 5-year survival rate has remained around 75% since the 1990s, and the FDA has approved no new drugs for UBC over the last 10 years. In addition, most patients experience frequent recurrence and poor quality of life after diagnosis. Therefore, in order to solve unmet needs by alternative methods, we present our clinical cases of UBC where we observed outstanding results including regression and recurrence prevention exclusively through Traditional Korean Medicine such as (1) herbal therapy, (2) acupuncture, (3) pharmacopuncture and needle-embedding therapy, (4) moxibustion, and (5) cupping therapy. From our experience, it appears that multimodal strategies for synergistic efficiency are more effective than single Korean Medicine treatment. We hope this will encourage investigation of the efficacy of Korean Medicine treatment in clinical trials for UBC patients.
Collapse
Affiliation(s)
- Taeyeol Park
- 1Kyeongin Traditional Korean Medicine Clinic, 84-3 Dadae 2-dong, Saha-gu, Busan, Republic of Korea
| | - Sanghun Lee
- 2Department of Medical Consilience, Graduate School, Dankook University, 152 Jukjeon-ro, Suji-gu, Yongin-si, Gyeonggi-do 448-701, Republic of Korea
- *Sanghun Lee:
| |
Collapse
|
22
|
Silva-Ramos M, Silva I, Faria M, Magalhães-Cardoso MT, Correia J, Ferreirinha F, Correia-de-Sá P. Impairment of ATP hydrolysis decreases adenosine A1 receptor tonus favoring cholinergic nerve hyperactivity in the obstructed human urinary bladder. Purinergic Signal 2015; 11:595-606. [PMID: 26521170 DOI: 10.1007/s11302-015-9478-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 10/20/2015] [Indexed: 12/21/2022] Open
Abstract
This study was designed to investigate whether reduced adenosine formation linked to deficits in extracellular ATP hydrolysis by NTPDases contributes to detrusor neuromodulatory changes associated with bladder outlet obstruction in men with benign prostatic hyperplasia (BPH). The kinetics of ATP catabolism and adenosine formation as well as the role of P1 receptor agonists on muscle tension and nerve-evoked [(3)H]ACh release were evaluated in mucosal-denuded detrusor strips from BPH patients (n = 31) and control organ donors (n = 23). The neurogenic release of ATP and [(3)H]ACh was higher (P < 0.05) in detrusor strips from BPH patients. The extracellular hydrolysis of ATP and, subsequent, adenosine formation was slower (t (1/2) 73 vs. 36 min, P < 0.05) in BPH detrusor strips. The A(1) receptor-mediated inhibition of evoked [(3)H]ACh release by adenosine (100 μM), NECA (1 μM), and R-PIA (0.3 μM) was enhanced in BPH bladders. Relaxation of detrusor contractions induced by acetylcholine required 30-fold higher concentrations of adenosine. Despite VAChT-positive cholinergic nerves exhibiting higher A(1) immunoreactivity in BPH bladders, the endogenous adenosine tonus revealed by adenosine deaminase is missing. Restoration of A1 inhibition was achieved by favoring (1) ATP hydrolysis with apyrase (2 U mL(-1)) or (2) extracellular adenosine accumulation with dipyridamole or EHNA, as these drugs inhibit adenosine uptake and deamination, respectively. In conclusion, reduced ATP hydrolysis leads to deficient adenosine formation and A(1) receptor-mediated inhibition of cholinergic nerve activity in the obstructed human bladder. Thus, we propose that pharmacological manipulation of endogenous adenosine levels and/or A(1) receptor activation might be useful to control bladder overactivity in BPH patients.
Collapse
Affiliation(s)
- M Silva-Ramos
- Laboratório de Farmacologia e Neurobiologia, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal.,Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, R. Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.,Serviço de Urologia, Centro Hospitalar do Porto (CHP), Porto, Portugal
| | - I Silva
- Laboratório de Farmacologia e Neurobiologia, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal.,Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, R. Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - M Faria
- Laboratório de Farmacologia e Neurobiologia, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal.,Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, R. Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - M T Magalhães-Cardoso
- Laboratório de Farmacologia e Neurobiologia, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal.,Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, R. Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - J Correia
- Laboratório de Farmacologia e Neurobiologia, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal.,Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, R. Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - F Ferreirinha
- Laboratório de Farmacologia e Neurobiologia, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal.,Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, R. Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - P Correia-de-Sá
- Laboratório de Farmacologia e Neurobiologia, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal. .,Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, R. Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.
| |
Collapse
|
23
|
CNS remyelination as a novel reparative approach to neurodegenerative diseases: The roles of purinergic signaling and the P2Y-like receptor GPR17. Neuropharmacology 2015; 104:82-93. [PMID: 26453964 DOI: 10.1016/j.neuropharm.2015.10.005] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 10/02/2015] [Accepted: 10/03/2015] [Indexed: 02/07/2023]
Abstract
Oligodendrocytes are the myelin-forming cells in the CNS. They enwrap axons, thus permitting fast impulse transmission and exerting trophic actions on neurons. Demyelination accompanied by neurological deficit is a rather frequent condition that is not only associated with multiple sclerosis but has been also recognized in several other neurodegenerative diseases, including brain trauma and stroke, Alzheimer's disease and amyotrophic lateral sclerosis. Recently, alterations of myelin function have been also reported in neuropsychiatric diseases, like depression and autism. Highly relevant for therapeutic purposes, oligodendrocyte precursor cells (OPCs) still persist in the adult brain and spinal cord. These cells are normally rather quiescent, but under specific circumstances, they can be stimulated to undergo differentiation and generate mature myelinating oligodendrocytes. Thus, approaches aimed at restoring myelin integrity and at fostering a correct oligodendrocyte function are now viewed as novel therapeutic opportunities for both neurodegenerative and neuropsychiatric diseases. Both OPCs and mature oligodendrocytes express purinergic receptors. For some of these receptors, expression is restricted at specific differentiation stages, suggesting key roles in OPCs maturation and myelination. Some of these receptors are altered under demyelinating conditions, suggesting that their dysregulation may contribute to disease development and could represent adequate new targets for remyelinating therapies. Here, we shall describe the current literature available on all these receptors, with special emphasis on the P2Y-like GPR17 receptor, that represents one of the most studied receptor subtypes in these cells. This article is part of the Special Issue entitled 'Purines in Neurodegeneration and Neuroregeneration'.
