1
|
Moazzen H, Gharibzadeh S, Bakouie F. Exploring perceptual grouping by proximity principle in multistable dot lattices: Dissociation between vision-for-perception and vision-for-action. Atten Percept Psychophys 2024; 86:2053-2077. [PMID: 39090511 DOI: 10.3758/s13414-024-02928-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2024] [Indexed: 08/04/2024]
Abstract
Perceptual grouping, a fundamental mechanism in our visual system, significantly influences our interpretation of and interaction with the surrounding world. This study explores the impact of the proximity principle from the perspective of the Two Visual Systems (TVS) model. The TVS model argues that the visual system comprises two distinct streams: the ventral stream, which forms the neural basis for "vision-for-perception," and the dorsal stream, which underlies "vision-for-action." We designed a perceptual grouping task using dot lattices as well as a line-orientation discrimination task. Data were collected using vocal and mouse methods for the vision-for-perception mode, and joystick and pen-paper methods for the vision-for-action mode. Each method, except for vocal, included separate blocks for right and left hands. The proximity data were fitted using exponential and power models. Linear mixed-effects models were used for the statistical analyses. The results revealed similar line-orientation discrimination accuracy across all conditions. The exponential model emerged as the best fit, demonstrating adherence to the Pure Distance Law in both perceptual modes. Sensitivity to the proximity principle was higher in the vision-for-action mode compared to the vision-for-perception. In terms of orientation biases, a strong preference for vertical orientation was observed in the vision-for-perception mode, whereas a noticeable preference toward either of the oblique orientations was detected in the vision-for-action mode. Analysis of free-drawn lines demonstrated an affordance bias in the vision-for-action mode. This suggests a remarkable tendency to perceive organizations within specific orientations that offer more affordances due to the interaction between the body postures and tools.
Collapse
Affiliation(s)
- Hamze Moazzen
- Institute for Cognitive and Brain Sciences, Shahid Beheshti University, Tehran, Iran
| | - Shahriar Gharibzadeh
- Institute for Cognitive and Brain Sciences, Shahid Beheshti University, Tehran, Iran
| | - Fatemeh Bakouie
- Institute for Cognitive and Brain Sciences, Shahid Beheshti University, Tehran, Iran.
| |
Collapse
|
2
|
Mudrik L, Hirschhorn R, Korisky U. Taking consciousness for real: Increasing the ecological validity of the study of conscious vs. unconscious processes. Neuron 2024; 112:1642-1656. [PMID: 38653247 PMCID: PMC11100345 DOI: 10.1016/j.neuron.2024.03.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/23/2024] [Accepted: 03/29/2024] [Indexed: 04/25/2024]
Abstract
The study of consciousness has developed well-controlled, rigorous methods for manipulating and measuring consciousness. Yet, in the process, experimental paradigms grew farther away from everyday conscious and unconscious processes, which raises the concern of ecological validity. In this review, we suggest that the field can benefit from adopting a more ecological approach, akin to other fields of cognitive science. There, this approach challenged some existing hypotheses, yielded stronger effects, and enabled new research questions. We argue that such a move is critical for studying consciousness, where experimental paradigms tend to be artificial and small effect sizes are relatively prevalent. We identify three paths for doing so-changing the stimuli and experimental settings, changing the measures, and changing the research questions themselves-and review works that have already started implementing such approaches. While acknowledging the inherent challenges, we call for increasing ecological validity in consciousness studies.
Collapse
Affiliation(s)
- Liad Mudrik
- School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
| | - Rony Hirschhorn
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Uri Korisky
- School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
3
|
Ganel T, Goodale MA. Revisiting the effect of visual illusions on grasping in left and right handers. Neuropsychologia 2024; 195:108806. [PMID: 38280669 DOI: 10.1016/j.neuropsychologia.2024.108806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/29/2023] [Accepted: 01/24/2024] [Indexed: 01/29/2024]
Abstract
Visual illusions have provided compelling evidence for a dissociation between perception and action. For example, when two different-sized objects are placed on opposite ends of the Ponzo illusion, people erroneously perceive the physically smaller object to be bigger than the physically larger one, but when they pick up the objects, their grip aperture reflects the real difference in size between the objects. This and similar findings have been demonstrated almost entirely for the right hand in right handers. The scarce research that has examined right and left-handed subjects in this context, has typically used only small samples. Here, we extended this research with a larger sample size (more than 50 in each group) in a version of the Ponzo illusion that allowed us to disentangle the effects of real and illusory size on action and perception in much more powerful way. We also collected a wide range of kinematic measures to assess possible differences in visuomotor control in left and right handers. The results showed that the dissociation between perception and action persisted for both hands in right handers, but only for the right hand in left handers. The left hand of left handers was sensitive to the illusion. Left handers also showed more variable and slower movements, as well as larger safety margins in both hands. These findings suggest that grasping in left handers may require more cognitive supervision, which could lead to greater sensitivity to visual context , particularly with their dominant left hand.
