1
|
He Y, Lv B, Chao Y, Tang YE, Wang J, Wang Z, Peng YD. Influence of Cry1Ab protein on growth and development of a predatory spider, Pardosa pseudoannulata, from protective perspectives. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 269:115799. [PMID: 38070414 DOI: 10.1016/j.ecoenv.2023.115799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 11/29/2023] [Accepted: 12/05/2023] [Indexed: 01/12/2024]
Abstract
The expression of Cry proteins in genetically modified rice varieties safeguards the crop from lepidopteran pests. These proteins have the potential to be transferred through the food chain to arthropods like planthoppers and predatory spiders, triggering defensive responses in these unintended organisms. Hence, we hypothesized that Cry protein might influence the growth and development of spiders by altering protective enzyme activities. The results showed that Cry1Ab protein could accumulate in tissues and subcellular organelles of Pardosa pseudoannulata from Nilaparvata lugens. Cry1Ab protein exposure prolonged the developmental duration in the 5th and 7th instar spiderlings but induced no alterations of other growth indicators, such as body length, median ocular area, and survival rate. In addition, Cry1Ab protein exerted no adverse impacts on several detoxifying enzymes (i.e., superoxide dismutase, catalase, glutathione peroxidase, and acetylcholine esterase) in muscle, midgut, ganglia, and hemolymph at subcellular components (i.e., microsome and cytoplasm). To further explore the effects of Cry1Ab protein on the spiderlings, we performed an integrated transcriptome analysis on spiderlings exposed to Cry1Ab protein. The results showed that Cry1Ab protein might prolong the development duration of P. pseudoannulata via the altered cuticle metabolism (e.g., chitin metabolic process and structural constituent of cuticle). In addition, the gene expression profile associated with detoxifying enzymes and three stress-responsive pathways (JAK/STAT, JNK/SAPK, and Hippo pathways) also displayed no significant alterations under Cry1Ab exposure. Collectively, this integrated analysis generates multidimensional insights to assess the effects of Cry1Ab protein on non-target spiders and demonstrates that Cry1Ab protein exerts no toxicity in P. pseudoannulata.
Collapse
Affiliation(s)
- Yuan He
- College of Life Science, Hunan Normal University, Changsha 410128, Hunan, China
| | - Bo Lv
- Division of Plant Science and Technology, University of Missouri, Columbia, MO 65211, USA
| | - Yinying Chao
- College of Life Science, Hunan Normal University, Changsha 410128, Hunan, China
| | - Yun-E Tang
- College of Life Science, Hunan Normal University, Changsha 410128, Hunan, China
| | - Juan Wang
- College of Life Science, Hunan Normal University, Changsha 410128, Hunan, China
| | - Zhi Wang
- College of Life Science, Hunan Normal University, Changsha 410128, Hunan, China.
| | - Yuan-de Peng
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, Hunan, China.
| |
Collapse
|
2
|
Sultana MS, Mazarei M, Millwood RJ, Liu W, Hewezi T, Stewart CN. Functional analysis of soybean cyst nematode-inducible synthetic promoters and their regulation by biotic and abiotic stimuli in transgenic soybean ( Glycine max). FRONTIERS IN PLANT SCIENCE 2022; 13:988048. [PMID: 36160998 PMCID: PMC9501883 DOI: 10.3389/fpls.2022.988048] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/18/2022] [Indexed: 06/16/2023]
Abstract
We previously identified cis-regulatory motifs in the soybean (Glycine max) genome during interaction between soybean and soybean cyst nematode (SCN), Heterodera glycines. The regulatory motifs were used to develop synthetic promoters, and their inducibility in response to SCN infection was shown in transgenic soybean hairy roots. Here, we studied the functionality of two SCN-inducible synthetic promoters; 4 × M1.1 (TAAAATAAAGTTCTTTAATT) and 4 × M2.3 (ATATAATTAAGT) each fused to the -46 CaMV35S core sequence in transgenic soybean. Histochemical GUS analyses of transgenic soybean plants containing the individual synthetic promoter::GUS construct revealed that under unstressed condition, no GUS activity is present in leaves and roots. While upon nematode infection, the synthetic promoters direct GUS expression to roots predominantly in the nematode feeding structures induced by the SCN and by the root-knot nematode (RKN), Meloidogyne incognita. There were no differences in GUS activity in leaves between nematode-infected and non-infected plants. Furthermore, we examined the specificity of the synthetic promoters in response to various biotic (insect: fall armyworm, Spodoptera frugiperda; and bacteria: Pseudomonas syringe pv. glycinea, P. syringe pv. tomato, and P. marginalis) stresses. Additionally, we examined the specificity to various abiotic (dehydration, salt, cold, wounding) as well as to the signal molecules salicylic acid (SA), methyl jasmonate (MeJA), and abscisic acid (ABA) in the transgenic plants. Our wide-range analyses provide insights into the potential applications of synthetic promoter engineering for conditional expression of transgenes leading to transgenic crop development for resistance improvement in plant.
Collapse
Affiliation(s)
- Mst Shamira Sultana
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, United States
- Center for Agricultural Synthetic Biology, University of Tennessee, Knoxville, TN, United States
| | - Mitra Mazarei
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, United States
- Center for Agricultural Synthetic Biology, University of Tennessee, Knoxville, TN, United States
| | - Reginald J. Millwood
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, United States
| | - Wusheng Liu
- Department of Horticultural Science, North Carolina State University, Raleigh, NC, United States
| | - Tarek Hewezi
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, United States
| | - C. Neal Stewart
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, United States
- Center for Agricultural Synthetic Biology, University of Tennessee, Knoxville, TN, United States
| |
Collapse
|
3
|
Suhardjono YR, Estiati A, Rahmawati S, Nugroho S, Nugroho S. Diversity and Abundance of Soil Collembola during GM Rice Overexpressing Cry1B-Cry1Aa Cultivations at Four Confined Field Trials in West Java. Trop Life Sci Res 2022; 33:85-106. [PMID: 36545049 PMCID: PMC9747110 DOI: 10.21315/tlsr2022.33.3.6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Collembola (springtails) is an important soil biology indicator to monitor toxicity or ecological disturbances in the ecosystem. The impact of Bacillus thuringiensis (Bt) rice cv Rojolele events expressing Cry1B-Cry1Aa driven by the maize ubiquitin promoter resistant to yellow rice stem borer (YSB, Scirpophaga incertulas Walker) on non-target Collembola community was assessed. The experiment was performed at four locations under confined field trials according to the Indonesia's environmental safety regulation on genetically engineered crops. Six transgenic rice events were tested with non-transgenic Rojolele and the moderately resistant IR42 rice varieties as controls. The experimental design was randomised block design with three replicates. Collembola were collected from the bunds between plots using pitfall and Berlese funnel traps at seedling, vegetative and generative stages, as well as at harvesting time. The results showed that Collembola abundance and diversity were significantly affected by both experimental sites and observation times. However, no significant differences in Collembola diversity and abundance between Bt rice and non-Bt controls were observed. Thus, we can conclude that the cultivation of the Bt rice cv Rojolele events expressing Cry1B-Cry1Aa protein fusion do not adversely affect biodiversity and abundance of Collembola at the four confined rice fields.
Collapse
Affiliation(s)
- Yayuk Rahayuningsih Suhardjono
- Research Centre for Biology-Indonesian Institute of Sciences, Jl. Raya Bogor Km 46, Cibinong, Kabupaten Bogor 16911, Indonesia
| | - Amy Estiati
- Research Centre for Genetic Engineering, National Research and Innovation Agency (BRIN), Jl. Raya Bogor Km 46, Cibinong, Kabupaten Bogor 16911, Indonesia
| | - Syamsidah Rahmawati
- Research Centre for Genetic Engineering, National Research and Innovation Agency (BRIN), Jl. Raya Bogor Km 46, Cibinong, Kabupaten Bogor 16911, Indonesia
| | - Satya Nugroho
- Research Centre for Genetic Engineering, National Research and Innovation Agency (BRIN), Jl. Raya Bogor Km 46, Cibinong, Kabupaten Bogor 16911, Indonesia,Corresponding author: ,
| | | | | | | | | |
Collapse
|
4
|
Hajimohammadi B, Eslami G, Zandi H, Ehrampoush MH, Naimi A, Derakhshan M, Hedayat P, Fallahi R, Fallahzadeh H, Rezvani ME, Vakili M, Moshtaghioun SM, Athari SS, Asadi-Yousefabad SL, Hosseini SS, Shirdeli M, Ahmadian S, Mortazavi S, Loni E, Ajamein V, Ahmadi A, Askari V. Safety assessment of genetically modified rice expressing Cry1Ab protein in Sprague-Dawley rats. Sci Rep 2021; 11:1126. [PMID: 33441963 PMCID: PMC7807014 DOI: 10.1038/s41598-021-80958-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 12/31/2020] [Indexed: 11/25/2022] Open
Abstract
Rice is considered one of the most important staple food crops. Genetically modified (GM) Bt rice, harbored cry1Ab gene expressing the insect-resistance protein has been developed to resistance to the insects. In this study, we assessed the safety of the GM Bt rice on Sprague–Dawley rats for 90 days. Totally, 120 rats in both sexes were used for three different diets, including 50% GM Bt rice, feeding with 50% rice, and standard feeding. Each 40 SD rats including 20 males and 20 females were considered as each diet. The clinical variables such as body weight and food consumption were measured and a range of clinical tests was examined, including hematology, serum chemistry parameters, urinalysis profile, thyroid, and sex hormone levels. Pathological assessments were also done. The results showed that the mean weekly feed utilization (%) had no significant difference among the studied groups. Also, blood biochemistry, hematological parameters, urine analysis, and hormonal levels had no significant differences among the groups. However, alanine aminotransferase was less in males versus female feeding with GM Bt rice. No histopathological changes were observed among the groups. In conclusion, this study demonstrated that GM Bt rice had no obvious adverse effects on rats' health.
