1
|
Yin Q, Li R, Ow DW. Split-Cre mediated deletion of DNA no longer needed after site-specific integration in rice. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:2333-2340. [PMID: 35596798 DOI: 10.1007/s00122-022-04115-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/25/2022] [Indexed: 06/15/2023]
Abstract
N-cre and C-cre added in separate lines reassemble functional Cre in F1 progeny to excise unnecessary DNA, including cre DNA, thereby eliminating generations needed to cross in and out cre. Crop improvement via transgenesis can benefit through efficient DNA integration strategies. As new traits are developed, new transgenes can be stacked by in planta site-specific integration near previous transgenes, thereby facilitating their introgression to field cultivars as a single segregation locus. However, as each round of integration often requires use of selectable markers, it is more convenient to reuse the selection scheme. The Cre recombinase can be used to delete away previously used selection genes, and other DNA no longer needed after transformation, but the constitutive production of this DNA scanning protein can also affect plant growth. We had previously described in Arabidopsis a split Cre protein fragment complement scheme to reassemble a functional Cre recombinase. As our goal for developing this system was to deploy its use in major crop plants, here we show that Cre protein fragment complementation works in rice with precise recombination structures confirmed by DNA sequencing. As each N-terminal and C-terminal fragment is also flanked by lox recombination sites, they can also self-excise to avoid the need to segregate away the cre DNA. Options to form F1 hybrids homozygous for one transgene, or hemizygous for two different transgenes at the same chromosome location, are discussed.
Collapse
Affiliation(s)
- Qian Yin
- Plant Gene Engineering Center, Chinese Academy of Sciences Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ruyu Li
- Plant Gene Engineering Center, Chinese Academy of Sciences Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.
| | - David W Ow
- Plant Gene Engineering Center, Chinese Academy of Sciences Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.
| |
Collapse
|
2
|
Singh R, Kaur N, Praba UP, Kaur G, Tanin MJ, Kumar P, Neelam K, Sandhu JS, Vikal Y. A Prospective Review on Selectable Marker-Free Genome Engineered Rice: Past, Present and Future Scientific Realm. Front Genet 2022; 13:882836. [PMID: 35754795 PMCID: PMC9219106 DOI: 10.3389/fgene.2022.882836] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/29/2022] [Indexed: 11/13/2022] Open
Abstract
As a staple food crop, rice has gained mainstream attention in genome engineering for its genetic improvement. Genome engineering technologies such as transgenic and genome editing have enabled the significant improvement of target traits in relation to various biotic and abiotic aspects as well as nutrition, for which genetic diversity is lacking. In comparison to conventional breeding, genome engineering techniques are more precise and less time-consuming. However, one of the major issues with biotech rice commercialization is the utilization of selectable marker genes (SMGs) in the vector construct, which when incorporated into the genome are considered to pose risks to human health, the environment, and biodiversity, and thus become a matter of regulation. Various conventional strategies (co-transformation, transposon, recombinase systems, and MAT-vector) have been used in rice to avoid or remove the SMG from the developed events. However, the major limitations of these methods are; time-consuming, leftover cryptic sequences in the genome, and there is variable frequency. In contrast to these methods, CRISPR/Cas9-based marker excision, marker-free targeted gene insertion, programmed self-elimination, and RNP-based delivery enable us to generate marker-free engineered rice plants precisely and in less time. Although the CRISPR/Cas9-based SMG-free approaches are in their early stages, further research and their utilization in rice could help to break the regulatory barrier in its commercialization. In the current review, we have discussed the limitations of traditional methods followed by advanced techniques. We have also proposed a hypothesis, “DNA-free marker-less transformation” to overcome the regulatory barriers posed by SMGs.
Collapse
Affiliation(s)
- Rajveer Singh
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| | - Navneet Kaur
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| | - Umesh Preethi Praba
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| | - Gurwinder Kaur
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| | - Mohammad Jafar Tanin
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Pankaj Kumar
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| | - Kumari Neelam
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| | - Jagdeep Singh Sandhu
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| | - Yogesh Vikal
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| |
Collapse
|
3
|
Sharma A, Chouhan A, Bhatt T, Kaur A, Minhas AP. Selectable Markers to Marker-Free Selection in Rice. Mol Biotechnol 2022; 64:841-851. [DOI: 10.1007/s12033-022-00460-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 02/03/2022] [Indexed: 10/19/2022]
|
4
|
FLP-Mediated Site-Specific Gene Integration in Rice. Methods Mol Biol 2021. [PMID: 33471335 DOI: 10.1007/978-1-0716-1068-8_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Enabling precise gene integration is important for installing traits in the plants. One of the practical methods of achieving precise gene integration is by using the yeast FLP-FRT recombination system that is efficient in directing DNA integration into the "engineered" genomic sites. The critical parameters of this method include the use of the thermostable version of FLP protein and the promoter trap design to select site-specific integration clones. The resulting transgenic plants display stable expression that is transmitted to the progeny. Therefore, FLP-mediated site-specific integration method could be used for trait engineering in the crop plants or testing gene functions in the model plants.