Collapse
Affiliation(s)
- Tzvi Ganel
- Psychology Department, Ben-Gurion University of the Negev, Beer-Sheva, 8410500, Israel.
| | - Melvyn A Goodale
- The Western Institute for Neuroscience and the Department of Psychology, The University of Western Ontario, London, Ontario, N6A 5B7, Canada
| |
Collapse
|
4
|
Ahmad Z, Kelly KR, Freud E. Reduced perception-action dissociation in children with amblyopia. Neuropsychologia 2023; 191:108738. [PMID: 38007150 DOI: 10.1016/j.neuropsychologia.2023.108738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/08/2023] [Accepted: 11/19/2023] [Indexed: 11/27/2023]
Abstract
The functional distinction between vision-for-perception and vision-for-action is a key aspect of understanding the primate visual system. While this dissociation has been well-established in adulthood, its development and dependence on typical visual experience remain unclear. To address these questions, we examined two groups of children: typically developed children and those with amblyopia, who presumably have a sub-optimal visual experience. The Ponzo illusion, known to impact perception but not visuomotor behaviors across age groups, was employed to assess the extent of dissociation. Participants engaged in two tasks involving the Ponzo illusion: a grasping task (vision-for-action) and a manual estimation task (vision-for-perception), with objects placed on the "close" and "far" surfaces of the illusion. Typically developed children displayed grasping movements that were unaffected by the illusion, as their grasping apertures were scaled based on object size, independent of its location. In contrast, children with amblyopia exhibited a clear susceptibility to the illusion, showing larger apertures for objects placed on the 'far' surface of the illusion, and smaller apertures for objects placed on the 'close' surface. Interestingly, both groups of children demonstrated similar susceptibility to the illusion during the perceptual task, with objects placed on the far surface being perceived as longer compared to objects placed on the close surface. These findings shed light on the impact of atypical visual development on the emergence of the dissociation between perception and action, highlighting the crucial role of typical visual experience in establishing this distinction.
Collapse
Affiliation(s)
- Zoha Ahmad
- Department of Biology, York University, Canada; The Centre for Vision Research, York University, Canada.
| | - Krista R Kelly
- School of Optometry and Vision Science, University of Waterloo, Canada; Retina Foundation of the Southwest, Dallas, USA
| | - Erez Freud
- The Centre for Vision Research, York University, Canada; Department of Psychology, York University, Canada
| |
Collapse
|
5
|
Mazuz Y, Kessler Y, Ganel T. The BTPI: An online battery for measuring susceptibility to visual illusions. J Vis 2023; 23:2. [PMID: 37669069 PMCID: PMC10484025 DOI: 10.1167/jov.23.10.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 07/31/2023] [Indexed: 09/06/2023] Open
Abstract
Visual illusions provide a powerful tool for probing the mechanisms that underlie perception. While most previous studies of visual illusions focused on average group-level performance, less attention has been devoted to individual differences in susceptibility to illusions. Unlike in other perceptual domains, in which there are established, validated tools to measure individual differences, such tools are not yet available in the domain of visual illusions. Here, we describe the development and validation of the BTPI (Ben-Gurion University Test for Perceptual Illusions), a new online battery designed to measure susceptibility to the influence of three prominent size illusions: the Ebbinghaus, the Ponzo, and the height-width illusions. The BTPI also measures perceptual resolution, reflected by the just noticeable difference (JND), to detect size differences in the context of each illusion. In Experiment 1 (N = 143), we examined performance in typical self-paced tasks, whereas in Experiment 2 (N = 69), we employed a fixed presentation duration paradigm. High test-retest reliability scores were found for all illusions, with little evidence for intercorrelations between different illusions. In addition, lower perceptual resolution (larger JND) was associated with a larger susceptibility to the illusory effect. The computerized task battery and analysis codes are freely available online.
