1
|
Geethanjali S, Kadirvel P, Periyannan S. Wheat improvement through advances in single nucleotide polymorphism (SNP) detection and genotyping with a special emphasis on rust resistance. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:224. [PMID: 39283360 PMCID: PMC11405505 DOI: 10.1007/s00122-024-04730-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 08/24/2024] [Indexed: 09/22/2024]
Abstract
KEY MESSAGE Single nucleotide polymorphism (SNP) markers in wheat and their prospects in breeding with special reference to rust resistance. Single nucleotide polymorphism (SNP)-based markers are increasingly gaining momentum for screening and utilizing vital agronomic traits in wheat. To date, more than 260 million SNPs have been detected in modern cultivars and landraces of wheat. This rapid SNP discovery was made possible through the release of near-complete reference and pan-genome assemblies of wheat and its wild relatives, coupled with whole genome sequencing (WGS) of thousands of wheat accessions. Further, genotyping customized SNP sites were facilitated by a series of arrays (9 to 820Ks), a cost effective substitute WGS. Lately, germplasm-specific SNP arrays have been introduced to characterize novel traits and detect closely linked SNPs for marker-assisted breeding. Subsequently, the kompetitive allele-specific PCR (KASP) assay was introduced for rapid and large-scale screening of specific SNP markers. Moreover, with the advances and reduction in sequencing costs, ample opportunities arise for generating SNPs artificially through mutations and in combination with next-generation sequencing and comparative genomic analyses. In this review, we provide historical developments and prospects of SNP markers in wheat breeding with special reference to rust resistance where over 50 genetic loci have been characterized through SNP markers. Rust resistance is one of the most essential traits for wheat breeding as new strains of the Puccinia fungus, responsible for rust diseases, evolve frequently and globally.
Collapse
Affiliation(s)
- Subramaniam Geethanjali
- Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641003, India
- Centre for Crop Health, University of Southern Queensland, Toowoomba, Queensland, 4350, Australia
| | - Palchamy Kadirvel
- Crop Improvement Section, Indian Council of Agricultural Research-Indian Institute of Oilseeds Research, Hyderabad, Telangana, 500030, India
| | - Sambasivam Periyannan
- Centre for Crop Health, University of Southern Queensland, Toowoomba, Queensland, 4350, Australia.
- School of Agriculture and Environmental Science, University of Southern Queensland, Toowoomba, Queensland, 4350, Australia.
| |
Collapse
|
2
|
Khan N, Zhang J, Islam S, Appels R, Dell B. Wheat Water-Soluble Carbohydrate Remobilisation under Water Deficit by 1-FEH w3. Curr Issues Mol Biol 2023; 45:6634-6650. [PMID: 37623238 PMCID: PMC10453044 DOI: 10.3390/cimb45080419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/03/2023] [Accepted: 08/08/2023] [Indexed: 08/26/2023] Open
Abstract
Fructan 1-exohydrolase (1-FEH) is one of the major enzymes in water-soluble carbohydrate (WSC) remobilisation for grains in wheat. We investigated the functional role of 1-FEH w1, w2, and w3 isoforms in WSC remobilisation under post-anthesis water deficit using mutation lines derived from the Australian wheat variety Chara. F1 seeds, developed by backcrossing the 1-FEH w1, w2, and w3 mutation lines with Chara, were genotyped using the Infinium 90K SNP iSelect platform to characterise the mutated region. Putative deletions were identified in FEH mutation lines encompassing the FEH genomic regions. Mapping analysis demonstrated that mutations affected significantly longer regions than the target FEH gene regions. Functional roles of the non-target genes were carried out utilising bioinformatics and confirmed that the non-target genes were unlikely to confound the effects considered to be due to the influence of 1-FEH gene functions. Glasshouse experiments revealed that the 1-FEH w3 mutation line had a slower degradation and remobilisation of fructans than the 1-FEH w2 and w1 mutation lines and Chara, which reduced grain filling and grain yield. Thus, 1-FEH w3 plays a vital role in reducing yield loss under drought. This insight into the distinct role of the 1-FEH isoforms provides new gene targets for water-deficit-tolerant wheat breeding.
Collapse
Affiliation(s)
- Nusrat Khan
- Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, 90 South Street, Murdoch, WA 6163, Australia; (N.K.); (J.Z.); (S.I.)
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58102, USA
| | - Jingjuan Zhang
- Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, 90 South Street, Murdoch, WA 6163, Australia; (N.K.); (J.Z.); (S.I.)
| | - Shahidul Islam
- Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, 90 South Street, Murdoch, WA 6163, Australia; (N.K.); (J.Z.); (S.I.)
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58102, USA
| | - Rudi Appels
- Faculty of Science, University of Melbourne, Parkville, VIC 3010, Australia;
| | - Bernard Dell
- Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, 90 South Street, Murdoch, WA 6163, Australia; (N.K.); (J.Z.); (S.I.)
| |
Collapse
|
3
|
Ofori KF, Antoniello S, English MM, Aryee ANA. Improving nutrition through biofortification-A systematic review. Front Nutr 2022; 9:1043655. [PMID: 36570169 PMCID: PMC9784929 DOI: 10.3389/fnut.2022.1043655] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 09/30/2022] [Indexed: 12/14/2022] Open
Abstract
Nutritious foods are essential for human health and development. However, malnutrition and hidden hunger continue to be a challenge globally. In most developing countries, access to adequate and nutritious food continues to be a challenge. Although hidden hunger is less prevalent in developed countries compared to developing countries where iron (Fe) and zinc (Zn) deficiencies are common. The United Nations (UN) 2nd Sustainable Development Goal was set to eradicate malnutrition and hidden hunger. Hidden hunger has led to numerous cases of infant and maternal mortalities, and has greatly impacted growth, development, cognitive ability, and physical working capacity. This has influenced several countries to develop interventions that could help combat malnutrition and hidden hunger. Interventions such as dietary diversification and food supplementation are being adopted. However, fortification but mainly biofortification has been projected to be the most sustainable solution to malnutrition and hidden hunger. Plant-based foods (PBFs) form a greater proportion of diets in certain populations; hence, fortification of PBFs is relevant in combating malnutrition and hidden hunger. Agronomic biofortification, plant breeding, and transgenic approaches are some currently used strategies in food crops. Crops such as cereals, legumes, oilseeds, vegetables, and fruits have been biofortified through all these three strategies. The transgenic approach is sustainable, efficient, and rapid, making it suitable for biofortification programs. Omics technology has also been introduced to improve the efficiency of the transgenic approach.
Collapse
Affiliation(s)
- Kelvin F. Ofori
- Department of Human Ecology, Delaware State University, Dover, DE, United States
| | - Sophia Antoniello
- Department Human Nutrition, Saint Francis Xavier University, Antigonish, NS, Canada
| | - Marcia M. English
- Department Human Nutrition, Saint Francis Xavier University, Antigonish, NS, Canada
| | - Alberta N. A. Aryee
- Department of Human Ecology, Delaware State University, Dover, DE, United States,*Correspondence: Alberta N. A. Aryee,
| |
Collapse
|
4
|
Dziurdziak J, Podyma W, Bujak H, Boczkowska M. Tracking Changes in the Spring Barley Gene Pool in Poland during 120 Years of Breeding. Int J Mol Sci 2022; 23:4553. [PMID: 35562944 PMCID: PMC9099733 DOI: 10.3390/ijms23094553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/15/2022] [Accepted: 04/18/2022] [Indexed: 12/15/2022] Open
Abstract
This study was undertaken to investigate the diversity and population structure of 83 spring barley (Hordeum vulgare L.) cultivars, which corresponded to 120 years of this crop's breeding in Poland. The analysis was based on 11,655 DArTseq-derived SNPs evenly distributed across seven barley chromosomes. Five groups were assigned in the studied cultivars according to the period of their breeding. A decrease in observed heterozygosity within the groups was noted along with the progress in breeding, with a simultaneous increase in the inbreeding coefficient value. As a result of breeding, some of the unique allelic variation present in old cultivars was lost, but crosses with foreign materials also provided new alleles to the barley gene pool. It is important to mention that the above changes affected different chromosomes to varying degrees. The internal variability of the cultivars ranged from 0.011 to 0.236. Internal uniformity was lowest among the oldest cultivars, although some highly homogeneous ones were found among them. This is probably an effect of genetic drift or selection during their multiplications and regenerations in the period from breeding to the time of analysis. The population genetic structure of the studied group of cultivars appears to be quite complex. It was shown that their genetic makeup consists of as many as eleven distinct gene pools. The analysis also showed traces of directed selection on chromosomes 3H and 5H. Detailed data analysis confirmed the presence of duplicates for 11 cultivars. The performed research will allow both improvement of the management of barley genetic resources in the gene bank and the reuse of this rich and forgotten variability in breeding programs and research.
Collapse
Affiliation(s)
- Joanna Dziurdziak
- Plant Breeding and Acclimatization Institute-National Research Institute, Radzików, 05-870 Błonie, Poland; (J.D.); (W.P.)
| | - Wiesław Podyma
- Plant Breeding and Acclimatization Institute-National Research Institute, Radzików, 05-870 Błonie, Poland; (J.D.); (W.P.)
| | - Henryk Bujak
- Department of Genetics, Plant Breeding and Seed Production, Wrocław University of Environmental and Life Sciences, Grunwaldzki 24A, 53-363 Wrocław, Poland;
- Research Center for Cultivar Testing (COBORU), 63-022 Słupia Wielka, Poland
| | - Maja Boczkowska
- Plant Breeding and Acclimatization Institute-National Research Institute, Radzików, 05-870 Błonie, Poland; (J.D.); (W.P.)
| |
Collapse
|
5
|
Ke Q, Sun H, Tang M, Luo R, Zeng Y, Wang M, Li Y, Li Z, Cui L. Genome-wide identification, expression analysis and evolutionary relationships of the IQ67-domain gene family in common wheat (Triticum aestivum L.) and its progenitors. BMC Genomics 2022; 23:264. [PMID: 35382737 PMCID: PMC8981769 DOI: 10.1186/s12864-022-08520-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/30/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The plant-specific IQ67-domain (IQD) gene family plays an important role in plant development and stress responses. However, little is known about the IQD family in common wheat (Triticum aestivum L), an agriculturally important crop that provides more than 20% of the calories and protein consumed in the modern human diet. RESULTS We identified 125 IQDs in the wheat genome and divided them into four subgroups by phylogenetic analysis. The IQDs belonging to the same subgroup had similar exon-intron structure and conserved motif composition. Polyploidization contributed significantly to the expansion of IQD genes in wheat. Characterization of the expression profile of these genes revealed that a few T. aestivum (Ta)IQDs showed high tissue-specificity. The stress-induced expression pattern also revealed a potential role of TaIQDs in environmental adaptation, as TaIQD-2A-2, TaIQD-3A-9 and TaIQD-1A-7 were significantly induced by cold, drought and heat stresses, and could be candidates for future functional characterization. In addition, IQD genes in the A, B and D subgenomes displayed an asymmetric evolutionary pattern, as evidenced by their different gain or loss of member genes, expression levels and nucleotide diversity. CONCLUSIONS This study elucidated the potential biological functions and evolutionary relationships of the IQD gene family in wheat and revealed the divergent fates of IQD genes during polyploidization.
Collapse
Affiliation(s)
- Qinglin Ke
- College of Bioscience and Engineering, Jiangxi Agricultural University, Jiangxi, 330045, China
| | - Huifan Sun
- College of Bioscience and Engineering, Jiangxi Agricultural University, Jiangxi, 330045, China
| | - Minqiang Tang
- College of Forestry, Hainan University, Hainan, 570228, China
| | - Ruihan Luo
- College of Bioscience and Engineering, Jiangxi Agricultural University, Jiangxi, 330045, China
| | - Yan Zeng
- College of Bioscience and Engineering, Jiangxi Agricultural University, Jiangxi, 330045, China
| | - Mengxing Wang
- College of Agronomy, Jiangxi Agricultural University, Jiangxi, 330045, China
| | - Yihan Li
- College of Bioscience and Engineering, Jiangxi Agricultural University, Jiangxi, 330045, China
| | - Zhimin Li
- College of Bioscience and Engineering, Jiangxi Agricultural University, Jiangxi, 330045, China
| | - Licao Cui
- College of Bioscience and Engineering, Jiangxi Agricultural University, Jiangxi, 330045, China. .,Key Laboratory for Crop Gene Resources and Germplasm Enhancement, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, MOA, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
6
|
Maung TZ, Chu SH, Park YJ. Functional Haplotypes and Evolutionary Insight into the Granule-Bound Starch Synthase II ( GBSSII) Gene in Korean Rice Accessions (KRICE_CORE). Foods 2021; 10:2359. [PMID: 34681408 PMCID: PMC8535093 DOI: 10.3390/foods10102359] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/28/2021] [Accepted: 09/30/2021] [Indexed: 12/30/2022] Open
Abstract
Granule-bound starch synthase 2 (GBSSII), a paralogous isoform of GBSSI, carries out amylose biosynthesis in rice. Unlike GBSSI, it mainly functions in transient organs, such as leaves. Despite many reports on the starch gene family, little is known about the genetics and genomics of GBSSII. Haplotype analysis was conducted to unveil genetic variations (SNPs and InDels) of GBSSII (OS07G0412100) and it was also performed to gain evolutionary insight through genetic diversity, population genetic structure, and phylogenetic analyses using the KRICE_CORE set (475 rice accessions). Thirty nonsynonymous SNPs (nsSNPs) were detected across the diverse GBSSII coding regions, representing 38 haplotypes, including 13 cultivated, 21 wild, and 4 mixed (a combination of cultivated and wild) varieties. The cultivated haplotypes (C_1-C_13) contained more nsSNPs across the GBSSII genomic region than the wild varieties. Nucleotide diversity analysis highlighted the higher diversity values of the cultivated varieties (weedy = 0.0102, landrace = 0.0093, and bred = 0.0066) than the wild group (0.0045). The cultivated varieties exhibited no reduction in diversity during domestication. Diversity reduction in the japonica and the wild groups was evidenced by the negative Tajima's D values under purifying selection, suggesting the domestication signatures of GBSSII; however, balancing selection was indicated by positive Tajima's D values in indica. Principal component analysis and population genetics analyses estimated the ambiguous evolutionary relationships among the cultivated and wild rice groups, indicating highly diverse structural features of the rice accessions within the GBSSII genomic region. FST analysis differentiated most of the classified populations in a range of greater FST values. Our findings provide evolutionary insights into GBSSII and, consequently, a molecular breeding program can be implemented for select desired traits using these diverse nonsynonymous (functional) alleles.