Collapse
Key Words
- 2′-Deoxy-N(6)-methyladenosine 3′,5'-bisphosphate ammonium salt (MRS2179)
- 3-(2-carboxy-4,6-dichloro-indol-3-yl)propionic acid (MDL29,951)
- 3-[4-[2-[ [6-amino-9-[(2R,3R,4S,5S)-5-(ethylcarbamoyl)-3,4-dihydroxy-oxolan-2-yl]purin-2-yl]amino]ethyl]phenyl]propanoic acid (CGS21680)
- 7-(2-phenylethyl)-5-amino-2-(2-furyl)-pyrazolo-[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidine (SCH58261)
- ADP
- ATP
- Adenosine
- Brilliant blue G (BBG)
- Leukotriene D4 (LTD(4))
- Montelukast
- N6-cyclohexyladenosine (CHA)
- Oligodendrocytes
- Oxidized ATP (oxATP)
- Purinergic receptors
- Rapamycin
- Remyelination
- UDP
- UDP-Glucose
Collapse
|
24
|
Urinary Bladder Dysfunction in Transgenic Sickle Cell Disease Mice. PLoS One 2015; 10:e0133996. [PMID: 26241312 PMCID: PMC4524596 DOI: 10.1371/journal.pone.0133996] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 07/04/2015] [Indexed: 01/03/2023] Open
Abstract
Background Urological complications associated with sickle cell disease (SCD), include nocturia, enuresis, urinary infections and urinary incontinence. However, scientific evidence to ascertain the underlying cause of the lower urinary tract symptoms in SCD is lacking. Objective Thus, the aim of this study was to evaluate urinary function, in vivo and ex vivo, in the Berkeley SCD murine model (SS). Methods Urine output was measured in metabolic cage for both wild type and SS mice (25-30 g). Bladder strips and urethra rings were dissected free and mounted in organ baths. In isolated detrusor smooth muscle (DSM), relaxant response to mirabegron and isoproterenol (1nM-10μM) and contractile response to (carbachol (CCh; 1 nM-100μM), KCl (1 mM-300mM), CaCl2 (1μM-100mM), α,β-methylene ATP (1, 3 and 10 μM) and electrical field stimulation (EFS; 1-32 Hz) were measured. Phenylephrine (Phe; 10nM-100μM) was used to evaluate the contraction mechanism in the urethra rings. Cystometry and histomorphometry were also performed in the urinary bladder. Results SS mice present a reduced urine output and incapacity to produce typical bladder contractions and bladder emptying (ex vivo), compared to control animals. In DSM, relaxation in response to a selective β3-adrenergic agonist (mirabegron) and to a non-selective β-adrenergic (isoproterenol) agonist were lower in SS mice. Additionally, carbachol, α, β-methylene ATP, KCl, extracellular Ca2+ and electrical-field stimulation promoted smaller bladder contractions in SS group. Urethra contraction induced by phenylephrine was markedly reduced in SS mice. Histological analyses of SS mice bladder revealed severe structural abnormalities, such as reductions in detrusor thickness and bladder volume, and cell infiltration. Conclusions Taken together, our data demonstrate, for the first time, that SS mice display features of urinary bladder dysfunction, leading to impairment in urinary continence, which may have an important role in the pathogenesis of the enuresis and infections observed the SCD patients.
Collapse
|
25
|
Li WH, Qiu Y, Zhang HQ, Tian XX, Fang WG. P2Y2 Receptor and EGFR Cooperate to Promote Prostate Cancer Cell Invasion via ERK1/2 Pathway. PLoS One 2015; 10:e0133165. [PMID: 26182292 PMCID: PMC4504672 DOI: 10.1371/journal.pone.0133165] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Accepted: 06/23/2015] [Indexed: 12/19/2022] Open
Abstract
As one member of G protein-coupled P2Y receptors, P2Y2 receptor can be equally activated by extracellular ATP and UTP. Our previous studies have proved that activation of P2Y2 receptor by extracellular ATP could promote prostate cancer cell invasion and metastasis in vitro and in vivo via regulating the expressions of some epithelial-mesenchymal transition/invasion-related genes (including IL-8, E-cadherin, Snail and Claudin-1), and the most significant change in expression of IL-8 was observed after P2Y2 receptor activation. However, the signaling pathway downstream of P2Y2 receptor and the role of IL-8 in P2Y2-mediated prostate cancer cell invasion remain unclear. Here, we found that extracellular ATP/UTP induced activation of EGFR and ERK1/2. After knockdown of P2Y2 receptor, the ATP -stimulated phosphorylation of EGFR and ERK1/2 was significantly suppressed. Further experiments showed that inactivation of EGFR and ERK1/2 attenuated ATP-induced invasion and migration, and suppressed ATP-mediated IL-8 production. In addition, knockdown of IL-8 inhibited ATP-mediated invasion and migration of prostate cancer cells. These findings suggest that P2Y2 receptor and EGFR cooperate to upregulate IL-8 production via ERK1/2 pathway, thereby promoting prostate cancer cell invasion and migration. Thus blocking of the P2Y2-EGFR-ERK1/2 pathway may provide effective therapeutic interventions for prostate cancer.
Collapse
Affiliation(s)
- Wei-Hua Li
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Peking University Health Science Center, Beijing, 100191, China
- Department of Pathology, Peking University Health Science Center, Beijing, 100191, China
| | - Ying Qiu
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Peking University Health Science Center, Beijing, 100191, China
- Department of Pathology, Peking University Health Science Center, Beijing, 100191, China
| | - Hong-Quan Zhang
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Peking University Health Science Center, Beijing, 100191, China
- Department of Anatomy, Histology and Embryology, Peking University Health Science Center, Beijing, 100191, China
| | - Xin-Xia Tian
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Peking University Health Science Center, Beijing, 100191, China
- Department of Pathology, Peking University Health Science Center, Beijing, 100191, China
- * E-mail: (W-GF); (X-XT)
| | - Wei-Gang Fang
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Peking University Health Science Center, Beijing, 100191, China
- Department of Pathology, Peking University Health Science Center, Beijing, 100191, China
- * E-mail: (W-GF); (X-XT)
| |
Collapse
|
26
|
Sacco E, Recupero S, Bientinesi R, Palermo G, D’Agostino D, Currò D, Bassi P. Pioneering drugs for overactive bladder and detrusor overactivity: Ongoing research and future directions. World J Obstet Gynecol 2015; 4:24-39. [DOI: 10.5317/wjog.v4.i2.24] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Revised: 01/31/2015] [Accepted: 04/14/2015] [Indexed: 02/05/2023] Open
Abstract
The ongoing research on pioneering drug candidates for the overactive bladder (OAB) aimed to overcome the limitations of currently licensed pharmacotherapies, such as antimuscarinics, β3-adrenergic agents, and botulinum neurotoxin, has been reviewed performing a systematic literature review and web search. The review covers the exploratory agents alternative to available medications for OAB and that may ultimately prove to be therapeutically useful in the future management of OAB patients based on preclinical and early clinical data. It emerges that many alternative pharmacological strategies have been discovered or are under investigation in disease-oriented studies. Several potential therapeutics are known for years but still find obstacles to pass the clinical stages of development, while other completely novel compounds, targeting new pharmacological targets, have been recently discovered and show potential to translate into clinical therapeutic agents for idiopathic and neurogenic OAB syndrome. The global scenario of investigational drugs for OAB gives promise for the development of innovative therapeutics that may ultimately prove effective as first, combined or second-line treatments within a realistic timescale of ten years.