Collapse
Affiliation(s)
- Yarden Mazuz
- Department of Psychology and School of Brain Sciences and Cognition, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Yoav Kessler
- Department of Psychology and School of Brain Sciences and Cognition, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Tzvi Ganel
- Department of Psychology and School of Brain Sciences and Cognition, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
6
|
Wühr P, Richter M. Relative, not absolute, stimulus size is responsible for a correspondence effect between physical stimulus size and left/right responses. Atten Percept Psychophys 2022; 84:1342-1358. [PMID: 35460026 PMCID: PMC9032296 DOI: 10.3758/s13414-022-02490-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2022] [Indexed: 11/24/2022]
Abstract
Recent studies have demonstrated a novel compatibility (or correspondence) effect between physical stimulus size and horizontally aligned responses: Left-hand responses are shorter and more accurate to a small stimulus, compared to a large stimulus, whereas the opposite is true for right-hand responses. The present study investigated whether relative or absolute size is responsible for the effect. If relative size was important, a particular stimulus would elicit faster left-hand responses if the other stimuli in the set were larger, but the same stimulus would elicit a faster right-hand response if the other stimuli in the set were smaller. In terms of two-visual-systems theory, our study explores whether "vision for perception" (i.e., the ventral system) or "vision for action" (i.e., the dorsal system) dominates the processing of stimulus size in our task. In two experiments, participants performed a discrimination task in which they responded to stimulus color (Experiment 1) or to stimulus shape (Experiment 2) with their left/right hand. Stimulus size varied as an irrelevant stimulus feature, thus leading to corresponding (small-left; large-right) and non-corresponding (small-right; large-left) conditions. Moreover, a set of smaller stimuli and a set of larger stimuli, with both sets sharing an intermediately sized stimulus, were used in different conditions. The consistently significant two-way interaction between stimulus size and response location demonstrated the presence of the correspondence effect. The three-way interaction between stimulus size, response location, and stimulus set, however, was never significant. The results suggest that participants are inadvertently classifying stimuli according to relative size in a context-specific manner.
Collapse
Affiliation(s)
- Peter Wühr
- Institut für Psychologie, Technische Universität Dortmund/TU Dortmund University, Emil-Figge-Straße 50, 44227, Dortmund, Germany.
| | - Melanie Richter
- Institut für Psychologie, Technische Universität Dortmund/TU Dortmund University, Emil-Figge-Straße 50, 44227, Dortmund, Germany
| |
Collapse
|
7
|
Unilateral resection of both cortical visual pathways in a pediatric patient alters action but not perception. Neuropsychologia 2022; 168:108182. [PMID: 35182580 DOI: 10.1016/j.neuropsychologia.2022.108182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 12/21/2021] [Accepted: 02/08/2022] [Indexed: 11/23/2022]
Abstract
The human cortical visual system consists of two major pathways, a ventral pathway that subserves perception and a dorsal pathway that primarily subserves visuomotor control. Previous studies have found that children with cortical resections of the ventral visual pathway retain largely normal visuoperceptual abilities. Whether visually guided actions, supported by computations carried out by the dorsal pathway, follow a similar pattern of preservation remains unknown. To address this question, we examined visuoperceptual and visuomotor behaviors in a pediatric patient, TC, who underwent a cortical resection that included portions of the left ventral and dorsal pathways. We collected kinematic data when TC used her right and left hands to perceptually estimate the width of blocks that varied in width and length, and, separately, to grasp the same blocks. TC's perceptual estimation performance was comparable to that of controls, independent of the hand used. In contrast, relative to controls, she showed reduced visuomotor sensitivity to object shape and this was more evident when she grasped the objects with her contralesional right hand. These results provide novel evidence for a striking difference in the competence of the two visual pathways to cortical injuries acquired in childhood.
Collapse
|
8
|
Perceived depth modulates perceptual resolution. Psychon Bull Rev 2021; 29:455-466. [PMID: 34585320 DOI: 10.3758/s13423-021-02006-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2021] [Indexed: 11/08/2022]
Abstract
Humans constantly use depth information to support perceptual decisions about object size and location in space, as well as planning and executing actions. It was recently reported that perceived depth modulates perceptual performance even when depth information is not relevant to the task, with faster shape discrimination for objects perceived as being close to the observer. However, it is yet to be determined if the observed "close advantage" reflects differences in psychophysical sensitivity or response bias. Moreover, it is unclear whether this advantage is generalizable to other viewing situations and tasks. To address these outstanding issues, we evaluated whether visual resolution is modulated by perceived depth defined by 2D pictorial cues. In a series of experiments, we used the method of constant stimuli to measure the precision of perceptual judgements for stimuli positioned at close, far, and flat perceived distances. In Experiment 1, we found that size discrimination was more precise when the object was perceived to be closer to the observers. Experiments 2a and 2b extended this finding to a visual property orthogonal to depth information, by showing superior orientation discrimination for "close" objects. Finally, Experiment 3 demonstrated that the close advantage also occurs when performing high-level perceptual tasks such as face perception. Taken together, our results provide novel evidence that the perceived depth of an object, as defined by pictorial cues, modulates the precision of visual processing for close objects.