Collapse
Affiliation(s)
- Thant Zin Maung
- Department of Plant Resources, College of Industrial Science, Kongju National University, Yesan 32439, Korea;
| | - Sang-Ho Chu
- Center of Crop Breeding on Omics and Artificial Intelligence, Kongju National University, Yesan 32439, Korea;
| | - Yong-Jin Park
- Department of Plant Resources, College of Industrial Science, Kongju National University, Yesan 32439, Korea;
- Center of Crop Breeding on Omics and Artificial Intelligence, Kongju National University, Yesan 32439, Korea;
| |
Collapse
|
7
|
Bansal M, Adamski NM, Toor PI, Kaur S, Sharma A, Srivastava P, Bansal U, Uauy C, Chhuneja P. A robust KASP marker for selection of four pairs of linked leaf rust and stripe rust resistance genes introgressed on chromosome arm 5DS from different wheat genomes. Mol Biol Rep 2021; 48:5209-5216. [PMID: 34213711 DOI: 10.1007/s11033-021-06525-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/25/2021] [Indexed: 11/24/2022]
Abstract
Stripe rust and leaf rust are among the most devastating diseases of wheat, limiting its production globally. Wheat wild relatives harbour genetic diversity for new genes and alleles for all major wheat diseases. However, the use of this genetic variation from wild progenitor and non-progenitor species has been limited in the breeding programs. Reasons include limited recombination of donor and recipient genomes and the lack of tertiary gene pool markers. Here, we describe the development of a SNP based marker from the flow-sorted and sequenced Aegilops umbellulata chromosome 5U which can be used for marker assisted selection of four pair of alien leaf rust and stripe rust resistance genes. Lr57-Yr40_CAPS16 marker was reported earlier to be linked with alien leaf and stripe rust resistance genes introgressed on wheat chromosome 5DS. Due to its dominant nature and laborious to work with, a new SNP-based KASP marker, XTa5DS-2754099_kasp23, was developed from the same CAPS marker contig. XTa5DS-2754099_kasp23 was tested in Aegilops umbellulata, Ae. geniculata, Ae. peregrina and Ae. caudata derived alien introgression lines, which harbour four pairs of linked leaf and stripe rust genes; Lr76-Yr70, Lr57-Yr40, LrP- YrP, LrAc-YrAc, respectively. This KASP marker was found to be effective for the selection of the aforesaid four pairs of leaf rust and stripe rust resistance genes. Further, we tested and validated XTa5DS-2754099_kasp23 on commercial varieties and advanced breeding lines from four countries (India, Egypt, Australia and UK) including hexaploid and durum wheat. Our results provide evidence that KASP marker, XTa5DS-2754099_kasp23 can be used in marker-assisted selection of the four pairs of rust resistance alien genes in wheat breeding programmes.
Collapse
Affiliation(s)
- Mitaly Bansal
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab, 141 004, India
| | | | - Puneet Inder Toor
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab, 141 004, India
| | - Satinder Kaur
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab, 141 004, India
| | - Achla Sharma
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, 141 004, India
| | - Puja Srivastava
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, 141 004, India
| | - Urmil Bansal
- University of Sydney Plant Breeding Institute-Cobbitty, PMB 4011, Narellan, NSW, 2567, Australia
| | - Cristobal Uauy
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Parveen Chhuneja
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab, 141 004, India.
| |
Collapse
|
8
|
Sukumar S, Krishnan A, Banerjee S. An Overview of Bioinformatics Resources for SNP Analysis. Adv Bioinformatics 2021. [DOI: 10.1007/978-981-33-6191-1_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
9
|
Yang S, Yu W, Wei X, Wang Z, Zhao Y, Zhao X, Tian B, Yuan Y, Zhang X. An extended KASP-SNP resource for molecular breeding in Chinese cabbage(Brassica rapa L. ssp. pekinensis). PLoS One 2020; 15:e0240042. [PMID: 33007009 PMCID: PMC7531813 DOI: 10.1371/journal.pone.0240042] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 09/18/2020] [Indexed: 12/31/2022] Open
Abstract
Kompetitive allele-specific PCR (KASP) is a cost-effective single-step SNP genotyping technology, With an objective to enhance the marker repertoire and develop high efficient KASP-SNP markers in Chinese cabbage, we re-sequenced four Chinese cabbage doubled haploid (DH) lines, Y177-47, Y635-10, Y510-1 and Y510-9, and generated a total of more than 38.5 billion clean base pairs. A total of 827,720 SNP loci were identified with an estimated density of 3,217 SNPs/Mb. Further, a total of 387,354 SNPs with at least 30 bp to the next most adjacent SNPs on either side were selected as resource for KASP markers. From this resource, 258 (96.27%) of 268 SNP loci were successfully transformed into KASP-SNP markers using a Roche LightCycler 480-II instrument. Among these markers, 221 (85.66%) were co-dominant markers, 220 (85.27%) were non-synonymous SNPs, and 257 (99.6%) were newly developed markers. In addition, 53 markers were applied for genotyping of 34 Brassica rapa accessions. Cluster analysis separated these 34 accessions into three clusters based on heading types. The millions of SNP loci, a large set of resource for KASP markers, as well as the newly developed KASP markers in this study may facilitate further genetic and molecular breeding studies in Brassica rapa.
Collapse
Affiliation(s)
- Shuangjuan Yang
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Wentao Yu
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Zhengzhou, China
- College of Life Science, Zhengzhou University, Zhengzhou, China
| | - Xiaochun Wei
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Zhiyong Wang
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Yanyan Zhao
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Xiaobin Zhao
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Baoming Tian
- College of Life Science, Zhengzhou University, Zhengzhou, China
- * E-mail: (XW-Z); (BT); (YY)
| | - Yuxiang Yuan
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Zhengzhou, China
- * E-mail: (XW-Z); (BT); (YY)
| | - Xiaowei Zhang
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Zhengzhou, China
- * E-mail: (XW-Z); (BT); (YY)
| |
Collapse
|
10
|
Zaczek-Moczydłowska MA, Mohamed-Smith L, Toldrà A, Hooper C, Campàs M, Furones MD, Bean TP, Campbell K. A Single-Tube HNB-Based Loop-Mediated Isothermal Amplification for the Robust Detection of the Ostreid herpesvirus 1. Int J Mol Sci 2020; 21:E6605. [PMID: 32917059 PMCID: PMC7555478 DOI: 10.3390/ijms21186605] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/28/2020] [Accepted: 09/04/2020] [Indexed: 01/05/2023] Open
Abstract
The Ostreid herpesvirus 1 species affects shellfish, contributing significantly to high economic losses during production. To counteract the threat related to mortality, there is a need for the development of novel point-of-care testing (POCT) that can be implemented in aquaculture production to prevent disease outbreaks. In this study, a simple, rapid and specific colorimetric loop-mediated isothermal amplification (LAMP) assay has been developed for the detection of Ostreid herpesvirus1 (OsHV-1) and its variants infecting Crassostrea gigas (C. gigas). The LAMP assay has been optimized to use hydroxynaphthol blue (HNB) for visual colorimetric distinction of positive and negative templates. The effect of an additional Tte UvrD helicase enzyme used in the reaction was also evaluated with an improved reaction time of 10 min. Additionally, this study provides a robust workflow for optimization of primers for uncultured viruses using designed target plasmid when DNA availability is limited.
Collapse
Affiliation(s)
- Maja A. Zaczek-Moczydłowska
- Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast BT9 5DL, UK;
| | - Letitia Mohamed-Smith
- Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast BT9 5DL, UK;
| | - Anna Toldrà
- IRTA, 43540 Sant Carles de la Ràpita, Spain; (A.T.); (M.C.); (M.D.F.)
| | - Chantelle Hooper
- Centre for Environment, Fisheries and Aquaculture Science, Weymouth DT4 8UB, UK;
| | - Mònica Campàs
- IRTA, 43540 Sant Carles de la Ràpita, Spain; (A.T.); (M.C.); (M.D.F.)
| | - M. Dolors Furones
- IRTA, 43540 Sant Carles de la Ràpita, Spain; (A.T.); (M.C.); (M.D.F.)
| | - Tim P. Bean
- The Roslin Institute, The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian EH25 9RG, UK;
| | - Katrina Campbell
- Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast BT9 5DL, UK;
| |
Collapse
|
11
|
Wang N, Xie Y, Li Y, Wu S, Li S, Guo Y, Wang C. High-Resolution Mapping of the Novel Early Leaf Senescence Gene Els2 in Common Wheat. PLANTS 2020; 9:plants9060698. [PMID: 32486195 PMCID: PMC7355531 DOI: 10.3390/plants9060698] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/20/2020] [Accepted: 05/21/2020] [Indexed: 11/16/2022]
Abstract
Early leaf senescence negatively impacts the grain yield in wheat (Triticum aestivum L.). Induced mutants provide an important resource for mapping and cloning of genes for early leaf senescence. In our previous study, Els2, a single incomplete dominance gene, that caused early leaf senescence phenotype in the wheat mutant LF2099, had been mapped on the long arm of chromosome 2B. The objective of this study was to develop molecular markers tightly linked to the Els2 gene and construct a high-resolution map surrounding the Els2 gene. Three tightly linked single-nucleotide polymorphism (SNP) markers were obtained from the Illumina Wheat 90K iSelect SNP genotyping array and converted to Kompetitive allele-specific polymerase chain reaction (KASP) markers. To saturate the Els2 region, the Axiom® Wheat 660K SNP array was used to screen bulked extreme phenotype DNA pools, and 9 KASP markers were developed. For fine mapping of the Els2 gene, these KASP markers and previously identified polymorphic markers were analyzed in a large F2 population of the LF2099 × Chinese Spring cross. The Els2 gene was located in a 0.24-cM genetic region flanked by the KASP markers AX-111643885 and AX-111128667, which corresponded to a physical interval of 1.61 Mb in the Chinese Spring chromosome 2BL containing 27 predicted genes with high confidence. The study laid a foundation for a map-based clone of the Els2 gene controlling the mutation phenotype and revealing the molecular regulatory mechanism of wheat leaf senescence.
Collapse
|
12
|
Chang LY, Toghiani S, Hay EH, Aggrey SE, Rekaya R. A Weighted Genomic Relationship Matrix Based on Fixation Index (F ST) Prioritized SNPs for Genomic Selection. Genes (Basel) 2019; 10:genes10110922. [PMID: 31726712 PMCID: PMC6895924 DOI: 10.3390/genes10110922] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/06/2019] [Accepted: 11/08/2019] [Indexed: 12/30/2022] Open
Abstract
A dramatic increase in the density of marker panels has been expected to increase the accuracy of genomic selection (GS), unfortunately, little to no improvement has been observed. By including all variants in the association model, the dimensionality of the problem should be dramatically increased, and it could undoubtedly reduce the statistical power. Using all Single nucleotide polymorphisms (SNPs) to compute the genomic relationship matrix (G) does not necessarily increase accuracy as the additive relationships can be accurately estimated using a much smaller number of markers. Due to these limitations, variant prioritization has become a necessity to improve accuracy. The fixation index (FST) as a measure of population differentiation has been used to identify genome segments and variants under selection pressure. Using prioritized variants has increased the accuracy of GS. Additionally, FST can be used to weight the relative contribution of prioritized SNPs in computing G. In this study, relative weights based on FST scores were developed and incorporated into the calculation of G and their impact on the estimation of variance components and accuracy was assessed. The results showed that prioritizing SNPs based on their FST scores resulted in an increase in the genetic similarity between training and validation animals and improved the accuracy of GS by more than 5%.
Collapse
Affiliation(s)
- Ling-Yun Chang
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602, USA; (S.T.); (R.R.)
- ABS Global, Inc., DeForest, WI 53532, USA
- Correspondence:
| | - Sajjad Toghiani
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602, USA; (S.T.); (R.R.)
- USDA Agricultural Research Service, Fort Keogh Livestock and Range Research Laboratory, Miles City, MT 59301, USA;
| | - El Hamidi Hay
- USDA Agricultural Research Service, Fort Keogh Livestock and Range Research Laboratory, Miles City, MT 59301, USA;
| | - Samuel E. Aggrey
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA;
- Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA
| | - Romdhane Rekaya
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602, USA; (S.T.); (R.R.)
- Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
13
|
Záveská E, Maylandt C, Paun O, Bertel C, Frajman B, The Steppe Consortium, Schönswetter P. Multiple auto- and allopolyploidisations marked the Pleistocene history of the widespread Eurasian steppe plant Astragalus onobrychis (Fabaceae). Mol Phylogenet Evol 2019; 139:106572. [PMID: 31351183 DOI: 10.1016/j.ympev.2019.106572] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 07/12/2019] [Accepted: 07/23/2019] [Indexed: 12/26/2022]
Abstract
The Eurasian steppes occupy a significant portion of the worldwide land surface and their biota have been affected by specific past range dynamics driven by ice ages-related climatic fluctuations. The dynamic alterations in conditions during the Pleistocene often triggered reticulate evolution and whole genome duplication events. Employing genomic, genetic and cytogenetic tools as well as morphometry we investigate the intricate evolution of Astragalus onobrychis, a widespread Eurasian steppe plant with diploid, tetraploid and octoploid cytotypes. To analyse the heteroploid RADseq dataset we employ both genotype-based and genotype-free methods that result in highly consistent results, and complement our inference with information from the plastid ycf1 region. We uncover a complex and reticulate evolutionary history, including at least one auto-tetraploidization event and two allo-octoploidization events; one of them involved also genetic contributions from other species, most likely A. goktschaicus. The present genetic structure points to the existence of four main clades within A. onobrychis, which only partly correspond to different ploidies. Time-calibrated diffusion models suggest that diversification within A. onobrychis was associated with ice age-related climatic fluctuations during the last million years. We finally argue for the usefulness of uniparentally inherited plastid markers, even in the genomic era, especially when investigating heteroploid systems.