Collapse
|
27
|
Patra PB, Patra S. Research Findings on Overactive Bladder. Curr Urol 2015; 8:1-21. [PMID: 26195957 PMCID: PMC4483299 DOI: 10.1159/000365682] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2013] [Accepted: 01/09/2014] [Indexed: 12/19/2022] Open
Abstract
Several physiopathologic conditions lead to the manifestation of overactive bladder (OAB). These conditions include ageing, diabetes mellitus, bladder outlet obstruction, spinal cord injury, stroke and brain injury, Parkinson's disease, multiple sclerosis, interstitial cystitis, stress and depression. This review has discussed research findings in human and animal studies conducted on the above conditions. Several structural and functional changes under these conditions have not only been observed in the lower urinary tract, but also in the brain and spinal cord. Significant changes were observed in the following areas: neurotransmitters, prostaglandins, nerve growth factor, Rho-kinase, interstitial cells of Cajal, and ion and transient receptor potential channels. Interestingly, alterations in these areas showed great variation in each of the conditions of the OAB, suggesting that the pathophysiology of the OAB might be different in each condition of the disease. It is anticipated that this review will be helpful for further research on new and specific drug development against OAB.
Collapse
Affiliation(s)
- Phani B. Patra
- King of Prussia, Drexel University College of Medicine, Philadelphia, Pa., USA
| | - Sayani Patra
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pa., USA
| |
Collapse
|
28
|
Gill K, Horsley H, Kupelian AS, Baio G, De Iorio M, Sathiananamoorthy S, Khasriya R, Rohn JL, Wildman SS, Malone-Lee J. Urinary ATP as an indicator of infection and inflammation of the urinary tract in patients with lower urinary tract symptoms. BMC Urol 2015; 15:7. [PMID: 25886951 PMCID: PMC4351839 DOI: 10.1186/s12894-015-0001-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 02/02/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Adenosine-5'-triphosphate (ATP) is a neurotransmitter and inflammatory cytokine implicated in the pathophysiology of lower urinary tract disease. ATP additionally reflects microbial biomass thus has potential as a surrogate marker of urinary tract infection (UTI). The optimum clinical sampling method for ATP urinalysis has not been established. We tested the potential of urinary ATP in the assessment of lower urinary tract symptoms, infection and inflammation, and validated sampling methods for clinical practice. METHODS A prospective, blinded, cross-sectional observational study of adult patients presenting with lower urinary tract symptoms (LUTS) and asymptomatic controls, was conducted between October 2009 and October 2012. Urinary ATP was assayed by a luciferin-luciferase method, pyuria counted by microscopy of fresh unspun urine and symptoms assessed using validated questionnaires. The sample collection, storage and processing methods were also validated. RESULTS 75 controls and 340 patients with LUTS were grouped as without pyuria (n = 100), pyuria 1-9 wbc μl(-1) (n = 120) and pyuria ≥10 wbc μl(-1) (n = 120). Urinary ATP was higher in association with female gender, voiding symptoms, pyuria greater than 10 wbc μl(-1) and negative MSU culture. ROC curve analysis showed no evidence of diagnostic test potential. The urinary ATP signal decayed with storage at 23°C but was prevented by immediate freezing at ≤ -20°C, without boric acid preservative and without the need to centrifuge urine prior to freezing. CONCLUSIONS Urinary ATP may have a role as a research tool but is unconvincing as a surrogate, clinical diagnostic marker.
Collapse
Affiliation(s)
- Kiren Gill
- Division of Medicine, University College London, Archway Campus, London, UK. .,Research Department of Clinical Medicine, Division of Medicine, University College London, Wolfson House, 2 - 10 Stephenson Way, NW1 2HE, London, UK.
| | - Harry Horsley
- Division of Medicine, University College London, Archway Campus, London, UK. .,Research Department of Clinical Medicine, Division of Medicine, University College London, Wolfson House, 2 - 10 Stephenson Way, NW1 2HE, London, UK.
| | - Anthony S Kupelian
- Division of Medicine, University College London, Archway Campus, London, UK. .,Research Department of Clinical Medicine, Division of Medicine, University College London, Wolfson House, 2 - 10 Stephenson Way, NW1 2HE, London, UK.
| | - Gianluca Baio
- Department of Statistics, University College London, London, UK.
| | - Maria De Iorio
- Department of Statistics, University College London, London, UK.
| | - Sanchutha Sathiananamoorthy
- Division of Medicine, University College London, Archway Campus, London, UK. .,Research Department of Clinical Medicine, Division of Medicine, University College London, Wolfson House, 2 - 10 Stephenson Way, NW1 2HE, London, UK.
| | - Rajvinder Khasriya
- Division of Medicine, University College London, Archway Campus, London, UK. .,Research Department of Clinical Medicine, Division of Medicine, University College London, Wolfson House, 2 - 10 Stephenson Way, NW1 2HE, London, UK.
| | - Jennifer L Rohn
- Division of Medicine, University College London, Archway Campus, London, UK. .,Research Department of Clinical Medicine, Division of Medicine, University College London, Wolfson House, 2 - 10 Stephenson Way, NW1 2HE, London, UK.
| | - Scott S Wildman
- Medway School of Pharmacy, The Universities of Kent and Greenwich at Medway, Chatham, Kent, UK.
| | - James Malone-Lee
- Division of Medicine, University College London, Archway Campus, London, UK. .,Research Department of Clinical Medicine, Division of Medicine, University College London, Wolfson House, 2 - 10 Stephenson Way, NW1 2HE, London, UK.