Collapse
|
5
|
Encapsulation-based a novel antibiotic selection technique for Agrobacterium-mediated genetic transformation of Dendrobium Broga Giant orchid. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
6
|
Dalla Costa L, Piazza S, Pompili V, Salvagnin U, Cestaro A, Moffa L, Vittani L, Moser C, Malnoy M. Strategies to produce T-DNA free CRISPRed fruit trees via Agrobacterium tumefaciens stable gene transfer. Sci Rep 2020; 10:20155. [PMID: 33214661 PMCID: PMC7678832 DOI: 10.1038/s41598-020-77110-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 11/02/2020] [Indexed: 12/31/2022] Open
Abstract
Genome editing via CRISPR/Cas9 is a powerful technology, which has been widely applied to improve traits in cereals, vegetables and even fruit trees. For the delivery of CRISPR/Cas9 components into dicotyledonous plants, Agrobacterium tumefaciens mediated gene transfer is still the prevalent method, although editing is often accompanied by the integration of the bacterial T-DNA into the host genome. We assessed two approaches in order to achieve T-DNA excision from the plant genome, minimizing the extent of foreign DNA left behind. The first is based on the Flp/FRT system and the second on Cas9 and synthetic cleavage target sites (CTS) close to T-DNA borders, which are recognized by the sgRNA. Several grapevine and apple lines, transformed with a panel of CRISPR/SpCas9 binary vectors, were regenerated and characterized for T-DNA copy number and for the rate of targeted editing. As detected by an optimized NGS-based sequencing method, trimming at T-DNA borders occurred in 100% of the lines, impairing in most cases the excision. Another observation was the leakage activity of Cas9 which produced pierced and therefore non-functional CTS. Deletions of genomic DNA and presence of filler DNA were also noticed at the junctions between T-DNA and genomic DNA. This study proved that many factors must be considered for designing efficient binary vectors capable of minimizing the presence of exogenous DNA in CRISPRed fruit trees.
Collapse
Affiliation(s)
- Lorenza Dalla Costa
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38098, San Michele all'Adige, Italy.
| | - Stefano Piazza
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38098, San Michele all'Adige, Italy
| | - Valerio Pompili
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38098, San Michele all'Adige, Italy
| | - Umberto Salvagnin
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38098, San Michele all'Adige, Italy
| | - Alessandro Cestaro
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38098, San Michele all'Adige, Italy
| | - Loredana Moffa
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38098, San Michele all'Adige, Italy
| | - Lorenzo Vittani
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38098, San Michele all'Adige, Italy
| | - Claudio Moser
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38098, San Michele all'Adige, Italy
| | - Mickael Malnoy
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38098, San Michele all'Adige, Italy
| |
Collapse
|
7
|
Pathak B, Srivastava V. Recombinase-mediated integration of a multigene cassette in rice leads to stable expression and inheritance of the stacked locus. PLANT DIRECT 2020; 4:e00236. [PMID: 32760877 PMCID: PMC7391932 DOI: 10.1002/pld3.236] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/27/2020] [Accepted: 06/05/2020] [Indexed: 05/03/2023]
Abstract
Efficient methods for multigene transformation are important for developing novel crop varieties. Methods based on random integrations of multiple genes have been successfully used for metabolic engineering in plants. However, efficiency of co-integration and co-expression of the genes could present a bottleneck. Recombinase-mediated integration into the engineered target sites is arguably a more efficient method of targeted integration that leads to the generation of stable transgenic lines at a high rate. This method has the potential to streamline multigene transformation for metabolic engineering and trait stacking in plants. Therefore, empirical testing of transgene(s) stability from the multigene site-specific integration locus is needed. Here, the recombinase technology based on Cre-lox recombination was evaluated for developing multigenic lines harboring constitutively-expressed and inducible genes. Targeted integration of a five genes cassette in the rice genome generated a precise full-length integration of the cassette at a high rate, and the resulting multigenic lines expressed each gene reliably as defined by their promoter activity. The stable constitutive or inducible expression was faithfully transmitted to the progeny, indicating inheritance-stability of the multigene locus. Co-localization of two distinctly inducible genes by heat or cold with the strongly constitutive genes did not appear to interfere with each other's expression pattern. In summary, high rate of co-integration and co-expression of the multigene cassette installed by the recombinase technology in rice shows that this approach is appropriate for multigene transformation and introduction of co-segregating traits. SIGNIFICANCE STATEMENT Recombinase-mediated site-specific integration approach was found to be highly efficacious in multigene transformation of rice showing proper regulation of each gene driven by constitutive or inducible promoter. This approach holds promise for streamlining gene stacking in crops and expressing complex multigenic traits.