Collapse
Affiliation(s)
- Eliška Záveská
- Department of Botany, University of Innsbruck, Sternwartestraße 15, 6020 Innsbruck, Austria
| | - Clemens Maylandt
- Department of Botany, University of Innsbruck, Sternwartestraße 15, 6020 Innsbruck, Austria
| | - Ovidiu Paun
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, 1030 Vienna, Austria
| | - Clara Bertel
- Department of Botany, University of Innsbruck, Sternwartestraße 15, 6020 Innsbruck, Austria
| | - Božo Frajman
- Department of Botany, University of Innsbruck, Sternwartestraße 15, 6020 Innsbruck, Austria
| | - The Steppe Consortium
- Department of Botany, University of Innsbruck, Sternwartestraße 15, 6020 Innsbruck, Austria; Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, 1030 Vienna, Austria; Department of Biosciences, University of Salzburg, Hellbrunnerstrasse 34, 5020 Salzburg, Austria; Department of Ecology, University of Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria; Real Jardín Botánico, CSIC, Plaza de Murillo 2, 28014 Madrid, Spain; Department of Life Sciences and Biotechnology, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy; Institute for Alpine Environment, Eurac Research, Drususallee 1/Viale Druso 1, 39100 Bozen/Bolzano, Italy
| | - Peter Schönswetter
- Department of Botany, University of Innsbruck, Sternwartestraße 15, 6020 Innsbruck, Austria.
| |
Collapse
|
14
|
Scheben A, Verpaalen B, Lawley CT, Chan CKK, Bayer PE, Batley J, Edwards D. CropSNPdb: a database of SNP array data for Brassica crops and hexaploid bread wheat. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 98:142-152. [PMID: 30548723 DOI: 10.1111/tpj.14194] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 11/26/2018] [Accepted: 11/27/2018] [Indexed: 05/23/2023]
Abstract
Advances in sequencing technology have led to a rapid rise in the genomic data available for plants, driving new insights into the evolution, domestication and improvement of crops. Single nucleotide polymorphisms (SNPs) are a major component of crop genomic diversity, and are invaluable as genetic markers in research and breeding programs. High-throughput SNP arrays, or 'SNP chips', can generate reproducible sets of informative SNP markers and have been broadly adopted. Although there are many public repositories for sequencing data, which are routinely uploaded, there are no formal repositories for crop SNP array data. To make SNP array data more easily accessible, we have developed CropSNPdb (http://snpdb.appliedbioinformatics.com.au), a database for SNP array data produced by the Illumina Infinium™ hexaploid bread wheat (Triticum aestivum) 90K and Brassica 60K arrays. We currently host SNPs from datasets covering 526 Brassica lines and 309 bread wheat lines, and provide search, download and upload utilities for users. CropSNPdb provides a useful repository for these data, which can be applied for a range of genomics and molecular crop-breeding activities.
Collapse
Affiliation(s)
- Armin Scheben
- School of Biological Sciences and Institute of Agriculture, The University of Western Australia, Perth, WA, 6009, Australia
| | - Brent Verpaalen
- School of Biological Sciences and Institute of Agriculture, The University of Western Australia, Perth, WA, 6009, Australia
| | | | - Chon-Kit K Chan
- School of Biological Sciences and Institute of Agriculture, The University of Western Australia, Perth, WA, 6009, Australia
- Australian Genome Research Facility, Melbourne, Vic., 3000, Australia
| | - Philipp E Bayer
- School of Biological Sciences and Institute of Agriculture, The University of Western Australia, Perth, WA, 6009, Australia
| | - Jacqueline Batley
- School of Biological Sciences and Institute of Agriculture, The University of Western Australia, Perth, WA, 6009, Australia
| | - David Edwards
- School of Biological Sciences and Institute of Agriculture, The University of Western Australia, Perth, WA, 6009, Australia
| |
Collapse
|
15
|
Liu J, Luo W, Qin N, Ding P, Zhang H, Yang C, Mu Y, Tang H, Liu Y, Li W, Jiang Q, Chen G, Wei Y, Zheng Y, Liu C, Lan X, Ma J. A 55 K SNP array-based genetic map and its utilization in QTL mapping for productive tiller number in common wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:2439-2450. [PMID: 30109392 DOI: 10.1007/s00122-018-3164-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 08/09/2018] [Indexed: 05/24/2023]
Abstract
A high-density genetic map constructed with a wheat 55 K SNP array was highly consistent with the physical map of this species and it facilitated the identification of a novel major QTL for productive tiller number. Productive tiller number (PTN) plays a key role in wheat grain yield. In this study, a recombinant inbred line population with 199 lines derived from a cross between '20828' and 'Chuannong16' was used to construct a high-density genetic map using wheat 55 K single nucleotide polymorphism (SNP) array. The constructed genetic map contains 12,109 SNP markers spanning 3021.04 cM across the 21 wheat chromosomes. The orders of the genetic and physical positions of these markers are generally in agreement, and they also match well with those based on the 660 K SNP array from which the one used in this study was derived. The ratios of SNPs located in each of the wheat deletion bins were similar among the wheat 9 K, 55 K, 90 K, 660 K and 820 K SNP arrays. Based on the constructed maps, a novel major quantitative trait locus QPtn.sau-4B for PTN was detected across multi-environments in a 0.55 cM interval on 4B and it explained 17.23-45.46% of the phenotypic variance. Twenty common genes in the physical interval between the flanking markers were identified on chromosome 4B of 'Chinese Spring' and wild emmer. These results indicate that wheat 55 K SNP array could be an ideal tool in primary mapping of target genes and the identification of QPtn.sau-4B laid a foundation for the following fine mapping and cloning work.
Collapse
Affiliation(s)
- Jiajun Liu
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Wei Luo
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Nana Qin
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Puyang Ding
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Han Zhang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Congcong Yang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Yang Mu
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Huaping Tang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Yaxi Liu
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Wei Li
- College of Agronomy, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Qiantao Jiang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Guoyue Chen
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Yuming Wei
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Youliang Zheng
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Chunji Liu
- Commonwealth Scientific and Industrial Research Organization Agriculture and Food, St Lucia, QLD, 4067, Australia
| | - Xiujin Lan
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China.
| | - Jian Ma
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
16
|
Garcia-Oliveira AL, Benito C, Guedes-Pinto H, Martins-Lopes P. Molecular cloning of TaMATE2 homoeologues potentially related to aluminium tolerance in bread wheat (Triticum aestivum L.). PLANT BIOLOGY (STUTTGART, GERMANY) 2018; 20:817-824. [PMID: 29908003 DOI: 10.1111/plb.12864] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 06/12/2018] [Indexed: 06/08/2023]
Abstract
Recently, members of the MATE family have been implicated in aluminium (Al) tolerance by facilitating citrate efflux in plants. The aim of the present work was to perform a molecular characterisation of the MATE2 gene in bread wheat. Here, we cloned a member of the MATE gene family in bread wheat and named it TaMATE2, which showed the typical secondary structure of MATE-type transporters maintaining all the 12 transmembrane domains. Amplification in Chinese Spring nulli-tetrasomic and ditelosomic lines revealed that TaMATE2 is located on the long arm of homoeologous group 1 chromosomes. The transcript expression of TaMATE2 homoeologues in two diverse bread wheat genotypes, Barbela 7/72/92 (Al-tolerant) and Anahuac (Al-sensitive), suggested that TaMATE2 is expressed in both root and shoot tissues of bread wheat, but mainly confined to root rather than shoot tissues. A time-course analysis of TaMATE2 homoeologue transcript expression revealed the Al responsive expression of TaMATE2 in root apices of the Al-tolerant genotype, Barbela 7/72/92. Considering the high similarity of TaMATE2 together with similar Al responsive expression pattern as of ScFRDL2 from rye and OsFRDL2 from rice, it is likely that TaMATE2 also encodes a citrate transporter. Furthermore, the TaMATE2-D homoeologue appears to be near the previously reported locus (wPt0077) on chromosome 1D for Al tolerance. In conclusion, molecular cloning of TaMATE2 homoeologues, particularly TaMATE2-D, provides a plausible candidate for Al tolerance in bread wheat that can be used for the development of more Al-tolerant cultivars in this staple crop.
Collapse
Affiliation(s)
- A L Garcia-Oliveira
- Department of Genetics, Faculty of Biology, Complutense University of Madrid, Madrid, Spain
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - C Benito
- Department of Genetics, Faculty of Biology, Complutense University of Madrid, Madrid, Spain
| | - H Guedes-Pinto
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - P Martins-Lopes
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
- BioISI-Biosystems & Integrative Sciences Institute, University of Lisbon, Lisbon, Portugal
| |
Collapse
|
17
|
Sharma D, Tiwari A, Sood S, Jamra G, Singh NK, Meher PK, Kumar A. Genome wide association mapping of agro-morphological traits among a diverse collection of finger millet (Eleusine coracana L.) genotypes using SNP markers. PLoS One 2018; 13:e0199444. [PMID: 30092057 PMCID: PMC6084814 DOI: 10.1371/journal.pone.0199444] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 06/07/2018] [Indexed: 11/19/2022] Open
Abstract
Finger millet (Eleusine coracana L.) is an important dry-land cereal in Asia and Africa because of its ability to provide assured harvest under extreme dry conditions and excellent nutritional properties. However, the genetic improvement of the crop is lacking in the absence of suitable genomic resources for reliable genotype-phenotype associations. Keeping this in view, a diverse global finger millet germplasm collection of 113 accessions was evaluated for 14 agro-morphological characters in two environments viz. ICAR-Vivekananda Institute of Hill Agriculture, Almora (E1) and Crop Research Centre (CRC), GBPUA&T, Pantnagar (E2), India. Principal component analysis and cluster analysis of phenotypic data separated the Indian and exotic accessions into two separate groups. Previously generated SNPs through genotyping by sequencing (GBS) were used for association mapping to identify reliable marker(s) linked to grain yield and its component traits. The marker trait associations were determined using single locus single trait (SLST), multi-locus mixed model (MLMM) and multi-trait mixed model (MTMM) approaches. SLST led to the identification of 20 marker-trait associations (MTAs) (p value<0.01 and <0.001) for 5 traits. While advanced models, MLMM and MTMM resulted in additional 36 and 53 MTAs, respectively. Nine MTAs were common out of total 109 associations in all the three mapping approaches (SLST, MLMM and MTMM). Among these nine SNPs, five SNP sequences showed homology to candidate genes of Oryza sativa (Rice) and Setaria italica (Foxtail millet), which play an important role in flowering, maturity and grain yield. In addition, 67 and 14 epistatic interactions were identified for 10 and 7 traits at E1 and E2 locations, respectively. Hence, the 109 novel SNPs associated with important agro-morphological traits, reported for the first time in this study could be precisely utilized in finger millet genetic improvement after validation.
Collapse
Affiliation(s)
- Divya Sharma
- Department of Molecular Biology & Genetic Engineering, G.B. Pant Univ. of Agriculture and Technology, Pantnagar, Uttarakhand, India
| | - Apoorv Tiwari
- Department of Molecular Biology & Genetic Engineering, G.B. Pant Univ. of Agriculture and Technology, Pantnagar, Uttarakhand, India
- Sam Higginbottom University of Agriculture, Technology & Sciences, Allahabad, Uttar Pradesh, India
| | - Salej Sood
- ICAR-Vivekananda Institute of Hill Agriculture, Almora, Uttarakhand, India
- * E-mail: (AK); (SS)
| | - Gautam Jamra
- Department of Molecular Biology & Genetic Engineering, G.B. Pant Univ. of Agriculture and Technology, Pantnagar, Uttarakhand, India
| | - N. K. Singh
- Department of Genetics & Plant Breeding, College of Agriculture, G.B. Pant Univ. of Agriculture & Technology, Pantnagar, Uttarakhand, India
| | - Prabina Kumar Meher
- Division of Statistical Genetics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Anil Kumar
- Department of Molecular Biology & Genetic Engineering, G.B. Pant Univ. of Agriculture and Technology, Pantnagar, Uttarakhand, India
- * E-mail: (AK); (SS)
| |
Collapse
|
18
|
Genomics-Assisted Identification and Characterization of the Genetic Variants Underlying Differential Nitrogen Use Efficiencies in Allotetraploid Rapeseed Genotypes. G3-GENES GENOMES GENETICS 2018; 8:2757-2771. [PMID: 29967053 PMCID: PMC6071586 DOI: 10.1534/g3.118.200481] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Nitrogen (N) is a non-mineral macronutrient essential for plant growth and development. Oilseed rape (AnAnCnCn, 2n = 4x = 38) has a high requirement for N nutrients whereas showing the lowest N use efficiency (NUE) among crops. The mechanisms underlying NUE regulation in Brassica napus remain unclear because of genome complexity. In this study, we performed high-depth and -coverage whole-genome re-sequencing (WGS) of an N-efficient (higher NUE) genotype “XY15” and an N-inefficient (lower NUE) genotype “814” of rapeseed. More than 687 million 150-bp paired-end reads were generated, which provided about 93% coverage and 50× depth of the rapeseed genome. Applying stringent parameters, we identified a total of 1,449,157 single-nucleotide polymorphisms (SNPs), 335,228 InDels, 175,602 structure variations (SVs) and 86,280 copy number variations (CNVs) between the N-efficient and -inefficient genotypes. The largest proportion of various DNA polymorphisms occurred in the inter-genic regions. Unlike CNVs, the SNP/InDel and SV polymorphisms showed variation bias of the An and Cn subgenomes, respectively. Gene ontology analysis showed the genetic variants were mapped onto the genes involving N compound transport and ATPase complex metabolism, but not including N assimilation-related genes. On basis of identification of N-starvation responsive genes through high-throughput expression profiling, we also mapped these variants onto some key NUE-regulating genes, and validated their significantly differential expression between the N-efficient and -inefficient genotypes through qRT-PCR assays. Our data provide genome-wide high resolution DNA variants underlying NUE divergence in allotetraploid rapeseed genotypes, which would expedite the effective identification and functional validation of key NUE-regulating genes through genomics-assisted improvement of crop nutrient efficiency.
Collapse
|
19
|
Characterization of a new Pm2 allele associated with broad-spectrum powdery mildew resistance in wheat line Subtil. Sci Rep 2018; 8:475. [PMID: 29323166 PMCID: PMC5765050 DOI: 10.1038/s41598-017-18827-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 12/18/2017] [Indexed: 11/08/2022] Open
Abstract
Wheat powdery mildew is a severe disease affecting yield and quality. Host resistance was proved to be effective and environment-friendly. Wheat line Subtil is an elite germplasm resource resistant to 28 of 30 tested Bgt isolates. Genetic analysis showed that the powdery mildew resistance in Subtil was conferred by a single dominant gene, temporarily designated PmSub. Using bulked segregant analysis, PmSub was mapped to chromosome arm 5DS, and flanked by the markers Bwm16 and Cfd81/Bwm21 at 5.0 and 0.9 cM, respectively. Allelism tests further confirmed PmSub was allelic with documented Pm2 alleles. Then, homologous sequences of Pm2a related sequence was cloned from Subtil and Chinese Spring. It was completely identical to the reported Pm2a sequence, but significantly different from that of Chinese Spring. A marker SWGI067 was developed based on the sequence divergence of homologous sequence in Subtil and Chinese Spring. SWGI067 was closely linked to PmSub, indicating that the gene PmSub itself was different from the cloned Pm2a related sequence. Meanwhile, Subtil produced significantly different reaction pattern compared with other genotypes with Pm genes at or near Pm2 locus. Therefore, PmSub was most likely a new allele of Pm2. PmSub has opportunities for marker-assisted selecting for high-efficiency wheat improvement.