| |
Collapse
|
29
|
Enhanced urothelial ATP release and contraction following intravesical treatment with the cytotoxic drug, doxorubicin. Naunyn Schmiedebergs Arch Pharmacol 2015; 388:773-80. [PMID: 25683587 DOI: 10.1007/s00210-015-1097-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 01/26/2015] [Indexed: 01/09/2023]
Abstract
Intravesical administration of the cytotoxic drug doxorubicin is a common treatment for superficial carcinoma of the bladder, but it is associated with significant urological adverse effects. The aim of this study was to identify doxorubicin-induced changes in the local mechanisms involved in regulating bladder function. As a model of intravesical doxorubicin administration in patients, doxorubicin (1 mg/mL) was applied to the luminal surface of porcine bladders for 60 min. Following treatment, the release of urothelial/lamina propria mediators (acetylcholine (Ach), ATP and prostaglandin E2 (PGE2) and contractile responses of isolated tissue strips was investigated. Doxorubicin pretreatment did not affect contractile responses of detrusor muscle to carbachol, but did enhance neurogenic detrusor responses to electrical field stimulation (219 % at 5 Hz). Contractions of isolated strips of urothelium/lamina propria to carbachol were also enhanced (30 %) in tissues from doxorubicin pretreated bladders. Isolated strips of urothelium/lamina propria from control bladders demonstrated a basal release of all three mediators (Ach > ATP > PGE2), with increased release of ATP when tissues were stretched. In tissues from doxorubicin-pretreated bladders, the basal release of ATP was significantly enhanced (sevenfold), while the release of acetylcholine and PGE2 was not affected. The application of luminal doxorubicin, under conditions that mimic intravesical administration to patients, affects urothelial/lamina propria function (increased contractile activity and ATP release) and enhances efferent neurotransmission without affecting detrusor smooth muscle. These actions would enhance bladder contractile activity and sensory nerve activity and may explain the adverse urological effects observed in patients following intravesical doxorubicin treatment.
Collapse
|
30
|
Recovery of urothelial mediator release but prolonged elevations in interleukin-8 and nitric oxide secretion following mitomycin C treatment. Naunyn Schmiedebergs Arch Pharmacol 2015; 388:781-91. [DOI: 10.1007/s00210-015-1092-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 01/15/2015] [Indexed: 01/14/2023]
|
31
|
Mutafova-Yambolieva VN, Durnin L. The purinergic neurotransmitter revisited: a single substance or multiple players? Pharmacol Ther 2014; 144:162-91. [PMID: 24887688 PMCID: PMC4185222 DOI: 10.1016/j.pharmthera.2014.05.012] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 05/23/2014] [Indexed: 12/20/2022]
Abstract
The past half century has witnessed tremendous advances in our understanding of extracellular purinergic signaling pathways. Purinergic neurotransmission, in particular, has emerged as a key contributor in the efficient control mechanisms in the nervous system. The identity of the purine neurotransmitter, however, remains controversial. Identifying it is difficult because purines are present in all cell types, have a large variety of cell sources, and are released via numerous pathways. Moreover, studies on purinergic neurotransmission have relied heavily on indirect measurements of integrated postjunctional responses that do not provide direct information for neurotransmitter identity. This paper discusses experimental support for adenosine 5'-triphosphate (ATP) as a neurotransmitter and recent evidence for possible contribution of other purines, in addition to or instead of ATP, in chemical neurotransmission in the peripheral, enteric and central nervous systems. Sites of release and action of purines in model systems such as vas deferens, blood vessels, urinary bladder and chromaffin cells are discussed. This is preceded by a brief discussion of studies demonstrating storage of purines in synaptic vesicles. We examine recent evidence for cell type targets (e.g., smooth muscle cells, interstitial cells, neurons and glia) for purine neurotransmitters in different systems. This is followed by brief discussion of mechanisms of terminating the action of purine neurotransmitters, including extracellular nucleotide hydrolysis and possible salvage and reuptake in the cell. The significance of direct neurotransmitter release measurements is highlighted. Possibilities for involvement of multiple purines (e.g., ATP, ADP, NAD(+), ADP-ribose, adenosine, and diadenosine polyphosphates) in neurotransmission are considered throughout.
Collapse
Affiliation(s)
| | - Leonie Durnin
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, United States
| |
Collapse
|
32
|
Pannexin 1 channels play essential roles in urothelial mechanotransduction and intercellular signaling. PLoS One 2014; 9:e106269. [PMID: 25170954 PMCID: PMC4149561 DOI: 10.1371/journal.pone.0106269] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 08/04/2014] [Indexed: 11/19/2022] Open
Abstract
Urothelial cells respond to bladder distension with ATP release, and ATP signaling within the bladder and from the bladder to the CNS is essential for proper bladder function. In other cell types, pannexin 1 (Panx1) channels provide a pathway for mechanically-induced ATP efflux and for ATP-induced ATP release through interaction with P2X7 receptors (P2X7Rs). We report that Panx1 and P2X7R are functionally expressed in the bladder mucosa and in immortalized human urothelial cells (TRT-HU1), and participate in urothelial ATP release and signaling. ATP release from isolated rat bladders induced by distention was reduced by the Panx1 channel blocker mefloquine (MFQ) and was blunted in mice lacking Panx1 or P2X7R expression. Hypoosmotic shock induced YoPro dye uptake was inhibited by MFQ and the P2X7R blocker A438079 in TRT-HU1 cells, and was also blunted in primary urothelial cells derived from mice lacking Panx1 or P2X7R expression. Rinsing-induced mechanical stimulation of TRT-HU1 cells triggered ATP release, which was reduced by MFQ and potentiated in low divalent cation solution (LDPBS), a condition known to enhance P2X7R activation. ATP signaling evaluated as intercellular Ca2+ wave radius was significantly larger in LDPBS, reduced by MFQ and by apyrase (ATP scavenger). These findings indicate that Panx1 participates in urothelial mechanotransduction and signaling by providing a direct pathway for mechanically-induced ATP release and by functionally interacting with P2X7Rs.
Collapse
|
33
|
Abstract
The article begins with a review of the main conceptual steps involved in the development of our understanding of purinergic signalling, including non-adrenergic, non-cholinergic (NANC) neurotransmission; identification of ATP as a NANC transmitter; purinergic cotransmission; recognition of two families of purinoceptors [P1 (adenosine) and P2 (ATP/ADP)]; and, later, cloning and characterisation of P1 (G protein-coupled), P2X (ion channel) and P2Y (G protein-coupled) receptor subtypes. Further studies have established the involvement of ATP in synaptic neurotransmission in both ganglia and in the central nervous system; long-term (trophic) purinergic signalling in cell proliferation, differentiation and death occurring in development and regeneration; and short-term purinergic signalling in neurotransmission, neuromodulation and secretion. ATP is released from most cell types in response to gentle mechanical stimulation and is rapidly degraded to adenosine by ecto-nucleotidases. This review then focuses on the pathophysiology of purinergic signalling in a wide variety of systems, including urinogenital, cardiovascular, airway, musculoskeletal and gastrointestinal. Consideration is also given to the involvement of purinoceptors in pain, cancer and diseases of the central nervous system. Purinergic therapeutic approaches for the treatment of some of these diseases are discussed.