Collapse
Affiliation(s)
- Bahador Hajimohammadi
- Research Center for Food Hygiene and Safety, School of Public Health, Shahid Sadoughi University of Medical Sciences, Shohadaye Gomnam Blvd., Yazd, 8916188638, Islamic Republic of Iran
| | - Gilda Eslami
- Research Center for Food Hygiene and Safety, School of Public Health, Shahid Sadoughi University of Medical Sciences, Shohadaye Gomnam Blvd., Yazd, 8916188638, Islamic Republic of Iran.
| | - Hengameh Zandi
- Research Center for Food Hygiene and Safety, School of Public Health, Shahid Sadoughi University of Medical Sciences, Shohadaye Gomnam Blvd., Yazd, 8916188638, Islamic Republic of Iran
| | - Mohammad Hassan Ehrampoush
- Research Center for Food Hygiene and Safety, School of Public Health, Shahid Sadoughi University of Medical Sciences, Shohadaye Gomnam Blvd., Yazd, 8916188638, Islamic Republic of Iran
| | - Azar Naimi
- Department of Pathology, Medical University of Isfahan, Isfahan, Iran
| | - Maryam Derakhshan
- Department of Pathology, Medical University of Isfahan, Isfahan, Iran
| | - Pegah Hedayat
- Department of Pathology, Medical University of Isfahan, Isfahan, Iran
| | - Roozbeh Fallahi
- Animal Viral Diseases Research Department, Razi Vaccine and Serum Research Institute, Agricultural Research Education and Extension Organization (AREEO), 3197619751, Karaj, Iran
| | - Hossein Fallahzadeh
- Department of Biostatistics and Epidemiology, Daneshjoo Boulevard, Health School, Shahid Sadoughi University of Medical Sciences, Shohadaye Gomnam Blv., Yazd, 8916188638, Islamic Republic of Iran
| | - Mohammad Ebrahim Rezvani
- Department of Physiology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Shohadaye Gomnam Blvd., Yazd, 8916188638, Islamic Republic of Iran
| | - Mahmoud Vakili
- Department of Community and Preventive Medicine, Health Monitoring Research Center, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Shohadaye Gomnam Blv., Yazd, 8916188638, Islamic Republic of Iran
| | | | - Seyyed Shamsadin Athari
- Department of Immunology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Seyedeh Leili Asadi-Yousefabad
- Department of Genetics, School of Medicine, Shahid Sadoughi University of Medical Sciences, Shohadaye Gomnam Blvd., Yazd, 8916188638, Islamic Republic of Iran
| | - Saeedeh Sadat Hosseini
- Research Center for Food Hygiene and Safety, School of Public Health, Shahid Sadoughi University of Medical Sciences, Shohadaye Gomnam Blvd., Yazd, 8916188638, Islamic Republic of Iran
| | - Mehrnoush Shirdeli
- Department of Food Science and Technology, Food Security Research Center, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Salman Ahmadian
- Research Center for Food Hygiene and Safety, School of Public Health, Shahid Sadoughi University of Medical Sciences, Shohadaye Gomnam Blvd., Yazd, 8916188638, Islamic Republic of Iran
| | - Shirin Mortazavi
- Research Center for Food Hygiene and Safety, School of Public Health, Shahid Sadoughi University of Medical Sciences, Shohadaye Gomnam Blvd., Yazd, 8916188638, Islamic Republic of Iran
| | - Elahe Loni
- Research Center for Food Hygiene and Safety, School of Public Health, Shahid Sadoughi University of Medical Sciences, Shohadaye Gomnam Blvd., Yazd, 8916188638, Islamic Republic of Iran
| | - Vahid Ajamein
- Research Center for Food Hygiene and Safety, School of Public Health, Shahid Sadoughi University of Medical Sciences, Shohadaye Gomnam Blvd., Yazd, 8916188638, Islamic Republic of Iran
| | - Amin Ahmadi
- Department of Pathobiology, Faculty of Veterinary Medicine, Ardakan University, Ardakan, Iran
| | - Vahideh Askari
- Research Center for Food Hygiene and Safety, School of Public Health, Shahid Sadoughi University of Medical Sciences, Shohadaye Gomnam Blvd., Yazd, 8916188638, Islamic Republic of Iran
| |
Collapse
|
5
|
Liu S, Liu C, Wang X, Chen H. Seed-specific activity of the Arabidopsis β-glucosidase 19 promoter in transgenic Arabidopsis and tobacco. PLANT CELL REPORTS 2021; 40:213-221. [PMID: 33099669 DOI: 10.1007/s00299-020-02627-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 10/10/2020] [Indexed: 05/09/2023]
Abstract
KEY MESSAGE The promoter of the Arabidopsis thaliana β-glucosidase 19 gene directs GUS expression in a seed-specific manner in transgenic Arabidopsis and tobacco. In the present study, an 898-bp putative promoter of the Arabidopsis β-glucosidase 19 (AtBGLU19) gene was cloned. The bioinformatics analysis of the cis-acting elements indicated that this putative promoter contains many seed-specific elements, such as RY elements. The features of this promoter fragment were evaluated for the capacity to direct the β-glucuronidase (GUS) reporter gene in transgenic Arabidopsis and tobacco. Histochemical and fluorometric GUS analyses of transgenic Arabidopsis plants revealed that the AtBGLU19 promoter directed strong GUS activity in late-maturing seeds and dry seeds, whereas no GUS expression was observed in other organs. The results indicated that the AtBGLU19 promoter was able to direct GUS expression in a seed-specific manner in transgenic Arabidopsis. In tobacco, the intensity of the staining and the level of GUS activity were considerably higher in the seeds than in the other tissues. These results further confirmed that the AtBGLU19 promoter is seed specific and can be used to control transgene expression in a heterologous plant system.
Collapse
Affiliation(s)
- Shijuan Liu
- School of Life Science, Qufu Normal University, Qufu, 273165, China.
| | - Changju Liu
- School of Life Science, Qufu Normal University, Qufu, 273165, China
| | - Xue Wang
- School of Life Science, Qufu Normal University, Qufu, 273165, China
| | - Huiqing Chen
- School of Life Science, Qufu Normal University, Qufu, 273165, China
| |
Collapse
|
6
|
Dastan S, Ghareyazie B, Teixeira da Silva JA. Selection of ideotype to increase yield potential of GM and non-GM rice cultivars. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 297:110519. [PMID: 32563458 DOI: 10.1016/j.plantsci.2020.110519] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 04/03/2020] [Accepted: 05/03/2020] [Indexed: 05/28/2023]
Abstract
Using classical breeding, plant breeders envision a plant type whose yield they aim to enhance by selecting for individual traits to create model/ideal plants or ideotypes. To achieve this, those factors restricting yield need to be identified and controlled through the use of new technologies to achieve the desired ideotype. This study aimed to determine the ideotype of seven genetically modified (GM) and non-GM rice (Oryza sativa L.) cultivars. Field experiments were carried out in three isolated regions in the north of Iran under the Iranian bio-safety standard protocol. Four of the GM cultivars carried the cry1Ab gene in the vegetative stage while three non-GM cultivars served as the control. R2 values showed that five, six and seven variables in Sari, Amol and Rasht regions accounted for 63 %, 52 % and 74 % of paddy yield variation, respectively. In the same three regions, paddy yield variation due to white heads accounted for 28.38 %, 8.45 % and 3.95 % of the total variation in paddy yield, respectively. The total estimated variation in paddy yield in Sari, Amol and Rasht was 1810.50, 2377.6 and 2176.47 kg ha-1, respectively. Average data over the three regions indicated that highest loss in paddy yield was observed in non-GM 'Nemat', 'Khazar' and 'Tarom Hashemi'. GM cultivars derived from 'Khazar' showed significantly lower paddy yield loss than the non-GM parent. Dead heart, a condition that occurs in the vegetative stage in which the stem borer larva enters the stem and feeds on the growing shoot, causing the central shoot to dry, as well as white heads, which is a condition in which whole ear heads of adult plants become dry and yield chaffy grains, in all three regions were important variables contributing to paddy yield loss. In the future, producing GM rice resistant to striped stem borer with an active promoter in the reproductive growth stage might allow farmers to reduce a significant part of paddy yield loss resulting from white heads, which is directly negatively correlated with filled spikelets per panicle (R2 = -0.57**), in order to achieve an ideotype.
Collapse
Affiliation(s)
- Salman Dastan
- Department of Biosafety and Genetic Engineering, Agricultural Biotechnology Research Institute of Iran (ABRII), Karaj, Iran.
| | - Behzad Ghareyazie
- Department of Biosafety and Genetic Engineering, Agricultural Biotechnology Research Institute of Iran (ABRII), Karaj, Iran
| | | |
Collapse
|
7
|
Pandey SP, Singh AP, Srivastava S, Chandrashekar K, Sane AP. A strong early acting wound-inducible promoter, RbPCD1pro, activates cryIAc expression within minutes of wounding to impart efficient protection against insects. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:1458-1470. [PMID: 30623549 PMCID: PMC6576099 DOI: 10.1111/pbi.13071] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 12/12/2018] [Indexed: 06/09/2023]
Abstract
The expression of insecticidal proteins under constitutive promoters in transgenic plants is fraught with problems like developmental abnormalities, yield drag, expression in unwanted tissues, and seasonal changes in expression. RbPCD1pro, a rapid, early acting wound-inducible promoter from rose that is activated within 5 min of wounding, was isolated and characterized. Wounding increased transcript levels up to 150 and 500 folds within 5 and 20 min coupled with high translation as seen by histochemical GUS enzyme activity within 5-20 min. RbPCD1pro was activated by both sucking and chewing insects and showed wound-inducible expression in various aerial tissues of plants representing commercially important dicot and monocot families. The promoter showed no expression in any vegetative tissue except upon wounding. Functionality of RbPCD1pro was tested by its ability to drive expression of the insecticidal protein gene cryIAc in transgenic Arabidopsis and tomato. Strong wound-inducible CryIAc expression was observed in both plants that increased 100-350 fold (Arabidopsis) and 280-600 fold (tomato) over the unwounded background within 5 min and over 1000-1600 fold within 20 min. The unwounded background level was just 3-6% of the CaMV35S promoter while wound-induced expression was 5-27 folds higher than the best CaMV35S line in just 5 min and 80-fold higher in 20 min. Transgenic plants showed strong resistance even to larger fourth instar larvae of H. armigera and no abnormalities in development and general plant growth. This is one of the earliest acting promoters with wide biotechnological application across monocot and dicot plants.