Collapse
|
20
|
Cui F, Zhang N, Fan XL, Zhang W, Zhao CH, Yang LJ, Pan RQ, Chen M, Han J, Zhao XQ, Ji J, Tong YP, Zhang HX, Jia JZ, Zhao GY, Li JM. Utilization of a Wheat660K SNP array-derived high-density genetic map for high-resolution mapping of a major QTL for kernel number. Sci Rep 2017. [PMID: 28630475 DOI: 10.1038/s41598-017-04028-63] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023] Open
Abstract
In crop plants, a high-density genetic linkage map is essential for both genetic and genomic researches. The complexity and the large size of wheat genome have hampered the acquisition of a high-resolution genetic map. In this study, we report a high-density genetic map based on an individual mapping population using the Affymetrix Wheat660K single-nucleotide polymorphism (SNP) array as a probe in hexaploid wheat. The resultant genetic map consisted of 119 566 loci spanning 4424.4 cM, and 119 001 of those loci were SNP markers. This genetic map showed good collinearity with the 90 K and 820 K consensus genetic maps and was also in accordance with the recently released wheat whole genome assembly. The high-density wheat genetic map will provide a major resource for future genetic and genomic research in wheat. Moreover, a comparative genomics analysis among gramineous plant genomes was conducted based on the high-density wheat genetic map, providing an overview of the structural relationships among theses gramineous plant genomes. A major stable quantitative trait locus (QTL) for kernel number per spike was characterized, providing a solid foundation for the future high-resolution mapping and map-based cloning of the targeted QTL.
Collapse
Affiliation(s)
- Fa Cui
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050022, China
- Genetic Improvement Centre of Agricultural and Forest Crops, College of Agriculture, Ludong Unversity, Yan'tai, 264025, China
- State Key Laboratory of Plant Cell and Chromosomal Engineering, Chinese Academy of Sciences, Beijing, 100101, China
| | - Na Zhang
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050022, China
- University of Chinese Academy of Sciences, Beijing, 10049, China
| | - Xiao-Li Fan
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050022, China
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Wei Zhang
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050022, China.
- State Key Laboratory of Plant Cell and Chromosomal Engineering, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Chun-Hua Zhao
- Genetic Improvement Centre of Agricultural and Forest Crops, College of Agriculture, Ludong Unversity, Yan'tai, 264025, China
| | - Li-Juan Yang
- Xinxiang Academy of Agricultural Sciences, Xinxiang, 453000, China
| | - Rui-Qing Pan
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050022, China
- University of Chinese Academy of Sciences, Beijing, 10049, China
| | - Mei Chen
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050022, China
- University of Chinese Academy of Sciences, Beijing, 10049, China
| | - Jie Han
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050022, China
- University of Chinese Academy of Sciences, Beijing, 10049, China
| | - Xue-Qiang Zhao
- State Key Laboratory of Plant Cell and Chromosomal Engineering, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jun Ji
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050022, China
- State Key Laboratory of Plant Cell and Chromosomal Engineering, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yi-Ping Tong
- State Key Laboratory of Plant Cell and Chromosomal Engineering, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hong-Xia Zhang
- Genetic Improvement Centre of Agricultural and Forest Crops, College of Agriculture, Ludong Unversity, Yan'tai, 264025, China
| | - Ji-Zeng Jia
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Guang-Yao Zhao
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Jun-Ming Li
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050022, China.
- State Key Laboratory of Plant Cell and Chromosomal Engineering, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
21
|
Utilization of a Wheat660K SNP array-derived high-density genetic map for high-resolution mapping of a major QTL for kernel number. Sci Rep 2017. [PMID: 28630475 PMCID: PMC5476560 DOI: 10.1038/s41598-017-04028-6] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
In crop plants, a high-density genetic linkage map is essential for both genetic and genomic researches. The complexity and the large size of wheat genome have hampered the acquisition of a high-resolution genetic map. In this study, we report a high-density genetic map based on an individual mapping population using the Affymetrix Wheat660K single-nucleotide polymorphism (SNP) array as a probe in hexaploid wheat. The resultant genetic map consisted of 119 566 loci spanning 4424.4 cM, and 119 001 of those loci were SNP markers. This genetic map showed good collinearity with the 90 K and 820 K consensus genetic maps and was also in accordance with the recently released wheat whole genome assembly. The high-density wheat genetic map will provide a major resource for future genetic and genomic research in wheat. Moreover, a comparative genomics analysis among gramineous plant genomes was conducted based on the high-density wheat genetic map, providing an overview of the structural relationships among theses gramineous plant genomes. A major stable quantitative trait locus (QTL) for kernel number per spike was characterized, providing a solid foundation for the future high-resolution mapping and map-based cloning of the targeted QTL.
Collapse
|
22
|
Montenegro JD, Golicz AA, Bayer PE, Hurgobin B, Lee H, Chan CKK, Visendi P, Lai K, Doležel J, Batley J, Edwards D. The pangenome of hexaploid bread wheat. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 90:1007-1013. [PMID: 28231383 DOI: 10.1111/tpj.13515] [Citation(s) in RCA: 215] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 02/06/2017] [Indexed: 05/19/2023]
Abstract
There is an increasing understanding that variation in gene presence-absence plays an important role in the heritability of agronomic traits; however, there have been relatively few studies on variation in gene presence-absence in crop species. Hexaploid wheat is one of the most important food crops in the world and intensive breeding has reduced the genetic diversity of elite cultivars. Major efforts have produced draft genome assemblies for the cultivar Chinese Spring, but it is unknown how well this represents the genome diversity found in current modern elite cultivars. In this study we build an improved reference for Chinese Spring and explore gene diversity across 18 wheat cultivars. We predict a pangenome size of 140 500 ± 102 genes, a core genome of 81 070 ± 1631 genes and an average of 128 656 genes in each cultivar. Functional annotation of the variable gene set suggests that it is enriched for genes that may be associated with important agronomic traits. In addition to variation in gene presence, more than 36 million intervarietal single nucleotide polymorphisms were identified across the pangenome. This study of the wheat pangenome provides insight into genome diversity in elite wheat as a basis for genomics-based improvement of this important crop. A wheat pangenome, GBrowse, is available at http://appliedbioinformatics.com.au/cgi-bin/gb2/gbrowse/WheatPan/, and data are available to download from http://wheatgenome.info/wheat_genome_databases.php.
Collapse
Affiliation(s)
- Juan D Montenegro
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, Australia
| | - Agnieszka A Golicz
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, Australia
- School of Plant Biology, University of Western Australia, Crawley, WA, 6009, Australia
| | - Philipp E Bayer
- School of Plant Biology, University of Western Australia, Crawley, WA, 6009, Australia
| | - Bhavna Hurgobin
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, Australia
- School of Plant Biology, University of Western Australia, Crawley, WA, 6009, Australia
| | - HueyTyng Lee
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, Australia
- School of Plant Biology, University of Western Australia, Crawley, WA, 6009, Australia
| | - Chon-Kit Kenneth Chan
- School of Plant Biology, University of Western Australia, Crawley, WA, 6009, Australia
| | - Paul Visendi
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, Australia
| | | | - Jaroslav Doležel
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, CZ-783 71, Olomouc, Czech Republic
| | - Jacqueline Batley
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, Australia
- School of Plant Biology, University of Western Australia, Crawley, WA, 6009, Australia
- Institute of Agriculture, University of Western Australia, Crawley, WA, 6009, Australia
| | - David Edwards
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, Australia
- School of Plant Biology, University of Western Australia, Crawley, WA, 6009, Australia
- Institute of Agriculture, University of Western Australia, Crawley, WA, 6009, Australia
| |
Collapse
|
23
|
Wen W, He Z, Gao F, Liu J, Jin H, Zhai S, Qu Y, Xia X. A High-Density Consensus Map of Common Wheat Integrating Four Mapping Populations Scanned by the 90K SNP Array. FRONTIERS IN PLANT SCIENCE 2017; 8:1389. [PMID: 28848588 PMCID: PMC5552701 DOI: 10.3389/fpls.2017.01389] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 07/25/2017] [Indexed: 05/04/2023]
Abstract
A high-density consensus map is a powerful tool for gene mapping, cloning and molecular marker-assisted selection in wheat breeding. The objective of this study was to construct a high-density, single nucleotide polymorphism (SNP)-based consensus map of common wheat (Triticum aestivum L.) by integrating genetic maps from four recombinant inbred line populations. The populations were each genotyped using the wheat 90K Infinium iSelect SNP assay. A total of 29,692 SNP markers were mapped on 21 linkage groups corresponding to 21 hexaploid wheat chromosomes, covering 2,906.86 cM, with an overall marker density of 10.21 markers/cM. Compared with the previous maps based on the wheat 90K SNP chip detected 22,736 (76.6%) of the SNPs with consistent chromosomal locations, whereas 1,974 (6.7%) showed different chromosomal locations, and 4,982 (16.8%) were newly mapped. Alignment of the present consensus map and the wheat expressed sequence tags (ESTs) Chromosome Bin Map enabled assignment of 1,221 SNP markers to specific chromosome bins and 819 ESTs were integrated into the consensus map. The marker orders of the consensus map were validated based on physical positions on the wheat genome with Spearman rank correlation coefficients ranging from 0.69 (4D) to 0.97 (1A, 4B, 5B, and 6A), and were also confirmed by comparison with genetic position on the previously 40K SNP consensus map with Spearman rank correlation coefficients ranging from 0.84 (6D) to 0.99 (6A). Chromosomal rearrangements reported previously were confirmed in the present consensus map and new putative rearrangements were identified. In addition, an integrated consensus map was developed through the combination of five published maps with ours, containing 52,607 molecular markers. The consensus map described here provided a high-density SNP marker map and a reliable order of SNPs, representing a step forward in mapping and validation of chromosomal locations of SNPs on the wheat 90K array. Moreover, it can be used as a reference for quantitative trait loci (QTL) mapping to facilitate exploitation of genes and QTL in wheat breeding.
Collapse
Affiliation(s)
- Weie Wen
- College of Agronomy, Xinjiang Agricultural UniversityUrumqi, China
- National Wheat Improvement Center, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
| | - Zhonghu He
- National Wheat Improvement Center, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
- International Maize and Wheat Improvement Center (CIMMYT)Beijing, China
| | - Fengmei Gao
- Crop Breeding Institute, Heilongjiang Academy of Agricultural SciencesHarbin, China
| | - Jindong Liu
- National Wheat Improvement Center, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
| | - Hui Jin
- National Wheat Improvement Center, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
| | - Shengnan Zhai
- National Wheat Improvement Center, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
| | - Yanying Qu
- College of Agronomy, Xinjiang Agricultural UniversityUrumqi, China
- *Correspondence: Yanying Qu, Xianchun Xia,
| | - Xianchun Xia
- National Wheat Improvement Center, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
- *Correspondence: Yanying Qu, Xianchun Xia,
| |
Collapse
|
24
|
Shi W, Hao C, Zhang Y, Cheng J, Zhang Z, Liu J, Yi X, Cheng X, Sun D, Xu Y, Zhang X, Cheng S, Guo P, Guo J. A Combined Association Mapping and Linkage Analysis of Kernel Number Per Spike in Common Wheat ( Triticum aestivum L.). FRONTIERS IN PLANT SCIENCE 2017; 8:1412. [PMID: 28868056 PMCID: PMC5563363 DOI: 10.3389/fpls.2017.01412] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 07/31/2017] [Indexed: 05/18/2023]
Abstract
Kernel number per spike (KNPS) in wheat is a key factor that limits yield improvement. In this study, we genotyped a set of 264 cultivars, and a RIL population derived from the cross Yangmai 13/C615 using the 90 K wheat iSelect SNP array. We detected 62 significantly associated signals for KNPS at 47 single nucleotide polymorphism (SNP) loci through genome-wide association analysis of data obtained from multiple environments. These loci were on 19 chromosomes, and the phenotypic variation attributable to each one ranged from 1.53 to 39.52%. Twelve (25.53%) of the loci were also significantly associated with KNPS in the RIL population grown in multiple environments. For example, BS00022896_51-2ATT , BobWhite_c10539_201-2DAA , Excalibur_c73633_120-3BGG , and Kukri_c35508_426-7DTT were significantly associated with KNPS in all environments. Our findings demonstrate the effective integration of association mapping and linkage analysis for KNPS, and underpin KNPS as a target trait for marker-assisted selection and genetic fine mapping.
Collapse
Affiliation(s)
- Weiping Shi
- College of Agronomy, Shanxi Agricultural UniversityJinzhong, China
| | - Chenyang Hao
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
| | - Yong Zhang
- Key Laboratory of Wheat Biology and Genetic Improvement for Low and Middle Yangtze Valley (Ministry of Agriculture), Lixiahe Agricultural Institute of Jiangsu ProvinceYangzhou, China
| | - Jingye Cheng
- College of Agronomy, Yangzhou UniversityYangzhou, China
| | - Zheng Zhang
- College of Agronomy, Shanxi Agricultural UniversityJinzhong, China
| | - Jian Liu
- Key Laboratory of Wheat Biology and Genetic Improvement for Low and Middle Yangtze Valley (Ministry of Agriculture), Lixiahe Agricultural Institute of Jiangsu ProvinceYangzhou, China
| | - Xin Yi
- Key Laboratory of Wheat Biology and Genetic Improvement for Low and Middle Yangtze Valley (Ministry of Agriculture), Lixiahe Agricultural Institute of Jiangsu ProvinceYangzhou, China
| | - Xiaoming Cheng
- Key Laboratory of Wheat Biology and Genetic Improvement for Low and Middle Yangtze Valley (Ministry of Agriculture), Lixiahe Agricultural Institute of Jiangsu ProvinceYangzhou, China
| | - Daizhen Sun
- College of Agronomy, Shanxi Agricultural UniversityJinzhong, China
| | - Yanhao Xu
- Hubei Collaborative Innovation Centre for Grain Industry and College of Agriculture, Yangtze UniversityJingzhou, China
| | - Xueyong Zhang
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
| | - Shunhe Cheng
- Key Laboratory of Wheat Biology and Genetic Improvement for Low and Middle Yangtze Valley (Ministry of Agriculture), Lixiahe Agricultural Institute of Jiangsu ProvinceYangzhou, China
- Shunhe Cheng
| | - Pingyi Guo
- College of Agronomy, Shanxi Agricultural UniversityJinzhong, China
- Pingyi Guo
| | - Jie Guo
- College of Agronomy, Shanxi Agricultural UniversityJinzhong, China
- *Correspondence: Jie Guo
| |
Collapse
|
25
|
Belamkar V, Farmer AD, Weeks NT, Kalberer SR, Blackmon WJ, Cannon SB. Genomics-assisted characterization of a breeding collection of Apios americana, an edible tuberous legume. Sci Rep 2016; 6:34908. [PMID: 27721469 PMCID: PMC5056515 DOI: 10.1038/srep34908] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 09/20/2016] [Indexed: 11/16/2022] Open
Abstract
For species with potential as new crops, rapid improvement may be facilitated by new genomic methods. Apios (Apios americana Medik.), once a staple food source of Native American Indians, produces protein-rich tubers, tolerates a wide range of soils, and symbiotically fixes nitrogen. We report the first high-quality de novo transcriptome assembly, an expression atlas, and a set of 58,154 SNP and 39,609 gene expression markers (GEMs) for characterization of a breeding collection. Both SNPs and GEMs identify six genotypic clusters in the collection. Transcripts mapped to the Phaseolus vulgaris genome-another phaseoloid legume with the same chromosome number-provide provisional genetic locations for 46,852 SNPs. Linkage disequilibrium decays within 10 kb (based on the provisional genetic locations), consistent with outcrossing reproduction. SNPs and GEMs identify more than 21 marker-trait associations for at least 11 traits. This study demonstrates a holistic approach for mining plant collections to accelerate crop improvement.