Collapse
|
34
|
ATP during early bladder stretch is important for urgency in detrusor overactivity patients. BIOMED RESEARCH INTERNATIONAL 2014; 2014:204604. [PMID: 24971316 PMCID: PMC4058262 DOI: 10.1155/2014/204604] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 04/28/2014] [Accepted: 05/15/2014] [Indexed: 02/04/2023]
Abstract
ATP is an important mediator of urgency in women with detrusor overactivity (DO). In order to understand how different degrees of bladder stretch elicited ATP release in DO patients compared with controls, sequential aliquots were collected during cystometry and ATP release was measured at each degree of bladder filling, in female patients with DO and controls. In both DO and control groups, ATP release was induced during bladder filling, suggesting that stretch stimulated further ATP release. However, the luminal ATP concentrations were already high at early filling stage (200 mL), which was even greater than those at the later filling stages (400 mL and maximum cystometric capacity, MCC), indicating that a substantial ATP release has been induced during early filling (200 mL) in both DO and controls. In DO, ATP release at 200 mL was significantly higher in those with low first desire to void (FDV) (≤200 mL) than in those with higher FDV (>200 mL); this may suggest that ATP release at early stretch may play an important role in urgency (early sensation) in DO. ATP concentrations remained unchanged after voiding, suggesting that voiding did not further induce ATP release into intraluminal fluid.
Collapse
|
35
|
Burnstock G. Purinergic signalling in the urinary tract in health and disease. Purinergic Signal 2014; 10:103-55. [PMID: 24265069 PMCID: PMC3944045 DOI: 10.1007/s11302-013-9395-y] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 10/24/2013] [Indexed: 12/25/2022] Open
Abstract
Purinergic signalling is involved in a number of physiological and pathophysiological activities in the lower urinary tract. In the bladder of laboratory animals there is parasympathetic excitatory cotransmission with the purinergic and cholinergic components being approximately equal, acting via P2X1 and muscarinic receptors, respectively. Purinergic mechanosensory transduction occurs where ATP, released from urothelial cells during distension of bladder and ureter, acts on P2X3 and P2X2/3 receptors on suburothelial sensory nerves to initiate the voiding reflex, via low threshold fibres, and nociception, via high threshold fibres. In human bladder the purinergic component of parasympathetic cotransmission is less than 3 %, but in pathological conditions, such as interstitial cystitis, obstructed and neuropathic bladder, the purinergic component is increased to 40 %. Other pathological conditions of the bladder have been shown to involve purinoceptor-mediated activities, including multiple sclerosis, ischaemia, diabetes, cancer and bacterial infections. In the ureter, P2X7 receptors have been implicated in inflammation and fibrosis. Purinergic therapeutic strategies are being explored that hopefully will be developed and bring benefit and relief to many patients with urinary tract disorders.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London, NW3 2PF, UK,
| |
Collapse
|
36
|
Rockenbach L, Braganhol E, Dietrich F, Figueiró F, Pugliese M, Edelweiss MIA, Morrone FB, Sévigny J, Battastini AMO. NTPDase3 and ecto-5'-nucleotidase/CD73 are differentially expressed during mouse bladder cancer progression. Purinergic Signal 2014; 10:421-30. [PMID: 24464643 DOI: 10.1007/s11302-014-9405-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 01/06/2014] [Indexed: 12/20/2022] Open
Abstract
According to the World Health Organization, bladder cancer is the seventh most common cancer among men in the world. The current treatments for this malignancy are not efficient to prevent the recurrence and progression of tumors. Then, researches continue looking for better therapeutic targets which can end up in new and more efficient treatments. One of the recent findings was the identification that the purinergic system was involved in bladder tumorigenesis. The ectonucleotidases, mainly ecto-5'-nucleotidase/CD73 have been revealed as new players in cancer progression and malignity. In this work, we investigated the NTPDase3 and ecto-5'-nucleotidase/CD73 expression in cancer progression in vivo. Bladder tumor was induced in mice by the addition of 0.05 % of N-butyl-N-(hydroxybutyl)-nitrosamine (BBN) in the drinking water for 4, 8, 12, 18, and 24 weeks. After this period, mice bladders were removed for histopathology analysis and immunofluorescence assays. The bladder of animals which has received BBN had alterations, mainly inflammation, in initial times of tumor induction. After 18 weeks, mice's bladder has developed histological alterations similar to human transitional cell carcinoma. The cancerous urothelium, from mice that received BBN for 18 and 24 weeks, presented a weak immunostaining to NTPDase3, in contrast to an increased expression of ecto-5'-nucleotidase/CD73. The altered expression of NTPDase3 and ecto-5'-nucleotidase/CD73 presented herein adds further evidence to support the idea that alterations in ectonucleotidases are involved in bladder tumorigenesis and reinforce the ecto-5'-nucleotidase/CD73 as a future biomarker and/or a target for pharmacological therapy of bladder cancer.
Collapse
Affiliation(s)
- Liliana Rockenbach
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil,
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
This lecture is about the history of the purinergic signalling concept. It begins with reference to the paper by Paton & Vane published in 1963, which identified non-cholinergic relaxation in response to vagal nerve stimulation in several species, although they suggested that it might be due to sympathetic adrenergic nerves in the vagal nerve trunk. Using the sucrose gap technique for simultaneous mechanical and electrical recordings in smooth muscle (developed while in Feldberg's department in the National Institute for Medical Research) of the guinea-pig taenia coli preparation (learned when working in Edith Bülbring's smooth muscle laboratory in Oxford Pharmacology), we showed that the hyperpolarizations recorded in the presence of antagonists to the classical autonomic neurotransmitters, acetylcholine and noradrenaline, were inhibitory junction potentials in response to non-adrenergic, non-cholinergic neurotransmission, mediated by intrinsic enteric nerves controlled by vagal and sacral parasympathetic nerves. We then showed that ATP satisfied the criteria needed to identify a neurotransmitter released by these nerves. Subsequently, it was shown that ATP is a cotransmitter in all nerves in the peripheral and central nervous systems. The receptors for purines and pyrimidines were cloned and characterized in the early 1990 s, and immunostaining showed that most non-neuronal cells as well as nerve cells expressed these receptors. The physiology and pathophysiology of purinergic signalling is discussed.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- G. Burnstock: University College Medical School, Autonomic Neuroscience Centre, Rowland Hill Street, London NW3 2PF, UK and Department of Pharmacology, The University of Melbourne, Australia.