Collapse
Affiliation(s)
- Saurabh Prakash Pandey
- Plant Gene Expression LabCSIR‐National Botanical Research InstituteLucknowIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| | - Amar Pal Singh
- Plant Gene Expression LabCSIR‐National Botanical Research InstituteLucknowIndia
- Present address:
National Institute for Plant Genome ResearchNew Delhi110067India
| | - Shruti Srivastava
- Plant Gene Expression LabCSIR‐National Botanical Research InstituteLucknowIndia
| | - Krishnappa Chandrashekar
- Genomics and Molecular Biology DivisionCSIR‐National Botanical Research InstituteLucknowIndia
- Present address:
IARI Regional CentreAundh, Pune411067India
| | - Aniruddha P. Sane
- Plant Gene Expression LabCSIR‐National Botanical Research InstituteLucknowIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| |
Collapse
|
8
|
Fraiture MA, Saltykova A, Hoffman S, Winand R, Deforce D, Vanneste K, De Keersmaecker SCJ, Roosens NHC. Nanopore sequencing technology: a new route for the fast detection of unauthorized GMO. Sci Rep 2018; 8:7903. [PMID: 29785005 PMCID: PMC5962636 DOI: 10.1038/s41598-018-26259-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 05/09/2018] [Indexed: 01/10/2023] Open
Abstract
In order to strengthen the current genetically modified organism (GMO) detection system for unauthorized GMO, we have recently developed a new workflow based on DNA walking to amplify unknown sequences surrounding a known DNA region. This DNA walking is performed on transgenic elements, commonly found in GMO, that were earlier detected by real-time PCR (qPCR) screening. Previously, we have demonstrated the ability of this approach to detect unauthorized GMO via the identification of unique transgene flanking regions and the unnatural associations of elements from the transgenic cassette. In the present study, we investigate the feasibility to integrate the described workflow with the MinION Next-Generation-Sequencing (NGS). The MinION sequencing platform can provide long read-lengths and deal with heterogenic DNA libraries, allowing for rapid and efficient delivery of sequences of interest. In addition, the ability of this NGS platform to characterize unauthorized and unknown GMO without any a priori knowledge has been assessed.
Collapse
Affiliation(s)
- Marie-Alice Fraiture
- Scientific Institute of Public Health (WIV-ISP), Platform of Biotechnology and Bioinformatics (PBB), J. Wytsmanstraat 14, 1050, Brussels, Belgium
- Scientific Institute of Public Health (WIV-ISP), Biosafety and Biotechnology Unit (SBB), J. Wytsmanstraat 14, 1050, Brussels, Belgium
| | - Assia Saltykova
- Scientific Institute of Public Health (WIV-ISP), Platform of Biotechnology and Bioinformatics (PBB), J. Wytsmanstraat 14, 1050, Brussels, Belgium
- Ghent University (UGent), Department of Information Technology, IMEC, Internet Technology and Data Science Lab (IDLab), Technologiepark-Zwijnaarde 15, 9052, Ghent, Belgium
| | - Stefan Hoffman
- Scientific Institute of Public Health (WIV-ISP), Platform of Biotechnology and Bioinformatics (PBB), J. Wytsmanstraat 14, 1050, Brussels, Belgium
| | - Raf Winand
- Scientific Institute of Public Health (WIV-ISP), Platform of Biotechnology and Bioinformatics (PBB), J. Wytsmanstraat 14, 1050, Brussels, Belgium
| | - Dieter Deforce
- Ghent University, Faculty of Pharmaceutical Sciences, Laboratory of Pharmaceutical Biotechnology, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| | - Kevin Vanneste
- Scientific Institute of Public Health (WIV-ISP), Platform of Biotechnology and Bioinformatics (PBB), J. Wytsmanstraat 14, 1050, Brussels, Belgium
| | - Sigrid C J De Keersmaecker
- Scientific Institute of Public Health (WIV-ISP), Platform of Biotechnology and Bioinformatics (PBB), J. Wytsmanstraat 14, 1050, Brussels, Belgium
| | - Nancy H C Roosens
- Scientific Institute of Public Health (WIV-ISP), Platform of Biotechnology and Bioinformatics (PBB), J. Wytsmanstraat 14, 1050, Brussels, Belgium.
| |
Collapse
|
9
|
Yang H, Peng Y, Tian J, Wang J, Hu J, Song Q, Wang Z. Review: biosafety assessment of Bt rice and other Bt crops using spiders as example for non-target arthropods in China. PLANT CELL REPORTS 2017; 36:505-517. [PMID: 28210764 DOI: 10.1007/s00299-017-2108-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 01/12/2017] [Indexed: 06/06/2023]
Abstract
Since the birth of transgenic crops expressing Bacillus thuringiensis (Bt) toxin for pest control, the public debate regarding ecological and environmental risks as well as benefits of Bt crops has continued unabated. The impact of Bt crops, especially on non-target invertebrates, has received particular attention. In this review, we summarize and analyze evidences for non-target effects of Bt rice on spiders, major predators in rice fields. Bt rice has been genetically modified to express the Bt protein, which has been shown to be transferred and accumulate in spiders as part of their food chain. Moreover, the Bt protein exhibits unintended effects on the physiology of spiders and spreads to higher trophic levels. Spiders possess unique physiological and ecological characteristics, revealing traits of surrogate species, and are thus considered to be excellent non-target arthropod model systems for study of Bt protein impacts. Due to the complexities of Bt protein transfer and accumulation mechanisms, as well as the apparent lack of information about resulting physiological, biochemical, and ecological effects on spiders, we raise questions and provide recommendations for promising further research.
Collapse
Affiliation(s)
- Huilin Yang
- College of Bioscience and Biotechnology, Hunan Agriculture University, No. 1 Nongda Road, Changsha, 410128, Hunan, China
- College of Orient Science & Technology, Hunan Agriculture University, No. 1 Nongda Road, Changsha, 410128, Hunan, China
| | - Yuande Peng
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, Hunan, China
| | - Jianxiang Tian
- College of Continuing Education, Hunan Agriculture University, No. 1 Nongda Road, Changsha, 410128, Hunan, China
| | - Juan Wang
- College of Bioscience and Biotechnology, Hunan Agriculture University, No. 1 Nongda Road, Changsha, 410128, Hunan, China
| | - Jilin Hu
- College of Bioscience and Biotechnology, Hunan Agriculture University, No. 1 Nongda Road, Changsha, 410128, Hunan, China
| | - Qisheng Song
- Division of Plant Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Zhi Wang
- College of Bioscience and Biotechnology, Hunan Agriculture University, No. 1 Nongda Road, Changsha, 410128, Hunan, China.
| |
Collapse
|
10
|
Fraiture MA, Herman P, Papazova N, De Loose M, Deforce D, Ruttink T, Roosens NH. An integrated strategy combining DNA walking and NGS to detect GMOs. Food Chem 2017; 232:351-358. [PMID: 28490084 DOI: 10.1016/j.foodchem.2017.03.067] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Revised: 10/17/2016] [Accepted: 03/11/2017] [Indexed: 12/21/2022]
Abstract
Recently, we developed a DNA walking system for the detection and characterization of a broad spectrum of GMOs in routine analysis of food/feed matrices. Here, we present a new version with improved throughput and sensitivity by coupling the DNA walking system to Pacific Bioscience® Next-generation sequencing technology. The performance of the new strategy was thoroughly assessed through several assays. First, we tested its detection and identification capability on grains with high or low GMO content. Second, the potential impacts of food processing were investigated using rice noodle samples. Finally, GMO mixtures and a real-life sample were analyzed to illustrate the applicability of the proposed strategy in routine GMO analysis. In all tested samples, the presence of multiple GMOs was unambiguously proven by the characterization of transgene flanking regions and the combinations of elements that are typical for transgene constructs.
Collapse
Affiliation(s)
- Marie-Alice Fraiture
- Scientific Institute of Public Health (WIV-ISP), Platform of Biotechnology and Molecular Biology (PBB) and Biosafety and Biotechnology Unit (SBB), J. Wytsmanstraat 14, 1050 Brussels, Belgium; Institute for Agricultural, Fisheries and Food Research (ILVO), Technology and Food Sciences Unit, Burg. Van Gansberghelaan 115 bus 1, 9820 Merelbeke, Belgium; Ghent University, Faculty of Pharmaceutical Sciences, Laboratory of Pharmaceutical Biotechnology, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Philippe Herman
- Scientific Institute of Public Health (WIV-ISP), Platform of Biotechnology and Molecular Biology (PBB) and Biosafety and Biotechnology Unit (SBB), J. Wytsmanstraat 14, 1050 Brussels, Belgium.
| | - Nina Papazova
- Scientific Institute of Public Health (WIV-ISP), Platform of Biotechnology and Molecular Biology (PBB) and Biosafety and Biotechnology Unit (SBB), J. Wytsmanstraat 14, 1050 Brussels, Belgium.
| | - Marc De Loose
- Institute for Agricultural, Fisheries and Food Research (ILVO), Technology and Food Sciences Unit, Burg. Van Gansberghelaan 115 bus 1, 9820 Merelbeke, Belgium; Ghent University, Faculty of Sciences, Department of Plant Biotechnology and Bioinformatics, Technologiepark 927, 9052 Ghent, Belgium.
| | - Dieter Deforce
- Ghent University, Faculty of Pharmaceutical Sciences, Laboratory of Pharmaceutical Biotechnology, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Tom Ruttink
- Institute for Agricultural, Fisheries and Food Research (ILVO), Plant Sciences Unit, Caritasstraat 39, 9090 Melle, Belgium.