Collapse
Affiliation(s)
- Vikas Belamkar
- Interdepartmental Genetics, Iowa State University, Ames, IA 50011, USA
- Department of Agronomy, Iowa State University, Ames, IA 50011, USA
| | | | - Nathan T. Weeks
- United States Department of Agriculture–Agricultural Research Service, Corn Insects and Crop Genetics Research Unit, Ames, IA 50011, USA
| | - Scott R. Kalberer
- United States Department of Agriculture–Agricultural Research Service, Corn Insects and Crop Genetics Research Unit, Ames, IA 50011, USA
| | - William J. Blackmon
- Department of Horticulture, Louisiana Agricultural Experiment Station, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA
| | - Steven B. Cannon
- Department of Agronomy, Iowa State University, Ames, IA 50011, USA
- United States Department of Agriculture–Agricultural Research Service, Corn Insects and Crop Genetics Research Unit, Ames, IA 50011, USA
| |
Collapse
|
26
|
Lu Y, Yao M, Zhang J, Song L, Liu W, Yang X, Li X, Li L. Genetic analysis of a novel broad-spectrum powdery mildew resistance gene from the wheat-Agropyron cristatum introgression line Pubing 74. PLANTA 2016; 244:713-23. [PMID: 27125388 DOI: 10.1007/s00425-016-2538-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 04/20/2016] [Indexed: 05/24/2023]
Abstract
A novel broad-spectrum powdery mildew resistance gene PmPB74 was identified in wheat- Agropyron cristatum introgression line Pubing 74. Development of wheat cultivars with broad-spectrum, durable resistance to powdery mildew has been restricted by lack of superior genetic resources. In this study, a wheat-A. cristatum introgression line Pubing 74, originally selected from a wide cross between the common wheat cultivar Fukuhokomugi (Fukuho) and Agropyron cristatum (L.) Gaertn (2n = 4x = 28; genome PPPP), displayed resistance to powdery mildew at both the seedling and adult stages. The putative alien chromosomal fragment in Pubing 74 was below the detection limit of genomic in situ hybridization (GISH), but evidence for other non-GISH-detectable introgressions was provided by the presence of three STS markers specific to A. cristatum. Genetic analysis indicated that Pubing 74 carried a single dominant gene for powdery mildew resistance, temporarily designated PmPB74. Molecular mapping showed that PmPB74 was located on wheat chromosome arm 5DS, and flanked by markers Xcfd81 and HRM02 at genetic distances of 2.5 and 1.7 cM, respectively. Compared with other lines with powdery mildew resistance gene(s) on wheat chromosome arm 5DS, Pubing 74 was resistant to all 28 Blumeria graminis f. sp tritici (Bgt) isolates from different wheat-producing regions of northern China. Allelism tests indicated that PmPB74 was not allelic to PmPB3558 or Pm2. Our work showed that PmPB74 is a novel gene with broad resistance to powdery mildew, and hence will be helpful in broadening the genetic basis of powdery mildew resistance in wheat.
Collapse
Affiliation(s)
- Yuqing Lu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Miaomiao Yao
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jinpeng Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Liqiang Song
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Weihua Liu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xinming Yang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiuquan Li
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Lihui Li
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
27
|
Gimode D, Odeny DA, de Villiers EP, Wanyonyi S, Dida MM, Mneney EE, Muchugi A, Machuka J, de Villiers SM. Identification of SNP and SSR Markers in Finger Millet Using Next Generation Sequencing Technologies. PLoS One 2016; 11:e0159437. [PMID: 27454301 PMCID: PMC4959724 DOI: 10.1371/journal.pone.0159437] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 07/01/2016] [Indexed: 01/18/2023] Open
Abstract
Finger millet is an important cereal crop in eastern Africa and southern India with excellent grain storage quality and unique ability to thrive in extreme environmental conditions. Since negligible attention has been paid to improving this crop to date, the current study used Next Generation Sequencing (NGS) technologies to develop both Simple Sequence Repeat (SSR) and Single Nucleotide Polymorphism (SNP) markers. Genomic DNA from cultivated finger millet genotypes KNE755 and KNE796 was sequenced using both Roche 454 and Illumina technologies. Non-organelle sequencing reads were assembled into 207 Mbp representing approximately 13% of the finger millet genome. We identified 10,327 SSRs and 23,285 non-homeologous SNPs and tested 101 of each for polymorphism across a diverse set of wild and cultivated finger millet germplasm. For the 49 polymorphic SSRs, the mean polymorphism information content (PIC) was 0.42, ranging from 0.16 to 0.77. We also validated 92 SNP markers, 80 of which were polymorphic with a mean PIC of 0.29 across 30 wild and 59 cultivated accessions. Seventy-six of the 80 SNPs were polymorphic across 30 wild germplasm with a mean PIC of 0.30 while only 22 of the SNP markers showed polymorphism among the 59 cultivated accessions with an average PIC value of 0.15. Genetic diversity analysis using the polymorphic SNP markers revealed two major clusters; one of wild and another of cultivated accessions. Detailed STRUCTURE analysis confirmed this grouping pattern and further revealed 2 sub-populations within wild E. coracana subsp. africana. Both STRUCTURE and genetic diversity analysis assisted with the correct identification of the new germplasm collections. These polymorphic SSR and SNP markers are a significant addition to the existing 82 published SSRs, especially with regard to the previously reported low polymorphism levels in finger millet. Our results also reveal an unexploited finger millet genetic resource that can be included in the regional breeding programs in order to efficiently optimize productivity.
Collapse
Affiliation(s)
- Davis Gimode
- Kenyatta University, P.O. Box 43844–00100, Nairobi, Kenya
| | | | | | | | | | - Emmarold E. Mneney
- Mikocheni Agricultural Research Institute, P.O. Box 6226, Dar-Es-Salaam, Tanzania
| | - Alice Muchugi
- Kenyatta University, P.O. Box 43844–00100, Nairobi, Kenya
- ICRAF-Nairobi, P.O Box 30677, Nairobi, Kenya
| | - Jesse Machuka
- Kenyatta University, P.O. Box 43844–00100, Nairobi, Kenya
| | | |
Collapse
|
28
|
Ma P, Xu H, Li L, Zhang H, Han G, Xu Y, Fu X, Zhang X, An D. Characterization of a New Pm2 Allele Conferring Powdery Mildew Resistance in the Wheat Germplasm Line FG-1. FRONTIERS IN PLANT SCIENCE 2016; 7:546. [PMID: 27200022 PMCID: PMC4844600 DOI: 10.3389/fpls.2016.00546] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 04/08/2016] [Indexed: 05/04/2023]
Abstract
Powdery mildew has a negative impact on wheat production. Novel host resistance increases the diversity of resistance genes and helps to control the disease. In this study, wheat line FG-1 imported from France showed a high level of powdery mildew resistance at both the seedling and adult stages. An F2 population and F2:3 families from the cross FG-1 × Mingxian 169 both fit Mendelian ratios for a single dominant resistance gene when tested against multiple avirulent Blumeria tritici f. sp. tritici (Bgt) races. This gene was temporarily designated PmFG. PmFG was mapped on the multi-allelic Pm2 locus of chromosome 5DS using seven SSR, 10 single nucleotide polymorphism (SNP)-derived and two SCAR markers with the flanking markers Xbwm21/Xcfd81/Xscar112 (distal) and Xbwm25 (proximal) at 0.3 and 0.5 cM being the closest. Marker SCAR203 co-segregated with PmFG. Allelism tests between PmFG and documented Pm2 alleles confirmed that PmFG was allelic with Pm2. Line FG-1 produced a significantly different reaction pattern compared to other lines with genes at or near Pm2 when tested against 49 Bgt isolates. The PmFG-linked marker alleles detected by the SNP-derived markers revealed significant variation between FG-1 and other lines with genes at or near Pm2. It was concluded that PmFG is a new allele at the Pm2 locus. Data from seven closely linked markers tested on 31 wheat cultivars indicated opportunities for marker-assisted pyramiding of this gene with other genes for powdery mildew resistance and additional traits.
Collapse
Affiliation(s)
- Pengtao Ma
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology - Chinese Academy of Sciences Shijiazhuang, China
| | - Hongxng Xu
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology - Chinese Academy of Sciences Shijiazhuang, China
| | - Lihui Li
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science - Chinese Academy of Agricultural Sciences Beijing, China
| | - Hongxia Zhang
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology - Chinese Academy of Sciences Shijiazhuang, China
| | - Guohao Han
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology - Chinese Academy of Sciences Shijiazhuang, China
| | - Yunfeng Xu
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology - Chinese Academy of Sciences Shijiazhuang, China
| | - Xiaoyi Fu
- Shijiazhuang Academy of Agricultural and Forestry Sciences Shijiazhuang, China
| | - Xiaotian Zhang
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology - Chinese Academy of Sciences Shijiazhuang, China
| | - Diaoguo An
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology - Chinese Academy of Sciences Shijiazhuang, China
| |
Collapse
|
29
|
Zhai S, He Z, Wen W, Jin H, Liu J, Zhang Y, Liu Z, Xia X. Genome-wide linkage mapping of flour color-related traits and polyphenol oxidase activity in common wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2016; 129:377-94. [PMID: 26602234 DOI: 10.1007/s00122-015-2634-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Accepted: 11/04/2015] [Indexed: 05/08/2023]
Abstract
KEY MESSAGE Fifty-six QTL for flour color-related traits and polyphenol oxidase activity were identified using a genome-wide linkage mapping of data from a RIL population derived from a Gaocheng 8901/Zhoumai 16 cross. ABSTRACT Flour color-related traits, including L*, a*, b*, yellow pigment content (YPC), and polyphenol oxidase (PPO) activity are important parameters influencing the quality of wheat end-use products. Mapping quantitative trait loci (QTL) for these traits and characterization of candidate genes are important for improving wheat quality. The aims of this study were to identify QTL for flour color-related traits and PPO activity and to characterize candidate genes using a high-density genetic linkage map in a common wheat recombinant inbred line (RIL) population derived from a cross between Gaocheng 8901 and Zhoumai 16. A linkage map was constructed by genotyping the RILs with the wheat 90 K iSelect array. Fifty-six QTL were mapped on 35 chromosome regions on homoeologous groups 1, 2, 5 and 7 chromosomes, and chromosomes 3B, 4A, 4B and 6B. Four QTL were for PPO activity, and the others were for flour color-related traits. Compared with previous studies, five QTL for a*, two for b*, one for L*, one for YPC and one for PPO activity were new. The new QTL on chromosome 2DL was involved in both a* and YPC, and another on chromosome 7DS affected both a* and L*. The scan for SNP sequences tightly linked to QTL for flour color-related traits against the wheat and/or related cereals genomes identified six candidate genes significantly related to these traits, and five of them were associated with the terpenoid backbone biosynthesis pathway. The high-density genetic linkage map of Gaocheng 8901/Zhoumai 16 represents a useful tool to identify QTL for important quality traits and candidate genes.
Collapse
Affiliation(s)
- Shengnan Zhai
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
- Department of Plant Genetics and Breeding/State Key Laboratory for Agrobiotechnology, China Agricultural University, 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Zhonghu He
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
- International Maize and Wheat Improvement Center (CIMMYT) China Office, c/o CAAS, 12 Zhongguancun South Street, Beijing, 100081, China
| | - Weie Wen
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
- College of Agronomy, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi, Xinjiang, 830052, China
| | - Hui Jin
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Jindong Liu
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Yong Zhang
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Zhiyong Liu
- Department of Plant Genetics and Breeding/State Key Laboratory for Agrobiotechnology, China Agricultural University, 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Xianchun Xia
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China.
| |
Collapse
|
30
|
Shavrukov Y. Comparison of SNP and CAPS markers application in genetic research in wheat and barley. BMC PLANT BIOLOGY 2016; 16 Suppl 1:11. [PMID: 26821936 PMCID: PMC4895257 DOI: 10.1186/s12870-015-0689-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
BACKGROUND Barley and bread wheat show large differences in frequencies of Single Nucleotide Polymorphism (SNP) as determined from genome-wide studies. These frequencies have been estimated as 2.4-3 times higher in the entire barley genome than within each diploid genomes of wheat (A, B or D). However, barley SNPs within individual genes occur significantly more frequently than quoted. Differences between wheat and barley are based on the origin and evolutionary history of the species. Bread wheat contains rarer SNPs due to the double genetic 'bottle-neck' created by natural hybridisation and spontaneous polyploidisation. Furthermore, wheat has the lowest level of useful SNP-derived markers while barley is estimated to have the highest level of polymorphism. RESULTS Different strategies are required for the development of suitable molecular markers in these cereal species. For example, SNP markers based on high-throughput technology (Infinium or KASP) are very effective and useful in both barley and bread wheat. In contrast, Cleaved Amplified Polymorphic Sequences (CAPS) are more widely and successfully employed in small-scale experiments with highly polymorphic genetic regions containing multiple SNPs in barley, but not in wheat. However, preliminary 'in silico' search databases for assessing the potential value of SNPs have yet to be developed. CONCLUSIONS This mini-review summarises results supporting the development of different strategies for the application of effective SNP and CAPS markers in wheat and barley.
Collapse
Affiliation(s)
- Yuri Shavrukov
- School of Agriculture, Food and Wine, University of Adelaide, Adelaide, Australia.