| |
Collapse
|
38
|
Osikowicz M, Longo G, Allard S, Cuello AC, Ribeiro-da-Silva A. Inhibition of endogenous NGF degradation induces mechanical allodynia and thermal hyperalgesia in rats. Mol Pain 2013; 9:37. [PMID: 23889761 PMCID: PMC3737061 DOI: 10.1186/1744-8069-9-37] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 07/24/2013] [Indexed: 12/27/2022] Open
Abstract
Background We have previously shown a sprouting of sympathetic fibers into the upper dermis of the skin following subcutaneous injection of complete Freund’s adjuvant (CFA) into the hindpaw. This sprouting correlated with an increase in pain-related sensitivity. We hypothesized that this sprouting and pain-related behavior were caused by an increase in nerve growth factor (NGF) levels. In this study, we investigated whether the inhibition of mature NGF degradation, using a matrix metalloproteinase 2 and 9 (MMP-2/9) inhibitor, was sufficient to reproduce a similar phenotype. Results Behavioral tests performed on male Sprague–Dawley rats at 1, 3, 7 and 14 days after intra-plantar MMP-2/9 inhibitor administration demonstrated that acute and chronic injections of the MMP-2/9 inhibitor induced sensitization, in a dose dependent manner, to mechanical, hot and cold stimuli as measured by von Frey filaments, Hargreaves and acetone tests, respectively. Moreover, the protein levels of mature NGF (mNGF) were increased, whereas the levels and enzymatic activity of matrix metalloproteinase 9 were reduced in the glabrous skin of the hind paw. MMP-2/9 inhibition also led to a robust sprouting of sympathetic fibers into the upper dermis but there were no changes in the density of peptidergic nociceptive afferents. Conclusions These findings indicate that localized MMP-2/9 inhibition provokes a pattern of sensitization and fiber sprouting comparable to that previously obtained following CFA injection. Accordingly, the modulation of endogenous NGF levels should be considered as a potential therapeutic target for the management of inflammatory pain associated with arthritis.
Collapse
|
39
|
Silva-Ramos M, Silva I, Oliveira O, Ferreira S, Reis MJ, Oliveira JC, Correia-de-Sá P. Urinary ATP may be a dynamic biomarker of detrusor overactivity in women with overactive bladder syndrome. PLoS One 2013; 8:e64696. [PMID: 23741373 PMCID: PMC3669404 DOI: 10.1371/journal.pone.0064696] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2013] [Accepted: 04/17/2013] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Nowadays, there is a considerable bulk of evidence showing that ATP has a prominent role in the regulation of human urinary bladder function and in the pathophysiology of detrusor overactivity. ATP mediates nonadrenergic-noncholinergic detrusor contractions in overactive bladders. In vitro studies have demonstrated that uroepithelial cells and cholinergic nerves from overactive human bladder samples (OAB) release more ATP than controls. Here, we compared the urinary ATP concentration in samples collected non-invasively from OAB women with detrusor overactivity and age-matched controls. METHODS Patients with neurologic diseases, history of malignancy, urinary tract infections or renal impairment (creatinine clearance <70 ml/min) were excluded. All patients completed a 3-day voiding diary, a 24 h urine collection and blood sampling to evaluate creatinine clearance. Urine samples collected during voluntary voids were immediately freeze-preserved for ATP determination by the luciferin-luciferase bioluminescence assay; for comparison purposes, samples were also tested for urinary nerve growth factor (NGF) by ELISA. RESULTS The urinary content of ATP, but not of NGF, normalized to patients' urine creatinine levels (ATP/Cr) or urinary volume (ATP.Vol) were significantly (P<0.05) higher in OAB women with detrusor overactivity (n = 34) than in healthy controls (n = 30). Significant differences between the two groups were still observed by boosting urinary ATP/Cr content after water intake, but these were not detected for NGF/Cr. In OAB patients, urinary ATP/Cr levels correlated inversely with mean voided volumes determined in a 3-day voiding diary. CONCLUSION A high area under the receiver operator characteristics (ROC) curve (0.741; 95% CI 0.62-0.86; P<0.001) is consistent with urinary ATP/Cr being a highly sensitive dynamic biomarker for assessing detrusor overactivity in women with OAB syndrome.
Collapse
Affiliation(s)
- Miguel Silva-Ramos
- Laboratório de Farmacologia e Neurobiologia, UMIB, Instituto de Ciências Biomédicas Abel Salazar (ICBAS) - Universidade do Porto (UP), Porto, Portugal
- Serviço de Urologia - Centro Hospitalar do Porto (CHP), Porto, Portugal
| | - Isabel Silva
- Laboratório de Farmacologia e Neurobiologia, UMIB, Instituto de Ciências Biomédicas Abel Salazar (ICBAS) - Universidade do Porto (UP), Porto, Portugal
| | - Olga Oliveira
- Laboratório de Farmacologia e Neurobiologia, UMIB, Instituto de Ciências Biomédicas Abel Salazar (ICBAS) - Universidade do Porto (UP), Porto, Portugal
- Serviço de Urologia - Centro Hospitalar do Porto (CHP), Porto, Portugal
| | - Sónia Ferreira
- Laboratório de Farmacologia e Neurobiologia, UMIB, Instituto de Ciências Biomédicas Abel Salazar (ICBAS) - Universidade do Porto (UP), Porto, Portugal
- Serviço de Urologia - Centro Hospitalar do Porto (CHP), Porto, Portugal
| | - Maria Júlia Reis
- Serviço de Química Clínica - Centro Hospitalar do Porto (CHP), Porto, Portugal
| | | | - Paulo Correia-de-Sá
- Laboratório de Farmacologia e Neurobiologia, UMIB, Instituto de Ciências Biomédicas Abel Salazar (ICBAS) - Universidade do Porto (UP), Porto, Portugal
| |
Collapse
|
40
|
Kullmann FA, Wells GI, McKenna DG, Thor KB. Exogenous activation of muscarinic receptors decreases subsequent non-muscarinic bladder contractions in vivo in the female rat. Life Sci 2013; 92:733-9. [DOI: 10.1016/j.lfs.2013.01.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 01/25/2013] [Accepted: 01/30/2013] [Indexed: 01/23/2023]
|
41
|
Purinergic mechanisms and pain--an update. Eur J Pharmacol 2013; 716:24-40. [PMID: 23524093 DOI: 10.1016/j.ejphar.2013.01.078] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 12/11/2012] [Accepted: 01/09/2013] [Indexed: 12/12/2022]
Abstract
There is a brief summary of the background literature about purinergic signalling. The review then considers purinergic mechanosensory transduction involved in visceral, cutaneous and musculoskeletal nociception and on the roles played by P2X3, P2X2/3, P2X4, P2X7 and P2Y₁₂ receptors in neuropathic and inflammatory pain. Current developments of compounds for the therapeutic treatment of both visceral and neuropathic pain are discussed.
Collapse
|
42
|
Patra PB, Patra S. Sex differences in the physiology and pharmacology of the lower urinary tract. Curr Urol 2013; 6:179-88. [PMID: 24917740 DOI: 10.1159/000343536] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2012] [Accepted: 12/04/2012] [Indexed: 12/13/2022] Open
Abstract
Sexual dimorphism is not only noticed in the prevalence of many diseases, but also in multiple physiological functions in the body. This review has summarized findings from published literature on the sex differences of the pathophysiology and pharmacology of the lower urinary tract (LUT) of humans and animals. Sex differences have been found in several key areas of the LUT, such as overactive bladder, expression and function of neurotransmitter receptors in the bladder and urethra, and micturition patterns in humans and animals. It is anticipated that this review will not only evoke renewed interest for further research on the mechanism of sex differences in the pathophysiology of the LUT (especially for overactive bladder), but might also open up the possibilities for gender-based drug development by pharmaceutical industries in order to find separate cures for men and women with diseases of the LUT.