| | - Nancy H Roosens
- Scientific Institute of Public Health (WIV-ISP), Platform of Biotechnology and Molecular Biology (PBB) and Biosafety and Biotechnology Unit (SBB), J. Wytsmanstraat 14, 1050 Brussels, Belgium.
| |
Collapse
|
11
|
Wang J, Peng YD, He C, Wei BY, Liang YS, Yang HL, Wang Z, Stanley D, Song QS. Cry1Ab-expressing rice did not influence expression of fecundity-related genes in the wolf spider Pardosa pseudoannulata. Gene 2016; 592:1-7. [PMID: 27452121 DOI: 10.1016/j.gene.2016.07.041] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 06/25/2016] [Accepted: 07/18/2016] [Indexed: 11/19/2022]
Abstract
The impact of Bacillus thuringiensis (Bt) toxin proteins on non-target predatory arthropods is not well understood at the cellular and molecular levels. Here, we investigated the potential effects of Cry1Ab expressing rice on fecundity of the wolf spider, Pardosa pseudoannulata, and some of the underlying molecular mechanisms. The results indicated that brown planthoppers (BPHs) reared on Cry1Ab-expressing rice accumulated the Cry toxin and that reproductive parameters (pre-oviposition period, post-oviposition stage, number of eggs, and egg hatching rate) of the spiders that consumed BPHs reared on Bt rice were not different from those that consumed BPHs reared on the non-Bt control rice. The accumulated Cry1Ab did not influence several vitellin (Vt) parameters, including stored energy and amino acid composition, during one generation. We considered the possibility that the Cry toxins exert their influence on beneficial predators via more subtle effects detectable at the molecular level in terms of gene expression. This led us to transcriptome analysis to detect differentially expressed genes in the ovaries of spiders exposed to dietary Cry1Ab and their counterpart control spiders. Eight genes, associated with vitellogenesis, vitellogenin receptor activity, and vitellin membrane formation were not differentially expressed between ovaries from the treated and control spiders, confirmed by qPCR analysis. We infer that dietary Cry1Ab expressing rice does not influence fecundity, nor expression levels of Vt-associated genes in P. pseudoannulata.
Collapse
Affiliation(s)
- Juan Wang
- College of Bioscience and Biotechnology, Hunan Agriculture University, Changsha, Hunan 410128, China
| | - Yuan-De Peng
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, Hunan 410205, China
| | - Chao He
- Longping College, Central South University, Changsha, Hunan 410001,China
| | - Bao-Yang Wei
- College of Bioscience and Biotechnology, Hunan Agriculture University, Changsha, Hunan 410128, China
| | - Yun-Shan Liang
- College of Bioscience and Biotechnology, Hunan Agriculture University, Changsha, Hunan 410128, China
| | - Hui-Lin Yang
- College of Bioscience and Biotechnology, Hunan Agriculture University, Changsha, Hunan 410128, China
| | - Zhi Wang
- College of Bioscience and Biotechnology, Hunan Agriculture University, Changsha, Hunan 410128, China.
| | - David Stanley
- USDA-ARS, Biological Control of Insects Research Laboratory, Columbia, MO 65203, USA
| | - Qi-Sheng Song
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
12
|
Fraiture MA, Roosens NH, Taverniers I, De Loose M, Deforce D, Herman P. Biotech rice: Current developments and future detection challenges in food and feed chain. Trends Food Sci Technol 2016. [DOI: 10.1016/j.tifs.2016.03.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
13
|
Fraiture MA, Herman P, Lefèvre L, Taverniers I, De Loose M, Deforce D, Roosens NH. Integrated DNA walking system to characterize a broad spectrum of GMOs in food/feed matrices. BMC Biotechnol 2015; 15:76. [PMID: 26272331 PMCID: PMC4535744 DOI: 10.1186/s12896-015-0191-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 07/29/2015] [Indexed: 01/28/2023] Open
Abstract
Background In order to provide a system fully integrated with qPCR screening, usually used in GMO routine analysis, as well as being able to detect, characterize and identify a broad spectrum of GMOs in food/feed matrices, two bidirectional DNA walking methods targeting p35S or tNOS, the most common transgenic elements found in GM crops, were developed. These newly developed DNA walking methods are completing the previously implemented DNA walking method targeting the t35S pCAMBIA element. Methods Food/feed matrices containing transgenic crops (Bt rice or MON863 maize) were analysed using the integrated DNA walking system. Results First, the newly developed DNA walking methods, anchored on the sequences used for the p35S or tNOS qPCR screening, were tested on Bt rice that contains these two transgenic elements. Second, the methods were assessed on a maize sample containing a low amount of the GM MON863 event, representing a more complex matrix in terms of genome size and sensitivity. Finally, to illustrate its applicability in GMO routine analysis by enforcement laboratories, the entire workflow of the integrated strategy, including qPCR screening to detect the potential presence of GMOs and the subsequent DNA walking methods to characterize and identify the detected GMOs, was applied on a GeMMA Scheme Proficiency Test matrix. Via the characterization of the transgene flanking region between the transgenic cassette and the plant genome as well as of a part of the transgenic cassette, the presence of GMOs was properly confirmed or infirmed in all tested samples. Conclusion Due to their simple procedure and their short time-frame to get results, the developed DNA walking methods proposed here can be easily implemented in GMO routine analysis by the enforcement laboratories. In providing crucial information about the transgene flanking regions and/or the transgenic cassettes, this DNA walking strategy is a key molecular tool to prove the presence of GMOs in any given food/feed matrix. Electronic supplementary material The online version of this article (doi:10.1186/s12896-015-0191-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marie-Alice Fraiture
- Scientific Institute of Public Health (WIV-ISP), Platform of Biotechnology and Molecular Biology (PBB) and Biosafety and Biotechnology Unit (SBB), J. Wytsmanstraat 14, 1050, Brussels, Belgium. .,Institute for Agricultural and Fisheries Research (ILVO), Technology and Food Sciences Unit, Burg. Van Gansberghelaan 115 bus 1, 9820, Merelbeke, Belgium. .,Ghent University, Faculty of Pharmaceutical Sciences, Laboratory of Pharmaceutical Biotechnology, Ottergemsesteenweg 460, 9000, Ghent, Belgium.
| | - Philippe Herman
- Scientific Institute of Public Health (WIV-ISP), Platform of Biotechnology and Molecular Biology (PBB) and Biosafety and Biotechnology Unit (SBB), J. Wytsmanstraat 14, 1050, Brussels, Belgium.
| | - Loic Lefèvre
- Scientific Institute of Public Health (WIV-ISP), Platform of Biotechnology and Molecular Biology (PBB) and Biosafety and Biotechnology Unit (SBB), J. Wytsmanstraat 14, 1050, Brussels, Belgium.
| | - Isabel Taverniers
- Institute for Agricultural and Fisheries Research (ILVO), Technology and Food Sciences Unit, Burg. Van Gansberghelaan 115 bus 1, 9820, Merelbeke, Belgium.
| | - Marc De Loose
- Institute for Agricultural and Fisheries Research (ILVO), Technology and Food Sciences Unit, Burg. Van Gansberghelaan 115 bus 1, 9820, Merelbeke, Belgium. .,Ghent University, Faculty of Sciences, Department of Plant Biotechnology and Bioinformatics, Technologiepark 927, 9052, Ghent, Belgium.
| | - Dieter Deforce
- Ghent University, Faculty of Pharmaceutical Sciences, Laboratory of Pharmaceutical Biotechnology, Ottergemsesteenweg 460, 9000, Ghent, Belgium.
| | - Nancy H Roosens
- Scientific Institute of Public Health (WIV-ISP), Platform of Biotechnology and Molecular Biology (PBB) and Biosafety and Biotechnology Unit (SBB), J. Wytsmanstraat 14, 1050, Brussels, Belgium.
| |
Collapse
|
14
|
Willems S, Fraiture MA, Deforce D, De Keersmaecker SCJ, De Loose M, Ruttink T, Herman P, Van Nieuwerburgh F, Roosens N. Statistical framework for detection of genetically modified organisms based on Next Generation Sequencing. Food Chem 2015; 192:788-98. [PMID: 26304412 DOI: 10.1016/j.foodchem.2015.07.074] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 06/26/2015] [Accepted: 07/18/2015] [Indexed: 10/23/2022]
Abstract
Because the number and diversity of genetically modified (GM) crops has significantly increased, their analysis based on real-time PCR (qPCR) methods is becoming increasingly complex and laborious. While several pioneers already investigated Next Generation Sequencing (NGS) as an alternative to qPCR, its practical use has not been assessed for routine analysis. In this study a statistical framework was developed to predict the number of NGS reads needed to detect transgene sequences, to prove their integration into the host genome and to identify the specific transgene event in a sample with known composition. This framework was validated by applying it to experimental data from food matrices composed of pure GM rice, processed GM rice (noodles) or a 10% GM/non-GM rice mixture, revealing some influential factors. Finally, feasibility of NGS for routine analysis of GM crops was investigated by applying the framework to samples commonly encountered in routine analysis of GM crops.