Collapse
Affiliation(s)
- Bhuvan Pathak
- Department of Crop, Soil & Environmental SciencesUniversity of ArkansasFayettevilleARUSA
- Cell and Molecular Biology ProgramUniversity of ArkansasFayettevilleARUSA
| | - Vibha Srivastava
- Department of Crop, Soil & Environmental SciencesUniversity of ArkansasFayettevilleARUSA
- Cell and Molecular Biology ProgramUniversity of ArkansasFayettevilleARUSA
- Department of HorticultureUniversity of ArkansasFayettevilleARUSA
| |
Collapse
|
8
|
Anand A, Wu E, Li Z, TeRonde S, Arling M, Lenderts B, Mutti JS, Gordon‐Kamm W, Jones TJ, Chilcoat ND. High efficiency Agrobacterium-mediated site-specific gene integration in maize utilizing the FLP-FRT recombination system. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:1636-1645. [PMID: 30706638 PMCID: PMC6662307 DOI: 10.1111/pbi.13089] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 01/23/2019] [Accepted: 01/27/2019] [Indexed: 05/20/2023]
Abstract
An efficient Agrobacterium-mediated site-specific integration (SSI) technology using the flipase/flipase recognition target (FLP/FRT) system in elite maize inbred lines is described. The system allows precise integration of a single copy of a donor DNA flanked by heterologous FRT sites into a predefined recombinant target line (RTL) containing the corresponding heterologous FRT sites. A promoter-trap system consisting of a pre-integrated promoter followed by an FRT site enables efficient selection of events. The efficiency of this system is dependent on several factors including Agrobacterium tumefaciens strain, expression of morphogenic genes Babyboom (Bbm) and Wuschel2 (Wus2) and choice of heterologous FRT pairs. Of the Agrobacterium strains tested, strain AGL1 resulted in higher transformation frequency than strain LBA4404 THY- (0.27% vs. 0.05%; per cent of infected embryos producing events). The addition of morphogenic genes increased transformation frequency (2.65% in AGL1; 0.65% in LBA4404 THY-). Following further optimization, including the choice of FRT pairs, a method was developed that achieved 19%-22.5% transformation frequency. Importantly, >50% of T0 transformants contain the desired full-length site-specific insertion. The frequencies reported here establish a new benchmark for generating targeted quality events compatible with commercial product development.
Collapse
Affiliation(s)
- Ajith Anand
- Agricultural Division of Dow DuPontCorteva Agriscience™JohnstonIAUSA
| | - Emily Wu
- Agricultural Division of Dow DuPontCorteva Agriscience™JohnstonIAUSA
| | - Zhi Li
- Agricultural Division of Dow DuPontCorteva Agriscience™JohnstonIAUSA
| | - Sue TeRonde
- Agricultural Division of Dow DuPontCorteva Agriscience™JohnstonIAUSA
| | - Maren Arling
- Agricultural Division of Dow DuPontCorteva Agriscience™JohnstonIAUSA
| | - Brian Lenderts
- Agricultural Division of Dow DuPontCorteva Agriscience™JohnstonIAUSA
| | - Jasdeep S. Mutti
- Agricultural Division of Dow DuPontCorteva Agriscience™JohnstonIAUSA
| | | | - Todd J. Jones
- Agricultural Division of Dow DuPontCorteva Agriscience™JohnstonIAUSA
| | | |
Collapse
|
9
|
Du D, Jin R, Guo J, Zhang F. Construction of Marker-Free Genetically Modified Maize Using a Heat-Inducible Auto-Excision Vector. Genes (Basel) 2019; 10:genes10050374. [PMID: 31108922 PMCID: PMC6562874 DOI: 10.3390/genes10050374] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/10/2019] [Accepted: 05/13/2019] [Indexed: 11/30/2022] Open
Abstract
Gene modification is a promising tool for plant breeding, and gradual application from the laboratory to the field. Selectable marker genes (SMG) are required in the transformation process to simplify the identification of transgenic plants; however, it is more desirable to obtain transgenic plants without selection markers. Transgene integration mediated by site-specific recombination (SSR) systems into the dedicated genomic sites has been demonstrated in a few different plant species. Here, we present an auto-elimination vector system that uses a heat-inducible Cre to eliminate the selectable marker from transgenic maize, without the need for repeated transformation or sexual crossing. The vector combines an inducible site-specific recombinase (hsp70::Cre) that allows for the precise elimination of the selectable marker gene egfp upon heating. This marker gene is used for the initial positive selection of transgenic tissue. The egfp also functions as a visual marker to demonstrate the effectiveness of the heat-inducible Cre. A second marker gene for anthocyanin pigmentation (Rsc) is located outside of the region eliminated by Cre and is used for the identification of transgenic offspring in future generations. Using the heat-inducible auto-excision vector, marker-free transgenic maize plants were obtained in a precisely controlled genetic modification process. Genetic and molecular analyses indicated that the inducible auto-excision system was tightly controlled, with highly efficient DNA excision, and provided a highly reliable method to generate marker-free transgenic maize.