- Department of Biological Sciences, Flinders University, Adelaide, Australia.
| |
Collapse
|
31
|
Fu D, Mason AS, Xiao M, Yan H. Effects of genome structure variation, homeologous genes and repetitive DNA on polyploid crop research in the age of genomics. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 242:37-46. [PMID: 26566823 DOI: 10.1016/j.plantsci.2015.09.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Revised: 09/10/2015] [Accepted: 09/22/2015] [Indexed: 06/05/2023]
Abstract
Compared to diploid species, allopolyploid crop species possess more complex genomes, higher productivity, and greater adaptability to changing environments. Next generation sequencing techniques have produced high-density genetic maps, whole genome sequences, transcriptomes and epigenomes for important polyploid crops. However, several problems interfere with the full application of next generation sequencing techniques to these crops. Firstly, different types of genomic variation affect sequence assembly and QTL mapping. Secondly, duplicated or homoeologous genes can diverge in function and then lead to emergence of many minor QTL, which increases difficulties in fine mapping, cloning and marker assisted selection. Thirdly, repetitive DNA sequences arising in polyploid crop genomes also impact sequence assembly, and are increasingly being shown to produce small RNAs to regulate gene expression and hence phenotypic traits. We propose that these three key features should be considered together when analyzing polyploid crop genomes. It is apparent that dissection of genomic structural variation, elucidation of the function and mechanism of interaction of homoeologous genes, and investigation of the de novo roles of repeat sequences in agronomic traits are necessary for genomics-based crop breeding in polyploids.
Collapse
Affiliation(s)
- Donghui Fu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Agronomy College, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Annaliese S Mason
- Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Meili Xiao
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Agronomy College, Jiangxi Agricultural University, Nanchang 330045, China
| | - Hui Yan
- Key Laboratory of Poyang Lake Basin Agricultural Resources and Ecology of Jiangxi Province, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
32
|
Ribeiro A, Golicz A, Hackett CA, Milne I, Stephen G, Marshall D, Flavell AJ, Bayer M. An investigation of causes of false positive single nucleotide polymorphisms using simulated reads from a small eukaryote genome. BMC Bioinformatics 2015; 16:382. [PMID: 26558718 PMCID: PMC4642669 DOI: 10.1186/s12859-015-0801-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 10/29/2015] [Indexed: 12/30/2022] Open
Abstract
Background Single Nucleotide Polymorphisms (SNPs) are widely used molecular markers, and their use has increased massively since the inception of Next Generation Sequencing (NGS) technologies, which allow detection of large numbers of SNPs at low cost. However, both NGS data and their analysis are error-prone, which can lead to the generation of false positive (FP) SNPs. We explored the relationship between FP SNPs and seven factors involved in mapping-based variant calling — quality of the reference sequence, read length, choice of mapper and variant caller, mapping stringency and filtering of SNPs by read mapping quality and read depth. This resulted in 576 possible factor level combinations. We used error- and variant-free simulated reads to ensure that every SNP found was indeed a false positive. Results The variation in the number of FP SNPs generated ranged from 0 to 36,621 for the 120 million base pairs (Mbp) genome. All of the experimental factors tested had statistically significant effects on the number of FP SNPs generated and there was a considerable amount of interaction between the different factors. Using a fragmented reference sequence led to a dramatic increase in the number of FP SNPs generated, as did relaxed read mapping and a lack of SNP filtering. The choice of reference assembler, mapper and variant caller also significantly affected the outcome. The effect of read length was more complex and suggests a possible interaction between mapping specificity and the potential for contributing more false positives as read length increases. Conclusions The choice of tools and parameters involved in variant calling can have a dramatic effect on the number of FP SNPs produced, with particularly poor combinations of software and/or parameter settings yielding tens of thousands in this experiment. Between-factor interactions make simple recommendations difficult for a SNP discovery pipeline but the quality of the reference sequence is clearly of paramount importance. Our findings are also a stark reminder that it can be unwise to use the relaxed mismatch settings provided as defaults by some read mappers when reads are being mapped to a relatively unfinished reference sequence from e.g. a non-model organism in its early stages of genomic exploration. Electronic supplementary material The online version of this article (doi:10.1186/s12859-015-0801-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Antonio Ribeiro
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, Scotland, UK. .,Division of Plant Sciences, University of Dundee at JHI, Invergowrie, Dundee, DD2 5DA, Scotland, UK.
| | - Agnieszka Golicz
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, Queensland, 4072, Australia. .,Australian Centre for Plant Functional Genomics and School of Agriculture and Food Sciences, University of Queensland, Brisbane, Queensland, 4072, Australia.
| | | | - Iain Milne
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, Scotland, UK.
| | - Gordon Stephen
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, Scotland, UK.
| | - David Marshall
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, Scotland, UK.
| | - Andrew J Flavell
- Division of Plant Sciences, University of Dundee at JHI, Invergowrie, Dundee, DD2 5DA, Scotland, UK.
| | - Micha Bayer
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, Scotland, UK.
| |
Collapse
|
33
|
Doddamani D, Khan AW, Katta MAVSK, Agarwal G, Thudi M, Ruperao P, Edwards D, Varshney RK. CicArVarDB: SNP and InDel database for advancing genetics research and breeding applications in chickpea. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2015; 2015:bav078. [PMID: 26289427 PMCID: PMC4541373 DOI: 10.1093/database/bav078] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 07/22/2015] [Indexed: 11/12/2022]
Abstract
Molecular markers are valuable tools for breeders to help accelerate crop improvement. High throughput sequencing technologies facilitate the discovery of large-scale variations such as single nucleotide polymorphisms (SNPs) and simple sequence repeats (SSRs). Sequencing of chickpea genome along with re-sequencing of several chickpea lines has enabled the discovery of 4.4 million variations including SNPs and InDels. Here we report a repository of 1.9 million variations (SNPs and InDels) anchored on eight pseudomolecules in a custom database, referred as CicArVarDB that can be accessed at http://cicarvardb.icrisat.org/. It includes an easy interface for users to select variations around specific regions associated with quantitative trait loci, with embedded webBLAST search and JBrowse visualisation. We hope that this database will be immensely useful for the chickpea research community for both advancing genetics research as well as breeding applications for crop improvement. Database URL:http://cicarvardb.icrisat.org.
Collapse
Affiliation(s)
- Dadakhalandar Doddamani
- Research Program Grain Legumes, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502 324, Telangana State, India
| | - Aamir W Khan
- Research Program Grain Legumes, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502 324, Telangana State, India
| | - Mohan A V S K Katta
- Research Program Grain Legumes, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502 324, Telangana State, India
| | - Gaurav Agarwal
- Research Program Grain Legumes, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502 324, Telangana State, India
| | - Mahendar Thudi
- Research Program Grain Legumes, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502 324, Telangana State, India
| | - Pradeep Ruperao
- School of Agriculture and Food Sciences, University of Queensland, St Lucia, Queensland, Australia 4072, School of Plant Biology, The University of Western Australia, Perth, Western Australia, Australia 6009 and
| | - David Edwards
- School of Plant Biology, The University of Western Australia, Perth, Western Australia, Australia 6009 and Institute of Agriculture, The University of Western Australia, Perth, Western Australia, Australia 6009
| | - Rajeev K Varshney
- Research Program Grain Legumes, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502 324, Telangana State, India, School of Plant Biology, The University of Western Australia, Perth, Western Australia, Australia 6009 and
| |
Collapse
|
34
|
Maccaferri M, Ricci A, Salvi S, Milner SG, Noli E, Martelli PL, Casadio R, Akhunov E, Scalabrin S, Vendramin V, Ammar K, Blanco A, Desiderio F, Distelfeld A, Dubcovsky J, Fahima T, Faris J, Korol A, Massi A, Mastrangelo AM, Morgante M, Pozniak C, N'Diaye A, Xu S, Tuberosa R. A high-density, SNP-based consensus map of tetraploid wheat as a bridge to integrate durum and bread wheat genomics and breeding. PLANT BIOTECHNOLOGY JOURNAL 2015; 13:648-63. [PMID: 25424506 DOI: 10.1111/pbi.12288] [Citation(s) in RCA: 184] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 09/26/2014] [Accepted: 10/03/2014] [Indexed: 05/20/2023]
Abstract
Consensus linkage maps are important tools in crop genomics. We have assembled a high-density tetraploid wheat consensus map by integrating 13 data sets from independent biparental populations involving durum wheat cultivars (Triticum turgidum ssp. durum), cultivated emmer (T. turgidum ssp. dicoccum) and their ancestor (wild emmer, T. turgidum ssp. dicoccoides). The consensus map harboured 30 144 markers (including 26 626 SNPs and 791 SSRs) half of which were present in at least two component maps. The final map spanned 2631 cM of all 14 durum wheat chromosomes and, differently from the individual component maps, all markers fell within the 14 linkage groups. Marker density per genetic distance unit peaked at centromeric regions, likely due to a combination of low recombination rate in the centromeric regions and even gene distribution along the chromosomes. Comparisons with bread wheat indicated fewer regions with recombination suppression, making this consensus map valuable for mapping in the A and B genomes of both durum and bread wheat. Sequence similarity analysis allowed us to relate mapped gene-derived SNPs to chromosome-specific transcripts. Dense patterns of homeologous relationships have been established between the A- and B-genome maps and between nonsyntenic homeologous chromosome regions as well, the latter tracing to ancient translocation events. The gene-based homeologous relationships are valuable to infer the map location of homeologs of target loci/QTLs. Because most SNP and SSR markers were previously mapped in bread wheat, this consensus map will facilitate a more effective integration and exploitation of genes and QTL for wheat breeding purposes.
Collapse
Affiliation(s)
- Marco Maccaferri
- Department of Agricultural Sciences (DipSA), University of Bologna, Bologna, Italy
| | - Andrea Ricci
- Department of Agricultural Sciences (DipSA), University of Bologna, Bologna, Italy
| | - Silvio Salvi
- Department of Agricultural Sciences (DipSA), University of Bologna, Bologna, Italy
| | - Sara Giulia Milner
- Department of Agricultural Sciences (DipSA), University of Bologna, Bologna, Italy
| | - Enrico Noli
- Department of Agricultural Sciences (DipSA), University of Bologna, Bologna, Italy
| | | | - Rita Casadio
- Biocomputing Group, University of Bologna, Bologna, Italy
| | - Eduard Akhunov
- Department of Plant Pathology, Kansas State University, Manhattan, KS, USA
| | - Simone Scalabrin
- Istituto di Genomica Applicata, Udine, Italy
- Dipartimento di Scienze Agrarie e Ambientali, University of Udine, Udine, Italy
| | - Vera Vendramin
- Istituto di Genomica Applicata, Udine, Italy
- Dipartimento di Scienze Agrarie e Ambientali, University of Udine, Udine, Italy
| | | | - Antonio Blanco
- Dipartimento di Biologia e Chimica Agro-forestale ed ambientale, Università di Bari, Aldo Moro, Bari, Italy
| | - Francesca Desiderio
- Consiglio per la ricerca e la sperimentazione in agricoltura, Genomics Research Centre, Fiorenzuola d'Arda, Italy
| | - Assaf Distelfeld
- Faculty of Life Sciences, Department of Molecular Biology and Ecology of Plants, Tel Aviv University, Tel Aviv, Israel
| | - Jorge Dubcovsky
- Department of Plant Sciences, University of California, Davis, CA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Tzion Fahima
- Department of Evolutionary and Environmental Biology, Institute of Evolution, Faculty of Science and Science Education, University of Haifa, Haifa, Israel
| | - Justin Faris
- USDA-ARS Cereal Crops Research Unit, Fargo, ND, USA
| | - Abraham Korol
- Department of Evolutionary and Environmental Biology, Institute of Evolution, Faculty of Science and Science Education, University of Haifa, Haifa, Israel
| | - Andrea Massi
- Società Produttori Sementi Bologna (PSB), Argelato, Italy
| | - Anna Maria Mastrangelo
- Consiglio per la ricerca e la sperimentazione in agricoltura, Cereal Research Centre, Foggia, Italy
| | - Michele Morgante
- Istituto di Genomica Applicata, Udine, Italy
- Dipartimento di Scienze Agrarie e Ambientali, University of Udine, Udine, Italy
| | - Curtis Pozniak
- Crop Development Centre and Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Amidou N'Diaye
- Crop Development Centre and Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Steven Xu
- USDA-ARS Cereal Crops Research Unit, Fargo, ND, USA
| | - Roberto Tuberosa
- Department of Agricultural Sciences (DipSA), University of Bologna, Bologna, Italy
| |
Collapse
|
35
|
Fitzgerald TL, Powell JJ, Stiller J, Weese TL, Abe T, Zhao G, Jia J, McIntyre CL, Li Z, Manners JM, Kazan K. An assessment of heavy ion irradiation mutagenesis for reverse genetics in wheat (Triticum aestivum L.). PLoS One 2015; 10:e0117369. [PMID: 25719507 PMCID: PMC4342231 DOI: 10.1371/journal.pone.0117369] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Accepted: 12/22/2014] [Indexed: 11/19/2022] Open
Abstract
Reverse genetic techniques harnessing mutational approaches are powerful tools that can provide substantial insight into gene function in plants. However, as compared to diploid species, reverse genetic analyses in polyploid plants such as bread wheat can present substantial challenges associated with high levels of sequence and functional similarity amongst homoeologous loci. We previously developed a high-throughput method to identify deletions of genes within a physically mutagenized wheat population. Here we describe our efforts to combine multiple homoeologous deletions of three candidate disease susceptibility genes (TaWRKY11, TaPFT1 and TaPLDß1). We were able to produce lines featuring homozygous deletions at two of the three homoeoloci for all genes, but this was dependent on the individual mutants used in crossing. Intriguingly, despite extensive efforts, viable lines possessing homozygous deletions at all three homoeoloci could not be produced for any of the candidate genes. To investigate deletion size as a possible reason for this phenomenon, we developed an amplicon sequencing approach based on synteny to Brachypodium distachyon to assess the size of the deletions removing one candidate gene (TaPFT1) in our mutants. These analyses revealed that genomic deletions removing the locus are relatively large, resulting in the loss of multiple additional genes. The implications of this work for the use of heavy ion mutagenesis for reverse genetic analyses in wheat are discussed.