Collapse
Affiliation(s)
- Sander Willems
- Scientific Institute of Public Health (WIV-ISP), Platform of Biotechnology and Molecular Biology (PBB), J. Wytsmanstraat 14, 1050 Brussels, Belgium; Scientific Institute of Public Health (WIV-ISP), Biosafety and Biotechnology Unit (SBB), J. Wytsmanstraat 14, 1050 Brussels, Belgium; University of Gent (UGent), Faculty of Pharmaceutical Sciences, Laboratory of Pharmaceutical Biotechnology, Harelbekestraat 72, 9000 Ghent, Belgium
| | - Marie-Alice Fraiture
- Scientific Institute of Public Health (WIV-ISP), Platform of Biotechnology and Molecular Biology (PBB), J. Wytsmanstraat 14, 1050 Brussels, Belgium; Scientific Institute of Public Health (WIV-ISP), Biosafety and Biotechnology Unit (SBB), J. Wytsmanstraat 14, 1050 Brussels, Belgium; University of Gent (UGent), Faculty of Pharmaceutical Sciences, Laboratory of Pharmaceutical Biotechnology, Harelbekestraat 72, 9000 Ghent, Belgium; Institute for Agricultural and Fisheries Research (ILVO), Technology and Food Sciences Unit, Burg. Van Gansberghelaan 115, bus 1, 9820 Merelbeke, Belgium
| | - Dieter Deforce
- University of Gent (UGent), Faculty of Pharmaceutical Sciences, Laboratory of Pharmaceutical Biotechnology, Harelbekestraat 72, 9000 Ghent, Belgium
| | - Sigrid C J De Keersmaecker
- Scientific Institute of Public Health (WIV-ISP), Platform of Biotechnology and Molecular Biology (PBB), J. Wytsmanstraat 14, 1050 Brussels, Belgium
| | - Marc De Loose
- Institute for Agricultural and Fisheries Research (ILVO), Technology and Food Sciences Unit, Burg. Van Gansberghelaan 115, bus 1, 9820 Merelbeke, Belgium
| | - Tom Ruttink
- Institute for Agricultural and Fisheries Research (ILVO), Plant Sciences Unit, Caritasstraat 21, 9090 Melle, Belgium
| | - Philippe Herman
- Scientific Institute of Public Health (WIV-ISP), Biosafety and Biotechnology Unit (SBB), J. Wytsmanstraat 14, 1050 Brussels, Belgium
| | - Filip Van Nieuwerburgh
- University of Gent (UGent), Faculty of Pharmaceutical Sciences, Laboratory of Pharmaceutical Biotechnology, Harelbekestraat 72, 9000 Ghent, Belgium
| | - Nancy Roosens
- Scientific Institute of Public Health (WIV-ISP), Platform of Biotechnology and Molecular Biology (PBB), J. Wytsmanstraat 14, 1050 Brussels, Belgium.
| |
Collapse
|
15
|
Company N, Nadal A, Ruiz C, Pla M. Production of phytotoxic cationic α-helical antimicrobial peptides in plant cells using inducible promoters. PLoS One 2014; 9:e109990. [PMID: 25387106 PMCID: PMC4227650 DOI: 10.1371/journal.pone.0109990] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 09/14/2014] [Indexed: 12/27/2022] Open
Abstract
Synthetic linear antimicrobial peptides with cationic α-helical structures, such as BP100, have potent and specific activities against economically important plant pathogenic bacteria. They are also recognized as valuable therapeutics and preservatives. However, highly active BP100 derivatives are often phytotoxic when expressed at high levels as recombinant peptides in plants. Here we demonstrate that production of recombinant phytotoxic peptides in transgenic plants is possible by strictly limiting transgene expression to certain tissues and conditions, and specifically that minimization of this expression during transformation and regeneration of transgenic plants is essential to obtain viable plant biofactories. On the basis of whole-genome transcriptomic data available online, we identified the Os.hsp82 promoter that fulfilled this requirement and was highly induced in response to heat shock. Using this strategy, we generated transgenic rice lines producing moderate yields of severely phytotoxic BP100 derivatives on exposure to high temperature. In addition, a threshold for gene expression in selected tissues and stages was experimentally established, below which the corresponding promoters should be suitable for driving the expression of recombinant phytotoxic proteins in genetically modified plants. In view of the growing transcriptomics data available, this approach is of interest to assist promoter selection for specific purposes.
Collapse
Affiliation(s)
- Nuri Company
- Institute for Food and Agricultural Technology, University of Girona, Girona, Spain
| | - Anna Nadal
- Institute for Food and Agricultural Technology, University of Girona, Girona, Spain
| | - Cristina Ruiz
- Institute for Food and Agricultural Technology, University of Girona, Girona, Spain
| | - Maria Pla
- Institute for Food and Agricultural Technology, University of Girona, Girona, Spain
- * E-mail:
| |
Collapse
|
16
|
Fraiture MA, Herman P, Taverniers I, De Loose M, Van Nieuwerburgh F, Deforce D, Roosens NH. Validation of a sensitive DNA walking strategy to characterise unauthorised GMOs using model food matrices mimicking common rice products. Food Chem 2014; 173:1259-65. [PMID: 25466152 DOI: 10.1016/j.foodchem.2014.09.148] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 08/14/2014] [Accepted: 09/17/2014] [Indexed: 11/18/2022]
Abstract
To identify unauthorised GMOs in food and feed matrices, an integrated approach has recently been developed targeting pCAMBIA family vectors, highly present in transgenic plants. Their presence is first assessed by qPCR screening and is subsequently confirmed by characterising the transgene flanking regions, using DNA walking. Here, the DNA walking performance has been thoroughly tested for the first time, regarding the targeted DNA quality and quantity. Several assays, on model food matrices mimicking common rice products, have allowed to determine the limit of detection as well as the potential effects of food mixture and processing. This detection system allows the identification of transgenic insertions as low as 10 HGEs and was not affected by the presence of untargeted DNA. Moreover, despite the clear impact of food processing on DNA quality, this method was able to cope with degraded DNA. Given its specificity, sensitivity, reliability, applicability and practicability, the proposed approach is a key detection tool, easily implementable in enforcement laboratories.
Collapse
Affiliation(s)
- Marie-Alice Fraiture
- Scientific Institute of Public Health (WIV-ISP), Platform of Biotechnology and Molecular Biology (PBB) and Biosafety and Biotechnology Unit (SBB), J. Wytsmanstraat 14, 1050 Brussels, Belgium; Institute for Agricultural and Fisheries Research (ILVO), Technology and Food Sciences Unit, Burg. Van Gansberghelaan 115 Bus 1, 9820 Merelbeke, Belgium; University of Gent (UGent), Faculty of Pharmaceutical Sciences, Laboratory of Pharmaceutical Biotechnology, Harelbekestraat 72, 9000 Ghent, Belgium
| | - Philippe Herman
- Scientific Institute of Public Health (WIV-ISP), Platform of Biotechnology and Molecular Biology (PBB) and Biosafety and Biotechnology Unit (SBB), J. Wytsmanstraat 14, 1050 Brussels, Belgium
| | - Isabel Taverniers
- Institute for Agricultural and Fisheries Research (ILVO), Technology and Food Sciences Unit, Burg. Van Gansberghelaan 115 Bus 1, 9820 Merelbeke, Belgium
| | - Marc De Loose
- Institute for Agricultural and Fisheries Research (ILVO), Technology and Food Sciences Unit, Burg. Van Gansberghelaan 115 Bus 1, 9820 Merelbeke, Belgium; University of Gent (UGent), Faculty of Sciences, Department of Plant Biotechnology and Bioinformatics, Technologiepark 927, 9052 Ghent, Belgium
| | - Filip Van Nieuwerburgh
- University of Gent (UGent), Faculty of Pharmaceutical Sciences, Laboratory of Pharmaceutical Biotechnology, Harelbekestraat 72, 9000 Ghent, Belgium
| | - Dieter Deforce
- University of Gent (UGent), Faculty of Pharmaceutical Sciences, Laboratory of Pharmaceutical Biotechnology, Harelbekestraat 72, 9000 Ghent, Belgium
| | - Nancy H Roosens
- Scientific Institute of Public Health (WIV-ISP), Platform of Biotechnology and Molecular Biology (PBB) and Biosafety and Biotechnology Unit (SBB), J. Wytsmanstraat 14, 1050 Brussels, Belgium.
| |
Collapse
|
17
|
Joyce P, Hermann S, O'Connell A, Dinh Q, Shumbe L, Lakshmanan P. Field performance of transgenic sugarcane produced using Agrobacterium and biolistics methods. PLANT BIOTECHNOLOGY JOURNAL 2014; 12:411-24. [PMID: 24330327 DOI: 10.1111/pbi.12148] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 10/30/2013] [Accepted: 11/04/2013] [Indexed: 05/11/2023]
Abstract
Future genetic improvement of sugarcane depends, in part, on the ability to produce high-yielding transgenic cultivars with improved traits such as herbicide and insect resistance. Here, transgenic sugarcane plants generated by different transformation methods were assessed for field performance over 3 years. Agrobacterium-mediated (Agro) transgenic events (35) were produced using four different Agrobacterium tumefaciens strains, while biolistic (Biol) transgenic events (48) were produced using either minimal linearized DNA (LDNA) transgene cassettes with 5', 3' or blunt ends or whole circular plasmid (PDNA) vectors containing the same transgenes. A combined analysis showed a reduction in growth and cane yield in Biol, Agro as well as untransformed tissue culture (TC) events, compared with the parent clone (PC) Q117 (no transformation or tissue culture) in the plant, first ratoon and second ratoon crops. However, when individual events were analysed separately, yields of some transgenic events from both Agro and Biol were comparable to PC, suggesting that either transformation method can produce commercially suitable clones. Interestingly, a greater percentage of Biol transformants were similar to PC for growth and yield than Agro clones. Crop ratoonability and sugar yield components (Brix%, Pol%, and commercial cane sugar (CCS)) were unaffected by transformation or tissue culture. Transgene expression remained stable over different crop cycles and increased with plant maturity. Transgene copy number did not influence transgene expression, and both transformation methods produced low transgene copy number events. No consistent pattern of genetic changes was detected in the test population using three DNA fingerprinting techniques.