Collapse
Affiliation(s)
- Dengxiang Du
- National Key Laboratory of Crop Genetic Improvement and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Ruchang Jin
- National Key Laboratory of Crop Genetic Improvement and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Jinjie Guo
- National Key Laboratory of Crop Genetic Improvement and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Fangdong Zhang
- National Key Laboratory of Crop Genetic Improvement and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
10
|
Nandy S, Pathak B, Zhao S, Srivastava V. Heat-shock-inducible CRISPR/Cas9 system generates heritable mutations in rice. PLANT DIRECT 2019; 3:e00145. [PMID: 31404128 PMCID: PMC6603394 DOI: 10.1002/pld3.145] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 05/08/2019] [Accepted: 05/13/2019] [Indexed: 05/22/2023]
Abstract
Transient expression of CRISPR/Cas9 is an effective approach for limiting its activities and improving its precision in genome editing. Here, we describe the heat-shock-inducible CRISPR/Cas9 for controlled genome editing, and demonstrate its efficiency in the model crop, rice. Using the soybean heat-shock protein gene promoter and the rice U3 promoter to express Cas9 and sgRNA, respectively, we developed the heat-shock (HS)-inducible CRISPR/Cas9 system, and tested its efficacy in targeted mutagenesis. Two loci were targeted in rice, and the presence of targeted mutations was determined before and after the HS treatment. Only a low rate of targeted mutagenesis was detected before HS (~16%), but an increased rate of mutagenesis was observed after the HS treatment among the transgenic lines (50-63%). Analysis of regenerated plants harboring HS-CRISPR/Cas9 revealed that targeted mutagenesis was suppressed in the plants but induced by HS, which was detectable by Sanger sequencing after a few weeks of HS treatments. Most importantly, the HS-induced mutations were transmitted to the progeny at a high rate, generating monoallelic and biallelic mutations that independently segregated from the Cas9 gene. Additionally, off-target mutations were either undetectable or found at a lower rate in HS-CRISPR/Cas9 lines as compared to the constitutive-overexpression CRISPR/Cas9 lines. Taken together, this work shows that HS-CRISPR/Cas9 is a controlled and reasonably efficient platform for genome editing, and therefore, a promising tool for limiting genome-wide off-target effects and improving the precision of genome editing.
Collapse
Affiliation(s)
- Soumen Nandy
- Department of Crop, Soil & Environmental Sciences University of Arkansas Fayetteville Arkansas
| | - Bhuvan Pathak
- Department of Crop, Soil & Environmental Sciences University of Arkansas Fayetteville Arkansas
- Cell and Molecular Biology Program University of Arkansas Fayetteville Arkansas
| | - Shan Zhao
- Department of Crop, Soil & Environmental Sciences University of Arkansas Fayetteville Arkansas
| | - Vibha Srivastava
- Department of Crop, Soil & Environmental Sciences University of Arkansas Fayetteville Arkansas
- Cell and Molecular Biology Program University of Arkansas Fayetteville Arkansas
- Department of Horticulture University of Arkansas Fayetteville Arkansas
| |
Collapse
|
11
|
Dual-targeting by CRISPR/Cas9 leads to efficient point mutagenesis but only rare targeted deletions in the rice genome. 3 Biotech 2019; 9:158. [PMID: 30944805 PMCID: PMC6439133 DOI: 10.1007/s13205-019-1690-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 03/20/2019] [Indexed: 11/05/2022] Open
Abstract
The present study investigated the efficiency of CRISPR/Cas9 in creating genomic deletions as the basis of its application in removing selection marker genes or the intergenic regions. Three loci, representing a transgene and two rice genes, were targeted at two sites each, in separate experiments, and the deletion of the defined fragments was investigated by PCR and sequencing. Genomic deletions were found at a low rate among the transformed callus lines that could be isolated, cultured, and regenerated into plants harboring the deletion. However, randomly regenerated plants showed mixed genomic effects, and generally did not harbor heritable genomic deletions. To determine whether point mutations occurred at each targeted site, a total of 114 plants consisting of primary transgenic lines and their progeny were analyzed. Ninety-three plants showed targeting, 60 of which were targeted at both sites. The presence of point mutations at both sites was correlated with the guide RNA efficiency. In summary, genomic deletions through dual-targeting by the paired-guide RNAs were generally observed in callus, while de novo point mutations at one or both sites occurred at high rates in transgenic plants and their progeny, generating a variety of insertion–deletions or single-nucleotide variations. In this study, point mutations were exceedingly favored over genomic deletions; therefore, for the recovery of plant lines harboring targeted deletions, identifying early transformed clones harboring the deletions, and isolating them for plant regeneration is recommended.