Collapse
|
43
|
Chung SD, Chien CT, Yu HJ. Alterations in peripheral purinergic and muscarinic signaling of rat bladder after long-term fructose-induced metabolic syndrome. Eur J Nutr 2013; 52:347-59. [PMID: 22426756 DOI: 10.1007/s00394-012-0342-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2011] [Accepted: 03/05/2012] [Indexed: 02/05/2023]
Abstract
PURPOSE We explored the pathophysiologic mechanisms of long-term fructose-induced lower urinary tract symptoms (LUTS) in rats. METHODS Male Wistar rats were fed with fructose for 3 or 6 months. Biochemical and transcystometric parameters were compared between fructose-fed and age-matched normal-diet rats. Pelvic nerve and external urethral sphincter-electromyogram activity recordings were performed to investigate fructose effects on neural control of bladders. Mitochondrial structure, ATP and acetylcholine content and purinergic and muscarinic cholinergic receptors were examined. Cytosolic cytochrome C staining by Western blot and immunocytochemistry for mitochondrial injury and PGP 9.5 stain for nerve density were also determined. RESULTS The fructose-fed rats with higher plasma triglyceride, LDL and fasting glucose levels displayed LUTS with increased frequency and suppressed voiding contractile amplitude in phase 1 and phase 2 duration versus normal-diet control. Fructose feeding altered the firing types in pelvic afferent and efferent nerves and external urethral sphincter-electromyogram activity. Increased mast cell number, disrupted and swollen mitochondria, increased cytosolic cytochrome C stain and expression and decreased nerve density in bladder smooth muscle layers appeared in the fructose-fed rats. Fructose feeding also significantly reduced ATP and acetylcholine content and enhanced protein expression of postsynaptic P(2)X(1), P(2)X(2) and P(2)X(3) purinergic receptors and M(2) and M(3) muscarinic cholinergic receptors expression in the smooth muscles of urinary bladder. CONCLUSION Long-term fructose feeding induced neuropathy and myopathy in the urinary bladders. Impaired mitochondrial integrity, reduced nerve density, ATP and acetylcholine content and upregulation of purinergic and muscarinic cholinergic receptors expression may contribute to the bladder dysfunction of fructose-fed animals.
Collapse
Affiliation(s)
- Shiu-Dong Chung
- Department of Urology, Far-Eastern Memorial Hospital, New Taipei City, Taiwan
| | | | | |
Collapse
|
44
|
Yu W, Sun X, Robson SC, Hill WG. Extracellular UDP enhances P2X-mediated bladder smooth muscle contractility via P2Y(6) activation of the phospholipase C/inositol trisphosphate pathway. FASEB J 2013; 27:1895-903. [PMID: 23362118 DOI: 10.1096/fj.12-219006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Bladder dysfunction characterized by abnormal bladder smooth muscle (BSM) contractions is pivotal to the disease process in overactive bladder, urge incontinence, and spinal cord injury. Purinergic signaling comprises one key pathway in modulating BSM contractility, but molecular mechanisms remain unclear. Here we demonstrate, using myography, that activation of P2Y6 by either UDP or a specific agonist (MRS 2693) induced a sustained increase in BSM tone (up to 2 mN) in a concentration-dependent manner. Notably, activation of P2Y6 enhanced ATP-mediated BSM contractile force by up to 45%, indicating synergistic interactions between P2X and P2Y signaling. P2Y6-activated responses were abolished by phospholipase C (PLC) and inositol trisphosphate (IP3) receptor antagonists U73122 and xestospongin C, demonstrating involvement of the PLC/IP3 signal pathway. Mice null for Entpd1, an ectonucleotidase on BSM, demonstrated increased force generation on P2Y6 activation (150%). Thus, in vivo perturbations to purinergic signaling resulted in altered P2Y6 activity and bladder contractility. We conclude that UDP, acting on P2Y6, regulates BSM tone and in doing so selectively maximizes P2X1-mediated contraction forces. This novel neurotransmitter pathway may play an important role in urinary voiding disorders characterized by abnormal bladder motility.
Collapse
Affiliation(s)
- Weiqun Yu
- Laboratory of Voiding Dysfunction, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | | | | | | |
Collapse
|
45
|
|
46
|
Walsh CA, Cheng Y, Mansfield KJ, Parkin K, Mukerjee C, Moore KH. Decreased intravesical adenosine triphosphate in patients with refractory detrusor overactivity and bacteriuria. J Urol 2012; 189:1383-7. [PMID: 23063632 DOI: 10.1016/j.juro.2012.10.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2012] [Indexed: 12/20/2022]
Abstract
PURPOSE Although several studies have examined the relationship between adenosine triphosphate release from the urothelium and bladder sensations including painful filling and urgency, the association between bacteriuria and urothelial adenosine triphosphate release has not been well studied. We evaluated women with refractory detrusor overactivity who were experiencing an acute exacerbation of detrusor overactivity symptoms including frequency, urgency and nocturia (and/or urge incontinence). We measured changes in intravesical adenosine triphosphate levels in these women with and without bacteriuria. MATERIALS AND METHODS In this prospective cohort study women with refractory detrusor overactivity were invited to our unit during acute symptomatic exacerbation. On presentation a catheter urine specimen was collected and 50 ml normal saline instilled into the bladder to evoke gentle stretch, with removal after 5 minutes. Adenosine triphosphate concentrations were determined on fresh washings using a bioluminescence assay. RESULTS The incidence of bacteriuria 10(3) cfu/ml or greater was 27% (15 of 56 specimens) during the 16-month study period. Adenosine triphosphate concentrations were lower during episodes of bacteriuria in the overall cohort (p = 0.0013) and paired samples from individual patients (p = 0.031) compared to episodes of sterile urine. CONCLUSIONS In the first study on the subject to our knowledge, we demonstrated a striking difference between adenosine triphosphate levels measured in the presence and absence of bacteriuria in this patient group.