Collapse
Affiliation(s)
- Priya Joyce
- Sugar Research Australia, Brisbane, Qld, Australia
| | | | | | | | | | | |
Collapse
|
18
|
Wang Y, Zhang L, Li Y, Liu Y, Han L, Zhu Z, Wang F, Peng Y. Expression of Cry1Ab protein in a marker-free transgenic Bt rice line and its efficacy in controlling a target pest, Chilo suppressalis (Lepidoptera: Crambidae). ENVIRONMENTAL ENTOMOLOGY 2014; 43:528-536. [PMID: 24495566 DOI: 10.1603/en13254] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
A marker-free Bt transgenic rice line, mfb-MH86, was recently developed in China, which contains a cry1Ab gene driven by a ubiquitin promoter. This Bt gene confers resistance to a range of lepidopteran species, including the striped stem borer, Chilo suppressalis (Walker). The expression of Cry1Ab protein in mfb-MH86 leaves, stems and leaf sheaths (hereinafter referred to as stems), and roots was evaluated throughout the rice-growing season using an enzyme-linked immunosorbent assay. In addition, mfb-MH86 resistance to C. suppressalis, a major pest of rice, was evaluated in a laboratory bioassay with field-collected rice stems. Cry1Ab protein levels of mfb-MH86 were highest in leaves (9.71-34.09 μg/g dry weight [DW]), intermediate in stems (7.66-18.51 μg/g DW), and lowest in roots (1.95-13.40 μg/g DW). In all tissues, Cry1Ab levels in mfb-MH86 were higher in seedling and tillering stages than in subsequent growth stages. In the laboratory bioassay, mortality of C. suppressalis after 6 d of feeding on mfb-MH86 stems was 100% throughout the rice-growing season; mortality of C. suppressalis when feeding on stems of the nontransformed isoline, MH86, ranged from 15.0 to 38.3%. The results indicate that Cry1Ab protein levels in mfb-MH86 stems are sufficient to protect plants against C. suppressalis throughout the rice-growing season. Although our results are promising, further comprehensive evaluations of mfb-MH86, including field surveys, will be needed before commercial use.
Collapse
Affiliation(s)
- Yanan Wang
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Quilis J, López-García B, Meynard D, Guiderdoni E, San Segundo B. Inducible expression of a fusion gene encoding two proteinase inhibitors leads to insect and pathogen resistance in transgenic rice. PLANT BIOTECHNOLOGY JOURNAL 2014; 12:367-77. [PMID: 24237606 DOI: 10.1111/pbi.12143] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 09/10/2013] [Accepted: 10/14/2013] [Indexed: 05/06/2023]
Abstract
Plant proteinase inhibitors (PIs) are considered as candidates for increased insect resistance in transgenic plants. Insect adaptation to PI ingestion might, however, compromise the benefits received by transgenic expression of PIs. In this study, the maize proteinase inhibitor (MPI), an inhibitor of insect serine proteinases, and the potato carboxypeptidase inhibitor (PCI) were fused into a single open reading frame and introduced into rice plants. The two PIs were linked using either the processing site of the Bacillus thuringiensis Cry1B precursor protein or the 2A sequence from the foot-and-mouth disease virus (FMDV). Expression of each fusion gene was driven by the wound- and pathogen-inducible mpi promoter. The mpi-pci fusion gene was stably inherited for at least three generations with no penalty on plant phenotype. An important reduction in larval weight of Chilo suppressalis fed on mpi-pci rice, compared with larvae fed on wild-type plants, was observed. Expression of the mpi-pci fusion gene confers resistance to C. suppressalis (striped stem borer), one of the most important insect pest of rice. The mpi-pci expression systems described may represent a suitable strategy for insect pest control, better than strategies based on the use of single PI genes, by preventing insect adaptive responses. The rice plants expressing the mpi-pci fusion gene also showed enhanced resistance to infection by the fungus Magnaporthe oryzae, the causal agent of the rice blast disease. Our results illustrate the usefulness of the inducible expression of the mpi-pci fusion gene for dual resistance against insects and pathogens in rice plants.
Collapse
Affiliation(s)
- Jordi Quilis
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Edifici CRAG, Barcelona, Spain
| | | | | | | | | |
Collapse
|
20
|
Zhou J, Xiao K, Wei B, Wang Z, Tian Y, Tian Y, Song Q. Bioaccumulation of Cry1Ab protein from an herbivore reduces anti-oxidant enzyme activities in two spider species. PLoS One 2014; 9:e84724. [PMID: 24454741 PMCID: PMC3890278 DOI: 10.1371/journal.pone.0084724] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2013] [Accepted: 11/18/2013] [Indexed: 12/24/2022] Open
Abstract
Cry proteins are expressed in rice lines for lepidopteran pest control. These proteins can be transferred from transgenic rice plants to non-target arthropods, including planthoppers and then to a predatory spider. Movement of Cry proteins through food webs may reduce fitness of non-target arthropods, although recent publications indicated no serious changes in non-target populations. Nonetheless, Cry protein intoxication influences gene expression in Cry-sensitive insects. We posed the hypothesis that Cry protein intoxication influences enzyme activities in spiders acting in tri-trophic food webs. Here we report on the outcomes of experiments designed to test our hypothesis with two spider species. We demonstrated that the movement of CryAb protein from Drosophila culture medium into fruit flies maintained on the CryAb containing medium and from the flies to the spiders Ummeliata insecticeps and Pardosa pseudoannulata. We also show that the activities of three key metabolic enzymes, acetylcholine esterase (AchE), glutathione peroxidase (GSH-Px), and superoxide dismutase (SOD) were significantly influenced in the spiders after feeding on Cry1Ab-containing fruit flies. We infer from these data that Cry proteins originating in transgenic crops impacts non-target arthropods at the physiological and biochemical levels, which may be one mechanism of Cry protein-related reductions in fitness of non-target beneficial predators.
Collapse
Affiliation(s)
- Ji Zhou
- College of Bioscience & Biotechnology, Hunan Agriculture University, Changsha, China
| | - Kaifu Xiao
- College of Bioscience & Biotechnology, Hunan Agriculture University, Changsha, China
| | - Baoyang Wei
- College of Bioscience & Biotechnology, Hunan Agriculture University, Changsha, China
| | - Zhi Wang
- College of Bioscience & Biotechnology, Hunan Agriculture University, Changsha, China
- * E-mail: (ZW); (QSS)
| | - Yun Tian
- College of Bioscience & Biotechnology, Hunan Agriculture University, Changsha, China
| | - Yixing Tian
- College of Bioscience & Biotechnology, Hunan Agriculture University, Changsha, China
| | - Qisheng Song
- College of Bioscience & Biotechnology, Hunan Agriculture University, Changsha, China
- Division of Plant Sciences, University of Missouri, Columbia, Missouri, United States of America
- * E-mail: (ZW); (QSS)
| |
Collapse
|
21
|
Wang Y, Wei B, Tian Y, Wang Z, Tian Y, Tan S, Dong S, Song Q. Evaluation of the potential effect of transgenic rice expressing Cry1Ab on the hematology and enzyme activity in organs of female Swiss rats. PLoS One 2013; 8:e80424. [PMID: 24312218 PMCID: PMC3842383 DOI: 10.1371/journal.pone.0080424] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 10/03/2013] [Indexed: 12/28/2022] Open
Abstract
To assess the safety of transgenic rice expressing Cry1Ab protein to vertebrates, the effect of Cry1Ab rice on broad health indicators in blood and various organs of Swiss rats were analyzed. The 30 and 90 day safety studies of Cry1Ab rice on female Swiss rats revealed that Cry1Ab rice had no significant effect on the several elements of blood lymph including hemogram, calcium ion concentration and apoptosis rate of lymphocytes, indicating that Cry1Ab protein could not affect the blood lymph of Swiss rat. Similarly, Cry1Ab rice had no effect on enzyme activities in a variety of organs of Swiss rat. However, Cry1Ab rice did have significant effects on the blood biochemistry indexes including urea, triglyceride (TG), glutamic oxalacetic transaminase (AST) and alkaline phosphatase (ALP) after the rats were fed with Cry1Ab rice for 30 days, but not after 90 days, indicating that Cry1Ab protein may influence blood metabolism for a short duration. Quantitative real-time PCR (qPCR) analysis of the 6 genes encoding enzymes responsible for the major detoxification functions of liver revealed that Cry1Ab rice exerted no influences on the levels of these transcripts in liver of Swiss rat, indicating that significant differences registered in part of the blood biochemical parameters in the 30 day study might result from other untested organs or tissues in response to the stress of exogenous Cry1Ab protein. The results suggest that Cry1Ab protein has no significant long-term (90 day) effects on female Swiss rat.
Collapse
Affiliation(s)
- Yang Wang
- College of Bioscience and Biotechnology, Hunan Agriculture University, Changsha, China
| | - Baoyang Wei
- College of Bioscience and Biotechnology, Hunan Agriculture University, Changsha, China
| | - Yixing Tian
- College of Bioscience and Biotechnology, Hunan Agriculture University, Changsha, China
| | - Zhi Wang
- College of Bioscience and Biotechnology, Hunan Agriculture University, Changsha, China
- * E-mail: (ZW); (QS)
| | - Yun Tian
- College of Bioscience and Biotechnology, Hunan Agriculture University, Changsha, China
| | - Shuduan Tan
- College of Bioscience and Biotechnology, Hunan Agriculture University, Changsha, China
| | - Shengzhang Dong
- Division of Plant Sciences, University of Missouri, Columbia, Missouri, United States of America
| | - Qisheng Song
- College of Bioscience and Biotechnology, Hunan Agriculture University, Changsha, China
- Division of Plant Sciences, University of Missouri, Columbia, Missouri, United States of America
- * E-mail: (ZW); (QS)
| |
Collapse
|
22
|
Fraiture MA, Herman P, Taverniers I, De Loose M, Deforce D, Roosens NH. An innovative and integrated approach based on DNA walking to identify unauthorised GMOs. Food Chem 2013; 147:60-9. [PMID: 24206686 DOI: 10.1016/j.foodchem.2013.09.112] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 07/12/2013] [Accepted: 09/19/2013] [Indexed: 01/23/2023]
Abstract
In the coming years, the frequency of unauthorised genetically modified organisms (GMOs) being present in the European food and feed chain will increase significantly. Therefore, we have developed a strategy to identify unauthorised GMOs containing a pCAMBIA family vector, frequently present in transgenic plants. This integrated approach is performed in two successive steps on Bt rice grains. First, the potential presence of unauthorised GMOs is assessed by the qPCR SYBR®Green technology targeting the terminator 35S pCAMBIA element. Second, its presence is confirmed via the characterisation of the junction between the transgenic cassette and the rice genome. To this end, a DNA walking strategy is applied using a first reverse primer followed by two semi-nested PCR rounds using primers that are each time nested to the previous reverse primer. This approach allows to rapidly identify the transgene flanking region and can easily be implemented by the enforcement laboratories.