Collapse
|
12
|
Srivastava V. Gene Stacking in Plants Through the Application of Site-Specific Recombination and Nuclease Activity. Methods Mol Biol 2019; 1864:267-277. [PMID: 30415342 DOI: 10.1007/978-1-4939-8778-8_18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Biotechnology methods for inserting genes one by one or as a block of fragment into plant genomes are needed to introduce valuable traits into crop varieties. Insertion of multiple genes into a single site, called as molecular stacking, is important to allow co-inheritance of the genes into the progeny. Generally, two approaches are available for creating gene stacks: nuclease-induced targeted gene integration into native sites and recombinase-mediated gene integration into the engineered sites. The recombinase application is attractive as several recombinases show high efficiency and precision in plant genomes. This chapter describes a gene stacking method based on the use of Cre-lox site-specific recombination system to integrate genes into the engineered sites and nucleases to delete selection genes leading to stacking of traits into a single genomic site. High efficiency and precision, and undetectable off-target effects of Cre-lox in a number of plant species, make it an attractive tool for complex applications such as gene stacking.
Collapse
Affiliation(s)
- Vibha Srivastava
- Department of Crop, Soil & Environmental Sciences, University of Arkansas, Fayetteville, AR, USA. .,Department of Horticulture, University of Arkansas, Fayetteville, AR, USA.
| |
Collapse
|
13
|
Chen Z, Cheng Q, Hu C, Guo X, Chen Z, Lin Y, Hu T, Bellizzi M, Lu G, Wang GL, Wang Z, Chen S, Wang F. A Chemical-Induced, Seed-Soaking Activation Procedure for Regulated Gene Expression in Rice. FRONTIERS IN PLANT SCIENCE 2017; 8:1447. [PMID: 28871269 PMCID: PMC5566991 DOI: 10.3389/fpls.2017.01447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 08/03/2017] [Indexed: 06/07/2023]
Abstract
Inducible gene expression has emerged as a powerful tool for plant functional genomics. The estrogen receptor-based, chemical-inducible system XVE has been used in many plant species, but the limited systemic movement of inducer β-estradiol in transgenic rice plants has prohibited a wide use of the XVE system in this important food crop. Here, we constructed an improved chemical-regulated, site-specific recombination system by employing the XVE transactivator in combination with a Cre/loxP-FRT system, and optimized a seed-soaking procedure for XVE induction in rice. By using a gus gene and an hpRNAi cassette targeted for OsPDS as reporters, we demonstrated that soaking transgenic seeds with estradiol solution could induce highly efficient site-specific recombination in germinating embryos, resulting in constitutive and high-level expression of target gene or RNAi cassette in intact rice plants from induced seeds. The strategy reported here thereby provides a useful gene activation approach for effectively regulating gene expression in rice.
Collapse
Affiliation(s)
- Zaijie Chen
- Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry UniversityFuzhou, China
- Biotechnology Research Institute, Fujian Academy of Agricultural SciencesFuzhou, China
| | - Qianqian Cheng
- Biotechnology Research Institute, Fujian Academy of Agricultural SciencesFuzhou, China
| | - Chanquan Hu
- Biotechnology Research Institute, Fujian Academy of Agricultural SciencesFuzhou, China
| | - Xinrui Guo
- Biotechnology Research Institute, Fujian Academy of Agricultural SciencesFuzhou, China
| | - Ziqiang Chen
- Biotechnology Research Institute, Fujian Academy of Agricultural SciencesFuzhou, China
| | - Yan Lin
- Biotechnology Research Institute, Fujian Academy of Agricultural SciencesFuzhou, China
| | - Taijiao Hu
- Biotechnology Research Institute, Fujian Academy of Agricultural SciencesFuzhou, China
| | - Maria Bellizzi
- Department of Plant Pathology, The Ohio State University, ColumbusOH, United States
| | - Guodong Lu
- Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Guo-Liang Wang
- Department of Plant Pathology, The Ohio State University, ColumbusOH, United States
| | - Zonghua Wang
- Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Songbiao Chen
- Biotechnology Research Institute, Fujian Academy of Agricultural SciencesFuzhou, China
| | - Feng Wang
- Biotechnology Research Institute, Fujian Academy of Agricultural SciencesFuzhou, China
| |
Collapse
|
14
|
Cardi T, Neal Stewart C. Progress of targeted genome modification approaches in higher plants. PLANT CELL REPORTS 2016; 35:1401-16. [PMID: 27025856 DOI: 10.1007/s00299-016-1975-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 03/21/2016] [Indexed: 05/07/2023]
Abstract