Collapse
Affiliation(s)
- Timothy L. Fitzgerald
- Commonwealth Scientific and Industrial Research Organisation, Agriculture Flagship, Queensland Bioscience Precinct, 306 Carmody Rd, St Lucia, Brisbane, QLD, 4067, Australia
- * E-mail: (TLF); (KK)
| | - Jonathan J. Powell
- Commonwealth Scientific and Industrial Research Organisation, Agriculture Flagship, Queensland Bioscience Precinct, 306 Carmody Rd, St Lucia, Brisbane, QLD, 4067, Australia
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Jiri Stiller
- Commonwealth Scientific and Industrial Research Organisation, Agriculture Flagship, Queensland Bioscience Precinct, 306 Carmody Rd, St Lucia, Brisbane, QLD, 4067, Australia
| | - Terri L. Weese
- Commonwealth Scientific and Industrial Research Organisation, Agriculture Flagship, Queensland Bioscience Precinct, 306 Carmody Rd, St Lucia, Brisbane, QLD, 4067, Australia
| | - Tomoko Abe
- RIKEN Nishina Center for Accelerator-Based Science, 2-1 Hirosawa, Wako, Saitama, 351–0198, Japan
| | - Guangyao Zhao
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jizeng Jia
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - C. Lynne McIntyre
- Commonwealth Scientific and Industrial Research Organisation, Agriculture Flagship, Queensland Bioscience Precinct, 306 Carmody Rd, St Lucia, Brisbane, QLD, 4067, Australia
| | - Zhongyi Li
- Commonwealth Scientific and Industrial Research Organisation, Agriculture Flagship, Black Mountain Laboratories, Clunies Ross St, Acton, ACT, 2601, Australia
| | - John M. Manners
- Commonwealth Scientific and Industrial Research Organisation, Agriculture Flagship, Black Mountain Laboratories, Clunies Ross St, Acton, ACT, 2601, Australia
| | - Kemal Kazan
- Commonwealth Scientific and Industrial Research Organisation, Agriculture Flagship, Queensland Bioscience Precinct, 306 Carmody Rd, St Lucia, Brisbane, QLD, 4067, Australia
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, St. Lucia, QLD, 4072, Australia
- * E-mail: (TLF); (KK)
| |
Collapse
|
36
|
Mun JH, Chung H, Chung WH, Oh M, Jeong YM, Kim N, Ahn BO, Park BS, Park S, Lim KB, Hwang YJ, Yu HJ. Construction of a reference genetic map of Raphanus sativus based on genotyping by whole-genome resequencing. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2015; 128:259-272. [PMID: 25403353 DOI: 10.1007/s00122-014-2426-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 11/02/2014] [Indexed: 06/04/2023]
Abstract
This manuscript provides a genetic map of Raphanus sativus that has been used as a reference genetic map for an ongoing genome sequencing project. The map was constructed based on genotyping by whole-genome resequencing of mapping parents and F 2 population. Raphanus sativus is an annual vegetable crop species of the Brassicaceae family and is one of the key plants in the seed industry, especially in East Asia. Assessment of the R. sativus genome provides fundamental resources for crop improvement as well as the study of crop genome structure and evolution. With the goal of anchoring genome sequence assemblies of R. sativus cv. WK10039 whose genome has been sequenced onto the chromosomes, we developed a reference genetic map based on genotyping of two parents (maternal WK10039 and paternal WK10024) and 93 individuals of the F2 mapping population by whole-genome resequencing. To develop high-confidence genetic markers, ~83 Gb of parental lines and ~591 Gb of mapping population data were generated as Illumina 100 bp paired-end reads. High stringent sequence analysis of the reads mapped to the 344 Mb of genome sequence scaffolds identified a total of 16,282 SNPs and 150 PCR-based markers. Using a subset of the markers, a high-density genetic map was constructed from the analysis of 2,637 markers spanning 1,538 cM with 1,000 unique framework loci. The genetic markers integrated 295 Mb of genome sequences to the cytogenetically defined chromosome arms. Comparative analysis of the chromosome-anchored sequences with Arabidopsis thaliana and Brassica rapa revealed that the R. sativus genome has evident triplicated sub-genome blocks and the structure of gene space is highly similar to that of B. rapa. The genetic map developed in this study will serve as fundamental genomic resources for the study of R. sativus.
Collapse
Affiliation(s)
- Jeong-Hwan Mun
- Department of Bioscience and Bioinformatics, Myongji University, Yongin, 449-728, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Ruperao P, Edwards D. Bioinformatics: identification of markers from next-generation sequence data. Methods Mol Biol 2015; 1245:29-47. [PMID: 25373747 DOI: 10.1007/978-1-4939-1966-6_3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
With the advent of sequencing technology, next-generation sequencing (NGS) technology has dramatically revolutionized plant genomics. NGS technology combined with new software tools enables the discovery, validation, and assessment of genetic markers on a large scale. Among different markers systems, simple sequence repeats (SSRs) and Single nucleotide polymorphisms (SNPs) are the markers of choice for genetics and plant breeding. SSR markers have been a choice for large-scale characterization of germplasm collections, construction of genetic maps, and QTL identification. Similarly, SNPs are the most abundant genetic variations with higher frequencies throughout the genome of plant species. This chapter discusses various tools available for genome assembly and widely focuses on SSR and SNP marker discovery.
Collapse
Affiliation(s)
- Pradeep Ruperao
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD, Australia
| | | |
Collapse
|
38
|
Abstract
The detection and analysis of genetic variation plays an important role in plant breeding and this role is increasing with the continued development of genome sequencing technologies. Molecular genetic markers are important tools to characterize genetic variation and assist with genomic breeding. Processing and storing the growing abundance of molecular marker data being produced requires the development of specific bioinformatics tools and advanced databases. Molecular marker databases range from species specific through to organism wide and often host a variety of additional related genetic, genomic, or phenotypic information. In this chapter, we will present some of the features of plant molecular genetic marker databases, highlight the various types of marker resources, and predict the potential future direction of crop marker databases.
Collapse
|
39
|
Abstract
Most plant species are known to be either ancient or recent polyploids, containing more than one genome as a result of past interspecific hybridization events (allopolyploidy) and/or genome doubling (autopolyploidy). Genotyping in polyploid species offers a set of unique challenges. Most molecular marker methodologies are made more complex by polyploidy, as multilocus alleles are generally produced when a single locus is targeted. Genotyping by sequencing is also more challenging in polyploids, with problematic assemblies of duplicated regions and difficulties in distinguishing between inter- and intragenomic polymorphisms. Strategies for identifying and overcoming the challenges of polyploidy in plant genotyping are proposed.
Collapse
Affiliation(s)
- Annaliese S Mason
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD, 4072, Australia,
| |
Collapse
|
40
|
Patel DA, Zander M, Dalton-Morgan J, Batley J. Advances in plant genotyping: where the future will take us. Methods Mol Biol 2015; 1245:1-11. [PMID: 25373745 DOI: 10.1007/978-1-4939-1966-6_1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Genetic diversity between individuals can be tracked and monitored using a range of molecular markers. These markers can detect variation ranging in scale from a single base pair up to duplications and translocations of entire chromosomal regions. The genotyping of individuals allows the detection of this variation and it has been successfully applied in plant science for many years. The increasing amounts of sequence data able to be generated using next-generation sequencing (NGS) technologies have produced a vast expansion in the rate of discovery of polymorphisms, with single nucleotide polymorphisms (SNPs) predominating as the marker of choice. This increase in polymorphic marker resources through efficient discovery, coupled with the utility of SNPs, has enabled the shift to high-throughput genotyping assays and these methods are reviewed and discussed here, alongside the recent innovations allowing increased throughput.
Collapse
Affiliation(s)
- Dhwani A Patel
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD, Australia
| | | | | | | |
Collapse
|
41
|
Lai K, Lorenc MT, Lee HC, Berkman PJ, Bayer PE, Visendi P, Ruperao P, Fitzgerald TL, Zander M, Chan CKK, Manoli S, Stiller J, Batley J, Edwards D. Identification and characterization of more than 4 million intervarietal SNPs across the group 7 chromosomes of bread wheat. PLANT BIOTECHNOLOGY JOURNAL 2015; 13:97-104. [PMID: 25147022 DOI: 10.1111/pbi.12240] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Revised: 07/07/2014] [Accepted: 07/13/2014] [Indexed: 05/19/2023]
Abstract
Despite being a major international crop, our understanding of the wheat genome is relatively poor due to its large size and complexity. To gain a greater understanding of wheat genome diversity, we have identified single nucleotide polymorphisms between 16 Australian bread wheat varieties. Whole-genome shotgun Illumina paired read sequence data were mapped to the draft assemblies of chromosomes 7A, 7B and 7D to identify more than 4 million intervarietal SNPs. SNP density varied between the three genomes, with much greater density observed on the A and B genomes than the D genome. This variation may be a result of substantial gene flow from the tetraploid Triticum turgidum, which possesses A and B genomes, during early co-cultivation of tetraploid and hexaploid wheat. In addition, we examined SNP density variation along the chromosome syntenic builds and identified genes in low-density regions which may have been selected during domestication and breeding. This study highlights the impact of evolution and breeding on the bread wheat genome and provides a substantial resource for trait association and crop improvement. All SNP data are publically available on a generic genome browser GBrowse at www.wheatgenome.info.
Collapse
Affiliation(s)
- Kaitao Lai
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, Qld, Australia; Australian Centre for Plant Functional Genomics, University of Queensland, Brisbane, Qld, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Shavrukov Y, Suchecki R, Eliby S, Abugalieva A, Kenebayev S, Langridge P. Application of next-generation sequencing technology to study genetic diversity and identify unique SNP markers in bread wheat from Kazakhstan. BMC PLANT BIOLOGY 2014; 14:258. [PMID: 25928569 PMCID: PMC4180858 DOI: 10.1186/s12870-014-0258-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 09/23/2014] [Indexed: 05/30/2023]
Abstract
BACKGROUND New SNP marker platforms offer the opportunity to investigate the relationships between wheat cultivars from different regions and assess the mechanism and processes that have led to adaptation to particular production environments. Wheat breeding has a long history in Kazakhstan and the aim of this study was to explore the relationship between key varieties from Kazakhstan and germplasm from breeding programs for other regions. RESULTS The study revealed 5,898 polymorphic markers amongst ten cultivars, of which 2,730 were mapped in the consensus genetic map. Mapped SNP markers were distributed almost equally across the A and B genomes, with between 279 and 484 markers assigned to each chromosome. Marker coverage was approximately 10-fold lower in the D genome. There were 863 SNP markers identified as unique to specific cultivars, and clusters of these markers (regions containing more than three closely mapped unique SNPs) showed specific patterns on the consensus genetic map for each cultivar. Significant intra-varietal genetic polymorphism was identified in three cultivars (Tzelinnaya 3C, Kazakhstanskaya rannespelaya and Kazakhstanskaya 15). Phylogenetic analysis based on inter-varietal polymorphism showed that the very old cultivar Erythrospermum 841 was the most genetically distinct from the other nine cultivars from Kazakhstan, falling in a clade together with the American cultivar Sonora and genotypes from Central and South Asia. The modern cultivar Kazakhstanskaya 19 also fell into a separate clade, together with the American cultivar Thatcher. The remaining eight cultivars shared a single sub-clade but were categorised into four clusters. CONCLUSION The accumulated data for SNP marker polymorphisms amongst bread wheat genotypes from Kazakhstan may be used for studying genetic diversity in bread wheat, with potential application for marker-assisted selection and the preparation of a set of genotype-specific markers.
Collapse
Affiliation(s)
- Yuri Shavrukov
- Australian Centre for Plant Functional Genomics, University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia.
| | - Radoslaw Suchecki
- Australian Centre for Plant Functional Genomics, University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia.
| | - Serik Eliby
- Australian Centre for Plant Functional Genomics, University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia.
| | - Aigul Abugalieva
- Kazakh Research Institute of Agriculture and Crop Production, Almalybak, Kazakhstan.
| | - Serik Kenebayev
- Kazakh Research Institute of Agriculture and Crop Production, Almalybak, Kazakhstan.
| | - Peter Langridge
- Australian Centre for Plant Functional Genomics, University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia.
| |
Collapse
|
43
|
Polymorphism identification and improved genome annotation of Brassica rapa through Deep RNA sequencing. G3-GENES GENOMES GENETICS 2014; 4:2065-78. [PMID: 25122667 PMCID: PMC4232532 DOI: 10.1534/g3.114.012526] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The mapping and functional analysis of quantitative traits in Brassica rapa can be greatly improved with the availability of physically positioned, gene-based genetic markers and accurate genome annotation. In this study, deep transcriptome RNA sequencing (RNA-Seq) of Brassica rapa was undertaken with two objectives: SNP detection and improved transcriptome annotation. We performed SNP detection on two varieties that are parents of a mapping population to aid in development of a marker system for this population and subsequent development of high-resolution genetic map. An improved Brassica rapa transcriptome was constructed to detect novel transcripts and to improve the current genome annotation. This is useful for accurate mRNA abundance and detection of expression QTL (eQTLs) in mapping populations. Deep RNA-Seq of two Brassica rapa genotypes—R500 (var. trilocularis, Yellow Sarson) and IMB211 (a rapid cycling variety)—using eight different tissues (root, internode, leaf, petiole, apical meristem, floral meristem, silique, and seedling) grown across three different environments (growth chamber, greenhouse and field) and under two different treatments (simulated sun and simulated shade) generated 2.3 billion high-quality Illumina reads. A total of 330,995 SNPs were identified in transcribed regions between the two genotypes with an average frequency of one SNP in every 200 bases. The deep RNA-Seq reassembled Brassica rapa transcriptome identified 44,239 protein-coding genes. Compared with current gene models of B. rapa, we detected 3537 novel transcripts, 23,754 gene models had structural modifications, and 3655 annotated proteins changed. Gaps in the current genome assembly of B. rapa are highlighted by our identification of 780 unmapped transcripts. All the SNPs, annotations, and predicted transcripts can be viewed at http://phytonetworks.ucdavis.edu/.