Collapse
Affiliation(s)
- Marie-Alice Fraiture
- Scientific Institute of Public Health (WIV-ISP), Platform of Biotechnology and Molecular Biology (PBB), J. Wytsmanstraat 14, 1050 Brussels, Belgium; Scientific Institute of Public Health (WIV-ISP), Biosafety and Biotechnology Unit (SBB), J. Wytsmanstraat 14, 1050 Brussels, Belgium; Institute for Agricultural and Fisheries Research (ILVO), Technology and Food Sciences Unit, Burg. Van Gansberghelaan 115, bus 1, 9820 Merelbeke, Belgium; University of Gent (UGent), Faculty of Pharmaceutical Sciences, Laboratory of Pharmaceutical Biotechnology, Harelbekestraat 72, 9000 Ghent, Belgium
| | | | | | | | | | | |
Collapse
|
23
|
Egelkrout E, Rajan V, Howard JA. Overproduction of recombinant proteins in plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2012; 184:83-101. [PMID: 22284713 DOI: 10.1016/j.plantsci.2011.12.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Revised: 12/06/2011] [Accepted: 12/09/2011] [Indexed: 05/21/2023]
Abstract
Recombinant protein production in microbial hosts and animal cell cultures has revolutionized the pharmaceutical and industrial enzyme industries. Plants as alternative hosts for the production of recombinant proteins are being actively pursued, taking advantage of their unique characteristics. The key to cost-efficient production in any system is the level of protein accumulation, which is inversely proportional to the cost. Levels of up to 5 g/kg biomass have been obtained in plants, making this production system competitive with microbial hosts. Increasing protein accumulation at the cellular level by varying host, germplasm, location of protein accumulation, and transformation procedure is reviewed. At the molecular level increased expression by improving transcription, translation and accumulation of the protein is critically evaluated. The greatest increases in protein accumulation will occur when various optimized parameters are more fully integrated with each other. Because of the complex nature of plants, this will take more time and effort to accomplish than has been the case for the simpler unicellular systems. However the potential for plants to become one of the major avenues for protein production appears very promising.
Collapse
Affiliation(s)
- Erin Egelkrout
- Applied Biotechnology Institute, Cal Poly Technology Park, Building 83, San Luis Obispo, CA 93407, USA
| | | | | |
Collapse
|
24
|
Xu X, Han Y, Wu G, Cai W, Yuan B, Wang H, Liu F, Wang M, Hua H. Field evaluation of effects of transgenic cry1Ab/cry1Ac, cry1C and cry2A rice on Cnaphalocrocis medinalis and its arthropod predators. SCIENCE CHINA-LIFE SCIENCES 2011; 54:1019-28. [PMID: 22173308 DOI: 10.1007/s11427-011-4234-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Accepted: 09/12/2011] [Indexed: 11/25/2022]
Abstract
The impacts of transgenic Bt rice on target pests and their predators need to be clarified prior to the commercialization of Bt rice. In this study, the percentages of folded leaves of three transgenic Bt rice lines and non-transgenic parental rice line caused by Cnaphalocrocis medinalis were studied over two successive growing seasons. In addition, the population densities, relative abundance and population dynamics of C. medinalis and four species of its natural arthropod predators were investigated at three sites in China. The results showed that rice line significantly affected the percentages of folded leaves and population densities of C. medinalis larvae. Significantly higher percentages of folded leaves were observed on the non-transgenic rice compared with the three transgenic Bt rice on most sampling dates. Significantly higher densities of C. medinalis larvae and higher relative abundance of C. medinalis within phytophages were found on non-transgenic rice compared with three transgenic Bt rice at different sites across the study period. The population dynamics of C. medinalis larvae were significantly affected by rice line, rice line×sampling date, rice line×year, rice line×sampling date×year. However, there was little, if any, significant difference in the relative abundance, population density and population dynamics of the four arthropod predators between the three Bt rice lines and non-transgenic rice. The results of this study indicate that the Bt toxin in transgenic Bt rice can effectively suppress the occurrence of C. medinalis, but has no significant effects on the occurrence of the four predatory arthropod species.
Collapse
Affiliation(s)
- XueLiang Xu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Chen Y, Tian JC, Wang W, Fang Q, Akhtar ZR, Peng YF, Cui H, Guo YY, Song QS, Ye GY. Bt rice expressing Cry1Ab does not stimulate an outbreak of its non-target herbivore, Nilaparvata lugens. Transgenic Res 2011; 21:279-91. [DOI: 10.1007/s11248-011-9530-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Accepted: 06/03/2011] [Indexed: 12/01/2022]
|
26
|
Tiwari S, Mishra DK, Chandrasekhar K, Singh PK, Tuli R. Expression of δ-endotoxin Cry1EC from an inducible promoter confers insect protection in peanut (Arachis hypogaea L.) plants. PEST MANAGEMENT SCIENCE 2011; 67:137-45. [PMID: 20981728 DOI: 10.1002/ps.2041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
BACKGROUND Spodoptera litura (F.) is a polyphagous foliage insect and a major pest on peanut (Arachis hypogaea L.). Constitutive expression of δ-endotoxin Cry1EC gives protection against S. litura, as reported earlier. In this study, insect bites and salicylic acid induced high-level expression of Cry1EC was achieved in peanut. In order to achieve this, the expression of pathogenesis responsive promoter PR-1a was enhanced by placing it downstream of the CaMV35S promoter in the pCAMBIA 1300 backbone. The resultant promoter CaMV35S(r)PR-1a expressed a high level of insecticidal δ-endotoxin Cry1EC. The Gus expression under the control of CaMV35S(r)PR-1a served as a convenient marker for evaluation of promoter response to different treatments. RESULTS Transgenic events that showed a very low level of uninduced expression and no expression in seeds were selected. The Cry1EC expression in leaves increased nearly eightfold in the selected event, following induction by salicylic acid. Both the salicylic-acid-treated and the S. litura-bitten leaves showed the highest expression after 2 days. Leaves from salicylic-acid-induced transgenic plants caused 100% mortality of S. litura at all stages of larval development. CONCLUSION The results suggest that high expression of inducible promoters provides a good strategy for the development of safer transgenic food and feed crops.
Collapse
Affiliation(s)
- Siddharth Tiwari
- National Agri-Food Biotechnology Institute, Department of Biotechnology, Govt of India, Mohali, Punjab, India
| | | | | | | | | |
Collapse
|
27
|
Chen Y, Tian JC, Shen ZC, Peng YF, Hu C, Guo YY, Ye GY. Transgenic rice plants expressing a fused protein of Cry1Ab/Vip3H has resistance to rice stem borers under laboratory and field conditions. JOURNAL OF ECONOMIC ENTOMOLOGY 2010; 103:1444-1453. [PMID: 20857760 DOI: 10.1603/ec10014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Six transgenic rice, Oryza sativa L., lines (G6H1, G6H2, G6H3, G6H4, G6H5, and G6H6) expressing a fused Cry1Ab/Vip3H protein, were evaluated for resistance against the Asiatic rice borer, Chilo suppressalis (Walker) (Lepidoptera: Crambidae), and the stem borer Sesamia inferens (Walker) (Lepidoptera: Noctuidae) in the laboratory and field. The bioassay results indicated that the mortality of Asiatic rice borer and S. inferens neonate larvae on six transgenic lines from seedling to filling stage was up to 100% at 168 h after infestation. The cumulative feeding area by Asiatic rice borer neonate larvae on all transgenic lines was significantly reduced compared with the untransformed parental 'Xiushui 110' rice. A 2-yr field evaluation showed that damage during the vegetative stage (deadheart) or during the reproductive stage (whitehead) caused by Asiatic rice borer and S. inferens for transgenic lines was much lower than the control. For three lines (G6H1, G6H2, and G6H6), no damage was found during the entire growing period. Estimation of fused Cry1Ab/Vip3H protein concentrations using PathoScreen kit for Bt-Cry1Ab/1Ac protein indicated that the expression levels of Cry1Ab protein both in main stems (within the average range of 0.006-0.073% of total soluble protein) and their flag leaves (within the average range of 0.001-0.038% of total soluble protein) were significantly different among six transgenic lines at different developmental stages. Both laboratory and field researches suggested that the transgenic rice lines have considerable potential for protecting rice from attack by both stem borers.
Collapse
Affiliation(s)
- Yang Chen
- State Key Laboratory of Rice Biology & Ministry of Agriculture, Institute of Insect Sciences, Zhejiang University, Hangzhou 310029, China
| | | | | | | | | | | | | |
Collapse
|
28
|
Akhtar ZR, Tian JC, Chen Y, Fang Q, Hu C, Chen M, Peng YF, Ye GY. Impacts of six bt rice lines on nontarget rice feeding thrips under laboratory and field conditions. ENVIRONMENTAL ENTOMOLOGY 2010; 39:715-26. [PMID: 20388307 DOI: 10.1603/en09095] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Nontarget impacts of six transgenic Bt rice lines (expressing the Cry1Ab or Cry1Ab/Cry1Ac protein) on the thrips, Stenchaetothrips biformis (Bagnall), attacking the rice seedling and tillering stages, were evaluated under laboratory and field conditions. Laboratory results showed relatively longer larval, pupal development and preoviposition durations of S. biformis. Although it had a shorter oviposition period, female adult longevity and less total laid eggs were found when fed on some tested Bt rice in comparison to non-Bt controls. S. biformis population dynamics in Bt and non-Bt plots were monitored using the plastic bag and beat plate methods. In the field, the temporal patterns of S. biformis population changes were similar between tested Bt rice lines and their respective control; however, the total number of S. biformis individuals collected from the Bt plots were significantly less or the same, varying from variety to variety, compared with those from the non-Bt plots. ELISA results showed that the Bt insecticidal protein could be transferred from Bt rice to the thrips, and the concentrations of the protein in rice leaves and thrips were not significantly correlated with some important biological parameters of the thrip. In addition, the potential effects of Bt rice on the abundance of S. biformis candidate predators are also discussed. In conclusion, our results show that the six Bt rice lines assessed may be less preferable host plants to S. biformis at the individual and population levels in comparison to the non-Bt rice plants.