Transgene integration in plants is based on illegitimate recombination between non-homologous sequences. The low control of integration site and number of (trans/cis)gene copies might have negative consequences on the expression of transferred genes and their insertion within endogenous coding sequences. The first experiments conducted to use precise homologous recombination for gene integration commenced soon after the first demonstration that transgenic plants could be produced. Modern transgene targeting categories used in plant biology are: (a) homologous recombination-dependent gene targeting; (b) recombinase-mediated site-specific gene integration; (c) oligonucleotide-directed mutagenesis; (d) nuclease-mediated site-specific genome modifications. New tools enable precise gene replacement or stacking with exogenous sequences and targeted mutagenesis of endogeneous sequences. The possibility to engineer chimeric designer nucleases, which are able to target virtually any genomic site, and use them for inducing double-strand breaks in host DNA create new opportunities for both applied plant breeding and functional genomics. CRISPR is the most recent technology available for precise genome editing. Its rapid adoption in biological research is based on its inherent simplicity and efficacy. Its utilization, however, depends on available sequence information, especially for genome-wide analysis. We will review the approaches used for genome modification, specifically those for affecting gene integration and modification in higher plants. For each approach, the advantages and limitations will be noted. We also will speculate on how their actual commercial development and implementation in plant breeding will be affected by governmental regulations.
Collapse
Affiliation(s)
- Teodoro Cardi
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria (CREA), Centro di Ricerca per l'Orticoltura, Via Cavalleggeri 25, 84098, Pontecagnano, Italy.
| | - C Neal Stewart
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996, USA
| |
Collapse
|
15
|
Liu D, Hu R, Palla KJ, Tuskan GA, Yang X. Advances and perspectives on the use of CRISPR/Cas9 systems in plant genomics research. CURRENT OPINION IN PLANT BIOLOGY 2016; 30:70-7. [PMID: 26896588 DOI: 10.1016/j.pbi.2016.01.007] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 01/22/2016] [Accepted: 01/27/2016] [Indexed: 05/18/2023]
Abstract
Genome editing with site-specific nucleases has become a powerful tool for functional characterization of plant genes and genetic improvement of agricultural crops. Among the various site-specific nuclease-based technologies available for genome editing, the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9) systems have shown the greatest potential for rapid and efficient editing of genomes in plant species. This article reviews the current status of application of CRISPR/Cas9 to plant genomics research, with a focus on loss-of-function and gain-of-function analysis of individual genes in the context of perennial plants and the potential application of CRISPR/Cas9 to perturbation of gene expression, and identification and analysis of gene modules as part of an accelerated domestication and synthetic biology effort.
Collapse
Affiliation(s)
- Degao Liu
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6422, USA
| | - Rongbin Hu
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6422, USA
| | - Kaitlin J Palla
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6422, USA
| | - Gerald A Tuskan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6422, USA
| | - Xiaohan Yang
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6422, USA.
| |
Collapse
|
16
|
Srivastava V, Thomson J. Gene stacking by recombinases. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:471-82. [PMID: 26332944 PMCID: PMC11389045 DOI: 10.1111/pbi.12459] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 07/24/2015] [Accepted: 07/28/2015] [Indexed: 05/09/2023]
Abstract
Efficient methods of stacking genes into plant genomes are needed to expedite transfer of multigenic traits to crop varieties of diverse ecosystems. Over two decades of research has identified several DNA recombinases that carryout efficient cis and trans recombination between the recombination sites artificially introduced into the plant chromosome. The specificity and efficiency of recombinases make them extremely attractive for genome engineering. In plant biotechnology, recombinases have mostly been used for removing selectable marker genes and have rarely been extended to more complex applications. The reversibility of recombination, a property of the tyrosine family of recombinases, does not lend itself to gene stacking approaches that involve rounds of transformation for integrating genes into the engineered sites. However, recent developments in the field of recombinases have overcome these challenges and paved the way for gene stacking. Some of the key advancements include the application of unidirectional recombination systems, modification of recombination sites and transgene site modifications to allow repeated site-specific integrations into the selected site. Gene stacking is relevant to agriculturally important crops, many of which are difficult to transform; therefore, development of high-efficiency gene stacking systems will be important for its application on agronomically important crops, and their elite varieties. Recombinases, by virtue of their specificity and efficiency in plant cells, emerge as powerful tools for a variety of applications including gene stacking.