Collapse
|
44
|
Wang S, Wong D, Forrest K, Allen A, Chao S, Huang BE, Maccaferri M, Salvi S, Milner SG, Cattivelli L, Mastrangelo AM, Whan A, Stephen S, Barker G, Wieseke R, Plieske J, Lillemo M, Mather D, Appels R, Dolferus R, Brown‐Guedira G, Korol A, Akhunova AR, Feuillet C, Salse J, Morgante M, Pozniak C, Luo M, Dvorak J, Morell M, Dubcovsky J, Ganal M, Tuberosa R, Lawley C, Mikoulitch I, Cavanagh C, Edwards KJ, Hayden M, Akhunov E. Characterization of polyploid wheat genomic diversity using a high‐density 90 000 single nucleotide polymorphism array. PLANT BIOTECHNOLOGY JOURNAL 2014; 12:787-96. [PMID: 24646323 PMCID: PMC4265271 DOI: 10.1111/pbi.12183] [Citation(s) in RCA: 1095] [Impact Index Per Article: 109.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 01/29/2014] [Accepted: 02/05/2014] [Indexed: 05/18/2023]
Affiliation(s)
- Shichen Wang
- Department of Plant Pathology Kansas State University Manhattan KS USA
| | - Debbie Wong
- Department of Environment and Primary Industry AgriBioSciences La Trobe R&D Park Bundoora Vic. Australia
| | - Kerrie Forrest
- Department of Environment and Primary Industry AgriBioSciences La Trobe R&D Park Bundoora Vic. Australia
| | - Alexandra Allen
- School of Biological Sciences University of Bristol Bristol UK
| | - Shiaoman Chao
- US Department of Agriculture–Agricultural Research Service Biosciences Research Laboratory Fargo ND USA
| | - Bevan E. Huang
- Commonwealth Scientific and Industrial Research Organization Computational Informatics and Food Futures National Research Flagship Dutton Park Qld Australia
| | - Marco Maccaferri
- Department of Agricultural Sciences University of Bologna Bologna Italy
| | - Silvio Salvi
- Department of Agricultural Sciences University of Bologna Bologna Italy
| | - Sara G. Milner
- Department of Agricultural Sciences University of Bologna Bologna Italy
| | - Luigi Cattivelli
- Consiglio per la Ricerca e la sperimentazione in Agricoltura Genomics Research Centre Fiorenzuola d'arda Italy
| | - Anna M. Mastrangelo
- Consiglio per la Ricerca e la sperimentazione in Agricoltura Cereal Research Centre Foggia Italy
| | - Alex Whan
- Commonwealth Scientific and Industrial Research Organization Plant Industry and Food Futures National Research Flagship Canberra ACT Australia
| | - Stuart Stephen
- Commonwealth Scientific and Industrial Research Organization Plant Industry and Food Futures National Research Flagship Canberra ACT Australia
| | - Gary Barker
- School of Biological Sciences University of Bristol Bristol UK
| | | | | | - Morten Lillemo
- Department of Plant Sciences Norwegian University of Life Sciences Ås Norway
| | - Diane Mather
- Waite Research Institute School of Agriculture, Food and Wine University of Adelaide Urrbrae SA Australia
| | | | - Rudy Dolferus
- Commonwealth Scientific and Industrial Research Organization Plant Industry and Food Futures National Research Flagship Canberra ACT Australia
| | - Gina Brown‐Guedira
- US Department of Agriculture–Agricultural Research Service Eastern Regional Small Grains Genotyping Laboratory Raleigh NC USA
| | - Abraham Korol
- Department of Evolutionary and Environmental Biology and Institute of Evolution University of Haifa Mount Carmel Haifa Israel
| | - Alina R. Akhunova
- K‐State Integrated Genomics Facility Kansas State University Manhattan KS USA
| | - Catherine Feuillet
- INRA – Université Blaise Pascal, UMR 1095 Genetics Diversity and Ecophysiology of Cereals Clermont‐Ferrand France
| | - Jerome Salse
- INRA – Université Blaise Pascal, UMR 1095 Genetics Diversity and Ecophysiology of Cereals Clermont‐Ferrand France
| | - Michele Morgante
- Department of Crop and Environmental Sciences University of Udine Via delle Scienze Udine Italy
| | - Curtis Pozniak
- Crop Development Centre and Department of Plant Sciences University of Saskatchewan Saskatoon SK Canada
| | - Ming‐Cheng Luo
- Department of Plant Sciences University of California Davis CA USA
| | - Jan Dvorak
- Department of Plant Sciences University of California Davis CA USA
| | - Matthew Morell
- Commonwealth Scientific and Industrial Research Organization Plant Industry and Food Futures National Research Flagship Canberra ACT Australia
| | - Jorge Dubcovsky
- Department of Plant Sciences University of California Davis CA USA
- Howard Hughes Medical Institute Chevy Chase MD USA
| | | | - Roberto Tuberosa
- Department of Agricultural Sciences University of Bologna Bologna Italy
| | | | | | - Colin Cavanagh
- Commonwealth Scientific and Industrial Research Organization Plant Industry and Food Futures National Research Flagship Canberra ACT Australia
| | | | - Matthew Hayden
- Department of Environment and Primary Industry AgriBioSciences La Trobe R&D Park Bundoora Vic. Australia
| | - Eduard Akhunov
- Department of Plant Pathology Kansas State University Manhattan KS USA
| | | |
Collapse
|
45
|
Valluru R, Reynolds MP, Salse J. Genetic and molecular bases of yield-associated traits: a translational biology approach between rice and wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2014; 127:1463-89. [PMID: 24913362 DOI: 10.1007/s00122-014-2332-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2013] [Accepted: 05/15/2014] [Indexed: 05/21/2023]
Abstract
Transferring the knowledge bases between related species may assist in enlarging the yield potential of crop plants. Being cereals, rice and wheat share a high level of gene conservation; however, they differ at metabolic levels as a part of the environmental adaptation resulting in different yield capacities. This review focuses on the current understanding of genetic and molecular regulation of yield-associated traits in both crop species, highlights the similarities and differences and presents the putative knowledge gaps. We focus on the traits associated with phenology, photosynthesis, and assimilate partitioning and lodging resistance; the most important drivers of yield potential. Currently, there are large knowledge gaps in the genetic and molecular control of such major biological processes that can be filled in a translational biology approach in transferring genomics and genetics informations between rice and wheat.
Collapse
Affiliation(s)
- Ravi Valluru
- Wheat Physiology, Global Wheat Program, International Maize and Wheat Improvement Center (CIMMYT), 56130, Mexico DF, Mexico,
| | | | | |
Collapse
|
46
|
Iehisa JCM, Ohno R, Kimura T, Enoki H, Nishimura S, Okamoto Y, Nasuda S, Takumi S. A high-density genetic map with array-based markers facilitates structural and quantitative trait locus analyses of the common wheat genome. DNA Res 2014; 21:555-67. [PMID: 24972598 PMCID: PMC4195500 DOI: 10.1093/dnares/dsu020] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The large genome and allohexaploidy of common wheat have complicated construction of a high-density genetic map. Although improvements in the throughput of next-generation sequencing (NGS) technologies have made it possible to obtain a large amount of genotyping data for an entire mapping population by direct sequencing, including hexaploid wheat, a significant number of missing data points are often apparent due to the low coverage of sequencing. In the present study, a microarray-based polymorphism detection system was developed using NGS data obtained from complexity-reduced genomic DNA of two common wheat cultivars, Chinese Spring (CS) and Mironovskaya 808. After design and selection of polymorphic probes, 13,056 new markers were added to the linkage map of a recombinant inbred mapping population between CS and Mironovskaya 808. On average, 2.49 missing data points per marker were observed in the 201 recombinant inbred lines, with a maximum of 42. Around 40% of the new markers were derived from genic regions and 11% from repetitive regions. The low number of retroelements indicated that the new polymorphic markers were mainly derived from the less repetitive region of the wheat genome. Around 25% of the mapped sequences were useful for alignment with the physical map of barley. Quantitative trait locus (QTL) analyses of 14 agronomically important traits related to flowering, spikes, and seeds demonstrated that the new high-density map showed improved QTL detection, resolution, and accuracy over the original simple sequence repeat map.
Collapse
Affiliation(s)
- Julio Cesar Masaru Iehisa
- Laboratory of Plant Genetics, Graduate School of Agricultural Science, Kobe University, Nada-ku, Kobe 657-8501, Japan
| | - Ryoko Ohno
- Core Research Division, Organization of Advanced Science and Technology, Kobe University, Kobe, Japan
| | - Tatsuro Kimura
- Bio Research Laboratory, TOYOTA Motor Corporation, Toyota, Aichi 471-8572, Japan
| | - Hiroyuki Enoki
- Bio Research Laboratory, TOYOTA Motor Corporation, Toyota, Aichi 471-8572, Japan
| | - Satoru Nishimura
- Bio Research Laboratory, TOYOTA Motor Corporation, Toyota, Aichi 471-8572, Japan
| | - Yuki Okamoto
- Laboratory of Plant Genetics, Graduate School of Agricultural Science, Kobe University, Nada-ku, Kobe 657-8501, Japan
| | - Shuhei Nasuda
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Shigeo Takumi
- Laboratory of Plant Genetics, Graduate School of Agricultural Science, Kobe University, Nada-ku, Kobe 657-8501, Japan
| |
Collapse
|
47
|
Abstract
Differences between plant genomes range from single nucleotide polymorphisms to large-scale duplications, deletions and rearrangements. The large polymorphisms are termed structural variants (SVs). SVs have received significant attention in human genetics and were found to be responsible for various chronic diseases. However, little effort has been directed towards understanding the role of SVs in plants. Many recent advances in plant genetics have resulted from improvements in high-resolution technologies for measuring SVs, including microarray-based techniques, and more recently, high-throughput DNA sequencing. In this review we describe recent reports of SV in plants and describe the genomic technologies currently used to measure these SVs.
Collapse
|
48
|
Camilios-Neto D, Bonato P, Wassem R, Tadra-Sfeir MZ, Brusamarello-Santos LCC, Valdameri G, Donatti L, Faoro H, Weiss VA, Chubatsu LS, Pedrosa FO, Souza EM. Dual RNA-seq transcriptional analysis of wheat roots colonized by Azospirillum brasilense reveals up-regulation of nutrient acquisition and cell cycle genes. BMC Genomics 2014; 15:378. [PMID: 24886190 PMCID: PMC4042000 DOI: 10.1186/1471-2164-15-378] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 05/02/2014] [Indexed: 12/20/2022] Open
Abstract
Background The rapid growth of the world’s population demands an increase in food production that no longer can be reached by increasing amounts of nitrogenous fertilizers. Plant growth promoting bacteria (PGPB) might be an alternative to increase nitrogenous use efficiency (NUE) in important crops such wheat. Azospirillum brasilense is one of the most promising PGPB and wheat roots colonized by A. brasilense is a good model to investigate the molecular basis of plant-PGPB interaction including improvement in plant-NUE promoted by PGPB. Results We performed a dual RNA-Seq transcriptional profiling of wheat roots colonized by A. brasilense strain FP2. cDNA libraries from biological replicates of colonized and non-inoculated wheat roots were sequenced and mapped to wheat and A. brasilense reference sequences. The unmapped reads were assembled de novo. Overall, we identified 23,215 wheat expressed ESTs and 702 A. brasilense expressed transcripts. Bacterial colonization caused changes in the expression of 776 wheat ESTs belonging to various functional categories, ranging from transport activity to biological regulation as well as defense mechanism, production of phytohormones and phytochemicals. In addition, genes encoding proteins related to bacterial chemotaxi, biofilm formation and nitrogen fixation were highly expressed in the sub-set of A. brasilense expressed genes. Conclusions PGPB colonization enhanced the expression of plant genes related to nutrient up-take, nitrogen assimilation, DNA replication and regulation of cell division, which is consistent with a higher proportion of colonized root cells in the S-phase. Our data support the use of PGPB as an alternative to improve nutrient acquisition in important crops such as wheat, enhancing plant productivity and sustainability. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-378) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Emanuel M Souza
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, Curitiba, PR 81531-990, Brazil.
| |
Collapse
|
49
|
Goettel W, Xia E, Upchurch R, Wang ML, Chen P, An YQC. Identification and characterization of transcript polymorphisms in soybean lines varying in oil composition and content. BMC Genomics 2014; 15:299. [PMID: 24755115 PMCID: PMC4023607 DOI: 10.1186/1471-2164-15-299] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 04/07/2014] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Variation in seed oil composition and content among soybean varieties is largely attributed to differences in transcript sequences and/or transcript accumulation of oil production related genes in seeds. Discovery and analysis of sequence and expression variations in these genes will accelerate soybean oil quality improvement. RESULTS In an effort to identify these variations, we sequenced the transcriptomes of soybean seeds from nine lines varying in oil composition and/or total oil content. Our results showed that 69,338 distinct transcripts from 32,885 annotated genes were expressed in seeds. A total of 8,037 transcript expression polymorphisms and 50,485 transcript sequence polymorphisms (48,792 SNPs and 1,693 small Indels) were identified among the lines. Effects of the transcript polymorphisms on their encoded protein sequences and functions were predicted. The studies also provided independent evidence that the lack of FAD2-1A gene activity and a non-synonymous SNP in the coding sequence of FAB2C caused elevated oleic acid and stearic acid levels in soybean lines M23 and FAM94-41, respectively. CONCLUSIONS As a proof-of-concept, we developed an integrated RNA-seq and bioinformatics approach to identify and functionally annotate transcript polymorphisms, and demonstrated its high effectiveness for discovery of genetic and transcript variations that result in altered oil quality traits. The collection of transcript polymorphisms coupled with their predicted functional effects will be a valuable asset for further discovery of genes, gene variants, and functional markers to improve soybean oil quality.
Collapse
Affiliation(s)
- Wolfgang Goettel
- USDA-ARS, Midwest Area, Plant Genetics Research Unit at Donald Danforth Plant Science Center, 975 N Warson Rd, St. Louis, MO 63132, USA
| | - Eric Xia
- 508 East Stoughton Street, Champaign, IL 61820, USA
| | - Robert Upchurch
- USDA-ARS, Soybean and Nitrogen Fixation Research, 2417 Gardner Hall, Raleigh, NC 27695, USA
| | - Ming-Li Wang
- USDA-ARS, Plant Genetic Resources Conservation Unit, 1109 Experiment St., Griffin, GA 30223, USA
| | - Pengyin Chen
- Department of Crop, Soil and Environmental Sciences, University of Arkansas, Fayetteville, AR 72701, USA
| | - Yong-Qiang Charles An
- USDA-ARS, Midwest Area, Plant Genetics Research Unit at Donald Danforth Plant Science Center, 975 N Warson Rd, St. Louis, MO 63132, USA
| |
Collapse
|
50
|
Abstract
Molecular genetic markers represent one of the most powerful tools for the analysis of variation between plant genomes. Molecular marker technology has developed rapidly over the last decade, with the introduction of new DNA sequencing methods and the development of high-throughput genotyping methods. Single nucleotide polymorphisms (SNPs) now dominate applications in modern plant genetic analysis. The reducing cost of DNA sequencing and increasing availability of large sequence data sets permit the mining of this data for large numbers of SNPs. These may then be used in applications such as genetic linkage analysis and trait mapping, diversity analysis, association studies, and marker-assisted selection. Here we describe automated methods for the discovery of SNP molecular markers and new technologies for high-throughput, low-cost molecular marker genotyping. Examples include SNP discovery using autoSNPdb and wheatgenome.info as well as SNP genotyping using Illumina's GoldenGate™ and Infinium™ methods.
Collapse
|