Collapse
Affiliation(s)
- Z R Akhtar
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310029, China
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Zaidi MA, Ye G, Yao H, You TH, Loit E, Dean DH, Riazuddin S, Altosaar I. Transgenic rice plants expressing a modified cry1Ca1 gene are resistant to Spodoptera litura and Chilo suppressalis. Mol Biotechnol 2010; 43:232-42. [PMID: 19760523 DOI: 10.1007/s12033-009-9201-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Nucleotide sequence encoding the truncated insecticidal Cry1Ca1 protein from Bacillus thuringiensis was extensively modified based on the codon usage of rice genes. The overall G + C contents of the synthetic cry1Ca1 coding sequence were raised to 65% with an additional bias of enriching for G and C ending codons as preferred by monocots. The synthetic gene was introduced into the Chinese japonica variety, Xiushui 11, by Agrobacterium-mediated transformation. Transgenic rice plants harboring this gene were highly resistant to Chilo suppressalis and Spodoptera litura larvae as revealed by insect bioassays. High levels of Cry1Ca1 protein were obtained in the leaves of transgenic rice, which were effective in achieving 100% mortality of S. litura and C. suppressalis larvae. The levels of Cry1Ca1 expression in the leaves of these transgenic plants were up to 0.34% of the total soluble proteins. The larvae of C. suppressalis and S. litura could consume a maximum of 1.89 and 4.89 mm2 of transgenic leaf area whereas the consumption of nontransgenic leaves by these larvae was significantly higher; 58.33 and 61.22 mm2, respectively. Analysis of R1 transgenic plants indicated that the cry1Ca1 was inherited by the progeny plants and provided complete protection against C. suppressalis and S. litura larvae.
Collapse
Affiliation(s)
- Mohsin Abbas Zaidi
- Agricultural Biotechnology Laboratories, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Deka S, Barthakur S. Overview on current status of biotechnological interventions on yellow stem borer Scirpophaga incertulas (Lepidoptera: Crambidae) resistance in rice. Biotechnol Adv 2010; 28:70-81. [PMID: 19811767 DOI: 10.1016/j.biotechadv.2009.09.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2009] [Revised: 09/08/2009] [Accepted: 09/18/2009] [Indexed: 10/20/2022]
Abstract
Yellow stem borer (YSB), Scirpophaga incertulas (Lepidoptera: Crambidae), a monophagous pest of paddy is considered as most important pest of rain fed low land and flood prone rice eco-systems. Breeding of yellow stem borer resistance in rice is difficult owing to the complex genetics of the trait, inherent difficulties in screening and poor understanding of the genetics of resistance. On the other hand, a good level of resistance against the widespread yellow stem borer has been rare in the rice germplasm. Resistance to insects has been demonstrated in transgenic plants expressing genes for delta-endotoxins from Bacillus thuringiensis (Bt), protease inhibitors, enzymes and plant lectins. The performance of insect resistant GM rice in trials in China has been quite impressive. The present review is an attempt to assess the current state of development in biotechnological intervention for yellow stem borer resistance in rice.
Collapse
Affiliation(s)
- Sikha Deka
- Division of Environmental Sciences, Indian Agricultural Research Institute, Pusa, New Delhi, India
| | | |
Collapse
|
31
|
Gulbitti-Onarici S, Zaidi MA, Taga I, Ozcan S, Altosaar I. Expression of Cry1Ac in transgenic tobacco plants under the control of a wound-inducible promoter (AoPR1) isolated from Asparagus officinalis to control Heliothis virescens and Manduca sexta. Mol Biotechnol 2009; 42:341-9. [PMID: 19353306 DOI: 10.1007/s12033-009-9168-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2009] [Accepted: 03/16/2009] [Indexed: 10/20/2022]
Abstract
Expression of cry1Ac gene from Bacillus thuringiensis (Bt) was evaluated under the control of a wound-inducible AoPR1 promoter from Asparagus officinalis in transgenic tobacco plants. The leaves of transgenic plants were mechanically wounded to evaluate the activity of the AoPR1 promoter in driving the expression of Cry1Ac protein at the wound site. Our results indicate that mechanical wounding of transgenic plants was effective in inducing the expression of Cry1Ac protein. As a result of this induction, the accumulated levels of Cry1Ac protein increased during 6-72 h post-wounding period. The leaves of transgenic tobacco plants were evaluated for resistance against Heliothis virescens and Manduca sexta in insect bioassays in two different ways. The detached tobacco leaves were either fed directly to the insect larvae or they were first mechanically wounded followed by a 72 h post-wounding feeding period. Complete protection of mechanically wounded leaves of transgenic plants was observed within 24 h of the bioassay. The leaves of transgenic plants fed directly (without pre-wounding) to the larvae achieved the same level of protection between 24 and 72 h of the bioassay.
Collapse
Affiliation(s)
- Selma Gulbitti-Onarici
- Department of Biochemistry Microbiology & Immunology, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | | | | | | | | |
Collapse
|
32
|
Development of an event-specific Real-time PCR detection method for the transgenic Bt rice line KMD1. Eur Food Res Technol 2008. [DOI: 10.1007/s00217-008-0981-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
33
|
Han L, Wu K, Peng Y, Wang F, Guo Y. Efficacy of transgenic rice expressing Cry1Ac and CpTI against the rice leaffolder, Cnaphalocrocis medinalis (Guenée). J Invertebr Pathol 2007; 96:71-9. [PMID: 17445827 DOI: 10.1016/j.jip.2007.02.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Revised: 02/15/2007] [Accepted: 02/21/2007] [Indexed: 11/24/2022]
Abstract
Detached leaf bioassays, open field tests and cage tests were conducted to evaluate the control efficacy of two transgenic rice lines, expressing Cry1Ac and CpTI, against Cnaphalocrocis medinalis (Guenée) during 2005-2006 in Fuzhou, China. Bioassay results showed that cumulative feeding areas of C. medinalis on transgenic lines were significantly lower than that on control rice lines at different developmental stages. The corrected mortalities at 96 h after infestation on transgenic lines during six rice growth stages were >90% and 100% during experiments conducted in 2005 and 2006, respectively. In the open field test, there was no significant difference in egg density between transgenic and control lines during early days of infestation, but significant differences were detected in late season, due to serious damage on control lines. Larval densities on control lines were significantly higher than the low larval populations observed on transgenic lines during both seasons. The percentages of plants with folded leaves and percentages of folded leaves on transgenic lines were significantly lower than that on control lines with and without insecticide applications, during the entire season. In cage tests the cumulative numbers of C. medinalis adults derived from transgenic lines were significantly lower than that from control lines with and without insecticide treatments. The high level of efficacy of the two transgenic rice lines against C. medinalis may provide an important basis for reduced insecticide applications, an expansion of alternative pest-control strategies and insect resistance management of Bt rice in the future.
Collapse
Affiliation(s)
- Lanzhi Han
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100094, PR China
| | | | | | | | | |
Collapse
|
34
|
Shrawat AK, Lörz H. Agrobacterium-mediated transformation of cereals: a promising approach crossing barriers. PLANT BIOTECHNOLOGY JOURNAL 2006; 4:575-603. [PMID: 17309731 DOI: 10.1111/j.1467-7652.2006.00209.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Cereal crops have been the primary targets for improvement by genetic transformation because of their worldwide importance for human consumption. For a long time, many of these important cereals were difficult to genetically engineer, mainly as a result of their inherent limitations associated with the resistance to Agrobacterium infection and their recalcitrance to in vitro regeneration. The delivery of foreign genes to rice plants via Agrobacterium tumefaciens has now become a routine technique. However, there are still serious handicaps with Agrobacterium-mediated transformation of other major cereals. In this paper, we review the pioneering efforts, existing problems and future prospects of Agrobacterium-mediated genetic transformation of major cereal crops, such as rice, maize, wheat, barley, sorghum and sugarcane.
Collapse
Affiliation(s)
- Ashok Kumar Shrawat
- Centre for Applied Plant Molecular Biology (AMP II), University of Hamburg, Ohnhorststrasse 18, D-22609 Hamburg, Germany.
| | | |
Collapse
|
35
|
Bajaj S, Mohanty A. Recent advances in rice biotechnology--towards genetically superior transgenic rice. PLANT BIOTECHNOLOGY JOURNAL 2005; 3:275-307. [PMID: 17129312 DOI: 10.1111/j.1467-7652.2005.00130.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Rice biotechnology has made rapid advances since the first transgenic rice plants were produced 15 years ago. Over the past decade, this progress has resulted in the development of high frequency, routine and reproducible genetic transformation protocols for rice. This technology has been applied to produce rice plants that withstand several abiotic stresses, as well as to gain tolerance against various pests and diseases. In addition, quality improving and increased nutritional value traits have also been introduced into rice. Most of these gains were not possible through conventional breeding technologies. Transgenic rice system has been used to understand the process of transformation itself, the integration pattern of transgene as well as to modulate gene expression. Field trials of transgenic rice, especially insect-resistant rice, have recently been performed and several other studies that are prerequisite for safe release of transgenic crops have been initiated. New molecular improvisations such as inducible expression of transgene and selectable marker-free technology will help in producing superior transgenic product. It is also a step towards alleviating public concerns relating to issues of transgenic technology and to gain regulatory approval. Knowledge gained from rice can also be applied to improve other cereals. The completion of the rice genome sequencing together with a rich collection of full-length cDNA resources has opened up a plethora of opportunities, paving the way to integrate data from the large-scale projects to solve specific biological problems.
Collapse
Affiliation(s)
- Shavindra Bajaj
- Gene Technology, The Horticulture and Food Research Institute of New Zealand Limited (HortResearch) 120 Mt. Albert Road, Private Bag 92169, Auckland, New Zealand.
| | | |
Collapse
|