Collapse
Affiliation(s)
- Vibha Srivastava
- Department of Crop, Soil & Environmental Science, University of Arkansas, Fayetteville, AR, USA
| | | |
Collapse
|
17
|
Nandy S, Zhao S, Pathak BP, Manoharan M, Srivastava V. Gene stacking in plant cell using recombinases for gene integration and nucleases for marker gene deletion. BMC Biotechnol 2015; 15:93. [PMID: 26452472 PMCID: PMC4600305 DOI: 10.1186/s12896-015-0212-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 10/01/2015] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Practical approaches for multigene transformation and gene stacking are extremely important for engineering complex traits and adding new traits in transgenic crops. Trait deployment by gene stacking would greatly simplify downstream plant breeding and trait introgression into cultivars. Gene stacking into pre-determined genomic sites depends on mechanisms of targeted DNA integration and recycling of selectable marker genes. Targeted integrations into chromosomal breaks, created by nucleases, require large transformation efforts. Recombinases such as Cre-lox, on the other hand, efficiently drive site-specific integrations in plants. However, the reversibility of Cre-lox recombination, due to the incorporation of two cis-positioned lox sites, presents a major bottleneck in its application in gene stacking. Here, we describe a strategy of resolving this bottleneck through excision of one of the cis-positioned lox, embedded in the marker gene, by nuclease activity. METHODS All transgenic lines were developed by particle bombardment of rice callus with plasmid constructs. Standard molecular approach was used for building the constructs. Transgene loci were analyzed by PCR, Southern hybridization, and DNA sequencing. RESULTS We developed a highly efficient gene stacking method by utilizing powerful recombinases such as Cre-lox and FLP-FRT, for site-specific gene integrations, and nucleases for marker gene excisions. We generated Cre-mediated site-specific integration locus in rice and showed excision of marker gene by I-SceI at ~20 % efficiency, seamlessly connecting genes in the locus. Next, we showed ZFN could be used for marker excision, and the locus can be targeted again by recombinases. Hence, we extended the power of recombinases to gene stacking application in plants. Finally, we show that heat-inducible I-SceI is also suitable for marker excision, and therefore could serve as an important tool in streamlining this gene stacking platform. CONCLUSIONS A practical approach for gene stacking in plant cell was developed that allows targeted gene insertions through rounds of transformation, a method needed for introducing new traits into transgenic lines for their rapid deployment in the field. By using Cre-lox, a powerful site-specific recombination system, this method greatly improves gene stacking efficiency, and through the application of nucleases develops marker-free, seamless stack of genes at pre-determined chromosomal sites.
Collapse
Affiliation(s)
- Soumen Nandy
- Department of Crop, Soil & Environmental Science, 115 Plant Science Building, University of Arkansas, Fayetteville, AR, 72701, USA.
| | - Shan Zhao
- Department of Crop, Soil & Environmental Science, 115 Plant Science Building, University of Arkansas, Fayetteville, AR, 72701, USA.
| | - Bhuvan P Pathak
- Department of Crop, Soil & Environmental Science, 115 Plant Science Building, University of Arkansas, Fayetteville, AR, 72701, USA.
| | - Muthusamy Manoharan
- Department of Agriculture, 144 Woodard Hall, University of Arkansas at Pine Bluff, Pine Bluff, AR, 71601, USA.
| | - Vibha Srivastava
- Department of Crop, Soil & Environmental Science, 115 Plant Science Building, University of Arkansas, Fayetteville, AR, 72701, USA.
| |
Collapse
|
18
|
Abstract
Transgene silencing is often associated with multicopy integrations, which occur frequently during plant transformation. Transgene expression can be restored in a number of multicopy loci by converting them to single copy. This chapter describes a plant transformation protocol based on use of the Cre-lox system, which allows conversion of a multicopy transgene locus into single copy. The strategy is based on designing a transformation vector with lox sites, developing transgenic lines, and introducing Cre activity to initiate Cre-lox recombination, which leads to the simplification of a multicopy locus to a single- or low-copy state. This method is compatible with both gene gun and Agrobacterium-mediated gene delivery and should be particularly useful for crops that are difficult to transform.