Collapse
Affiliation(s)
- Colin A Walsh
- Department of Urogynaecology, St. George Hospital, University of New South Wales, Sydney, Australia
| | | | | | | | | | | |
Collapse
|
47
|
Burnstock G. Discovery of purinergic signalling, the initial resistance and current explosion of interest. Br J Pharmacol 2012; 167:238-55. [PMID: 22537142 PMCID: PMC3481036 DOI: 10.1111/j.1476-5381.2012.02008.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 04/03/2012] [Accepted: 04/12/2012] [Indexed: 01/23/2023] Open
Abstract
There has been a remarkable growth of papers published about purinergic signalling via ATP since 1972. I am most grateful to the wonderful PhD students and postdoctoral fellows who have worked with me over the years to pursue the purinergic hypothesis despite early opposition and to the many outstanding scientists around the world who are currently extending the story. Recently, therapeutic approaches to pathological disorders include the development of selective P1 and P2 receptor subtype agonists and antagonists, as well as of inhibitors of extracellular ATP breakdown and of ATP transport enhancers and inhibitors. Medicinal chemists are starting to develop small molecule purinergic drugs that are orally bioavailable and stable in vivo.
Collapse
Affiliation(s)
- G Burnstock
- Autonomic Neuroscience Centre, Royal Free and University College Medical School, Rowland Hill Street, London, UK.
| |
Collapse
|
48
|
Martins JP, Silva RBM, Coutinho-Silva R, Takiya CM, Battastini AMO, Morrone FB, Campos MM. The role of P2X7 purinergic receptors in inflammatory and nociceptive changes accompanying cyclophosphamide-induced haemorrhagic cystitis in mice. Br J Pharmacol 2012; 165:183-96. [PMID: 21675966 DOI: 10.1111/j.1476-5381.2011.01535.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND AND PURPOSE ATP is released in response to cellular damage, and P2X7 receptors have an essential role in the onset and maintenance of pathological changes. Haemorrhagic cystitis (HC) is a well-known adverse effect of therapy with cyclophosphamide used for the treatment of many solid tumours and autoimmune conditions. Here we have evaluated the role of P2X7 receptors in a model of HC induced by cyclophosphamide. EXPERIMENTAL APPROACH Effects of pharmacological antagonism or genetic deletion of P2X7 receptor on cyclophosphamide-induced HC in mice was assessed by nociceptive and inflammatory measures. In addition, the presence of immunoreactive P2X7 receptors was assessed by immunohistochemistry. KEY RESULTS Pretreatment with the selective P2X7 receptor antagonist A-438079 or genetic ablation of P2X7 receptors reduced nociceptive behaviour scores in the HC model. The same strategies decreased both oedema and haemorrhage indices, on macroscopic or histological evaluation. Treatment with A-438079 decreased the staining for c-Fos in the lumbar spinal cord and brain cortical areas. Treatment with A-438079 also prevented the increase of urinary bladder myeloperoxidase activity and macrophage migration induced by cyclophosphamide and reduced the tissue levels of IL-1β and TNF-α. Finally, P2X7 receptors were markedly up-regulated in the bladders of mice with cyclophosphamide-induced HC. CONCLUSIONS AND IMPLICATIONS P2X7 receptors were significantly involved in a model of HC induced by cyclophosphamide. Pharmacological inhibition of these receptors might represent a new therapeutic option for this pathological condition.
Collapse
Affiliation(s)
- J P Martins
- Faculdade de Medicina, PUCRS, Porto Alegre, RS, Brazil
| | | | | | | | | | | | | |
Collapse
|
49
|
Burnstock G. Purinergic signalling: Its unpopular beginning, its acceptance and its exciting future. Bioessays 2012; 34:218-25. [PMID: 22237698 DOI: 10.1002/bies.201100130] [Citation(s) in RCA: 163] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Adenosine 5'-triphosphate (ATP) was identified in 1970 as the transmitter responsible for non-adrenergic, non-cholinergic neurotransmission in the gut and bladder and the term 'purinergic' was coined. Purinergic cotransmission was proposed in 1976 and ATP is now recognized as a cotransmitter in all nerves in the peripheral and central nervous systems. P1 (adenosine) and P2 (ATP) receptors were distinguished in 1978. Cloning of these receptors in the early 1990s was a turning point in the acceptance of the purinergic signalling hypothesis. There are both short-term purinergic signalling in neurotransmission, neuromodulation and secretion and long-term (trophic) purinergic signalling of cell proliferation, differentiation and death in development and regeneration. Much is known about the mechanisms of ATP release and its breakdown by ectonucleotidases. Recently, there has been emphasis on purinergic pathophysiology, including neurodegenerative and neuropsychiatric disorders. Purinergic therapeutic strategies are being developed for treatment of gut, kidney, bladder, lung, skeletal and reproductive system disorders, pain and cancer.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, London, UK.
| |
Collapse
|
50
|
Rockenbach L, Bavaresco L, Fernandes Farias P, Cappellari AR, Barrios CH, Bueno Morrone F, Oliveira Battastini AM. Alterations in the extracellular catabolism of nucleotides are involved in the antiproliferative effect of quercetin in human bladder cancer T24 cells. Urol Oncol 2011; 31:1204-11. [PMID: 22137869 DOI: 10.1016/j.urolonc.2011.10.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 10/20/2011] [Accepted: 10/23/2011] [Indexed: 11/25/2022]
Abstract
Bladder cancer is the most prevalent tumor in the genitourinary tract and the current treatments are not efficient to prevent recurrence and progression of tumor cases. Studies have revealed evidence of the involvement of the purinergic system in bladder tumorigenesis, particularly ecto-5'-NT/CD73, the enzyme responsible for AMP hydrolysis. Quercetin (3,3',4',5,7-pentahydroxyflavone) is a plant-derived flavonoid that has been shown to exert a broad range of pharmacologic properties, including potential anticancer activity. Here, we investigated the quercetin effect on the E-NTPDases and ecto-5'-nucleotidase/CD73, which catalyzes the introversion of the extracellular purine nucleotides in T24 human bladder cancer cells. The results showed that this flavonoid was able to increase ADP hydrolysis and inhibit the ecto-5'-nucleotidase/CD73 activity, with no effect on protein expression. The treatment with APCP (α,β-methyleneadenosine-5'-diphosphate), another ecto-5'-NT/CD73 inhibitor, led to a significant reduction in cell proliferation. In addition, we showed that AMP, which can be accumulating by enzyme inhibition, had an antiproliferative effect on T24 cells, which was enhanced when its hydrolysis was inhibited by APCP treatment. Otherwise, adenosine did not cause any significant effect on cell proliferation and the quercetin effects were not altered by the simultaneous presence of adenosine. Taken together, the results suggest that the antiproliferative effect of quercetin on tumor cells may occur, at least in part, via alterations in the extracellular catabolism of nucleotides, that could be by AMP accumulation, or could be due to blocked adenosine receptors by this flavonoid, supporting the potential use of quercetin in bladder cancer treatment.
Collapse
Affiliation(s)
- Liliana Rockenbach
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | | | | | | | | | | | | |
Collapse
|