Collapse
Affiliation(s)
- Vibha Srivastava
- Department of Crop, Soil and Environmental Sciences, University of Arkansas, Fayetteville, AR, USA,
| | | |
Collapse
|
19
|
Hou L, Yau YY, Wei J, Han Z, Dong Z, Ow DW. An open-source system for in planta gene stacking by Bxb1 and Cre recombinases. MOLECULAR PLANT 2014; 7:1756-65. [PMID: 25281665 DOI: 10.1093/mp/ssu107] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The rapid development of crops with multiple transgenic traits arouses the need for an efficient system for creating stacked cultivars. Most major crops rely on classical breeding to introgress the transgene from a laboratory variety to the numerous cultivars adapted to different growing regions. Even with vegetative propagated crops, genetic crosses are conducted during varietal improvement prior to vegetative cloning. The probability to assort the 'x' number of transgenic loci into a single genome may seem trivial, (¼) (x) for a diploid species, but given the 'y' number of other nontransgenic traits that breeders also need to assemble into the same genome, the (¼) (x+y) probability for a 'breeding stack' could quickly make the line conversion process unmanageable. Adding new transgenes onto existing transgenic varieties without creating a new segregating locus would require site-specific integration of new DNA at the existing transgenic locus. Here, we tested a recombinase-mediated gene-stacking scheme in tobacco. Sequential site-specific integration was mediated by the mycobacteriophage Bxb1 integrase-catalyzed recombination between attP and attB sites. Transgenic DNA no longer needed after integration was excised by Cre recombinase-mediated recombination of lox sites. Site-specific integration occurred in ~10% of the integration events, with half of those events usable as substrates for a next round of gene stacking. Among the site-specific integrants, however, a third experienced gene silencing. Overall, precise structure and reproducible expression of the sequentially added triple traits were obtained at an overall rate of ~3% of the transformed clones--a workable frequency for the development of commercial cultivars. Moreover, since neither the Bxb1-att nor the Cre-lox system is under patent, there is freedom to operate.
Collapse
Affiliation(s)
- Lili Hou
- Plant Gene Engineering Center, South China Agricultural Plant Molecular Analysis and Genetic Improvement Key Laboratory, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Guangzhou 510650, China University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Yuan-Yeu Yau
- Plant Gene Engineering Center, South China Agricultural Plant Molecular Analysis and Genetic Improvement Key Laboratory, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Guangzhou 510650, China Former Affiliation, Plant Gene Expression Center, USDA-ARS & Plant & Microbial Biology, University of California-Berkeley, 800 Buchanan St., Albany, CA 94710, USA
| | - Junjie Wei
- Plant Gene Engineering Center, South China Agricultural Plant Molecular Analysis and Genetic Improvement Key Laboratory, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Guangzhou 510650, China University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Zhiguo Han
- Plant Gene Engineering Center, South China Agricultural Plant Molecular Analysis and Genetic Improvement Key Laboratory, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Guangzhou 510650, China
| | - Zhicheng Dong
- Plant Gene Engineering Center, South China Agricultural Plant Molecular Analysis and Genetic Improvement Key Laboratory, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Guangzhou 510650, China
| | - David W Ow
- Plant Gene Engineering Center, South China Agricultural Plant Molecular Analysis and Genetic Improvement Key Laboratory, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Guangzhou 510650, China Former Affiliation, Plant Gene Expression Center, USDA-ARS & Plant & Microbial Biology, University of California-Berkeley, 800 Buchanan St., Albany, CA 94710, USA
| |
Collapse
|
20
|
|
21
|
De Paepe A, De Buck S, Nolf J, Van Lerberge E, Depicker A. Site-specific T-DNA integration in Arabidopsis thaliana mediated by the combined action of CRE recombinase and ϕC31 integrase. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 75:172-184. [PMID: 23574114 DOI: 10.1111/tpj.12202] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 04/04/2013] [Accepted: 04/08/2013] [Indexed: 06/02/2023]
Abstract
Random T-DNA integration into the plant host genome can be problematic for a variety of reasons, including potentially variable transgene expression as a result of different integration positions and multiple T-DNA copies, the risk of mutating the host genome and the difficulty of stacking well-defined traits. Therefore, recombination systems have been proposed to integrate the T-DNA at a pre-selected site in the host genome. Here, we demonstrate the capacity of the ϕC31 integrase (INT) for efficient targeted T-DNA integration. Moreover, we show that the iterative site-specific integration system (ISSI), which combines the activities of the CRE recombinase and INT, enables the targeting of genes to a pre-selected site with the concomitant removal of the resident selectable marker. To begin, plants expressing both the CRE and INT recombinase and containing the target attP site were constructed. These plants were supertransformed with a T-DNA vector harboring the loxP site, the attB sites, a selectable marker and an expression cassette encoding a reporter protein. Three out of the 35 transformants obtained (9%) showed transgenerational site-specific integration (SSI) of this T-DNA and removal of the resident selectable marker, as demonstrated by PCR, Southern blot and segregation analysis. In conclusion, our results show the applicability of the ISSI system for precise and targeted Agrobacterium-mediated integration, allowing the serial integration of transgenic DNA sequences in plants.
Collapse
Affiliation(s)
- Annelies De Paepe
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Gent, Belgium
| | - Sylvie De Buck
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Gent, Belgium
| | - Jonah Nolf
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Gent, Belgium
| | - Els Van Lerberge
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Gent, Belgium
| | - Ann Depicker
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Gent, Belgium
| |
Collapse
|