Collapse
|
9
|
Fan AWY, Guo LL, Frost A, Whitwell RL, Niemeier M, Cant JS. Grasping of Real-World Objects Is Not Biased by Ensemble Perception. Front Psychol 2021; 12:597691. [PMID: 33912099 PMCID: PMC8071954 DOI: 10.3389/fpsyg.2021.597691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 03/15/2021] [Indexed: 11/13/2022] Open
Abstract
The visual system is known to extract summary representations of visually similar objects which bias the perception of individual objects toward the ensemble average. Although vision plays a large role in guiding action, less is known about whether ensemble representation is informative for action. Motor behavior is tuned to the veridical dimensions of objects and generally considered resistant to perceptual biases. However, when the relevant grasp dimension is not available or is unconstrained, ensemble perception may be informative to behavior by providing gist information about surrounding objects. In the present study, we examined if summary representations of a surrounding ensemble display influenced grip aperture and orientation when participants reached-to-grasp a central circular target which had an explicit size but importantly no explicit orientation that the visuomotor system could selectively attend to. Maximum grip aperture and grip orientation were not biased by ensemble statistics during grasping, although participants were able to perceive and provide manual estimations of the average size and orientation of the ensemble display. Support vector machine classification of ensemble statistics achieved above-chance classification accuracy when trained on kinematic and electromyography data of the perceptual but not grasping conditions, supporting our univariate findings. These results suggest that even along unconstrained grasping dimensions, visually-guided behaviors toward real-world objects are not biased by ensemble processing.
Collapse
Affiliation(s)
- Annabel Wing-Yan Fan
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, Canada
| | - Lin Lawrence Guo
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, Canada
| | - Adam Frost
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, Canada
| | - Robert L. Whitwell
- The Department of Psychology, The University of British Columbia, Vancouver, BC, Canada
| | - Matthias Niemeier
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, Canada
| | - Jonathan S. Cant
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, Canada
| |
Collapse
|
10
|
Skervin TK, Thomas NM, Schofield AJ, Hollands MA, Maganaris CN, Foster RJ. The next step in optimising the stair horizontal-vertical illusion: Does a perception-action link exist in older adults? Exp Gerontol 2021; 149:111309. [PMID: 33716111 DOI: 10.1016/j.exger.2021.111309] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 02/11/2021] [Accepted: 03/08/2021] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Tripping on stairs results from insufficient foot to step edge clearance and can often lead to a fall in older adults. A stair horizontal-vertical illusion is suggested to increase the perceived riser height of a step and increase foot clearance when stepping up. However, this perception-action link has not been empirically determined in older adults. Previous findings suggesting a perception-action effect have also been limited to a single step or a three-step staircase. On larger staircases, somatosensory learning of step heights may be greater which could override the illusory effect on the top step. Furthermore, the striped nature of the existing stair horizontal-vertical illusion is associated with visual stress and may not be aesthetically suitable for use on public stairs. These issues need resolving before potential future implementation on public stairs. METHODS Experiment 1. A series of four computer-based perception tests were conducted in older (N = 14: 70 ± 6 years) and young adults (N = 42: 24 ± 3 years) to test the influence of different illusion designs on stair riser height estimation. Participants compared images of stairs, with horizontal-vertical illusions or arbitrary designs on the bottom step, to a plain stair with different bottom step riser heights and selected the stair they perceived to have the tallest bottom riser. Horizontal-vertical illusions included a previously developed design and versions with modified spatial frequencies and mark space ratios. Perceived riser height differences were assessed between designs and between age groups. Experiment 2. To assess the perception-action link, sixteen older (70 ± 7 years) and fifteen young (24 ± 3 years) adults ascended a seven-step staircase with and without horizontal-vertical illusions tested in experiment 1 placed onto steps one and seven. Foot clearances were measured over each step. To determine whether changes in perception were linked to changes in foot clearance, perceived riser heights for each horizontal-vertical illusion were assessed using the perception test from experiment 1 before and after stair ascent. Additional measures to characterise stair safety included vertical foot clearance, margins of stability, foot overhang, stair speed, and gaze duration, which were assessed over all seven steps. RESULTS Experiment 1. All horizontal-vertical illusion designs led to significant increases in the perceived riser height in both young and older adults (12-19% increase) with no differences between age groups. Experiment 2. On step 7, each horizontal-vertical illusion led to an increase in vertical foot clearance for young (up to 0.8 cm) and older adults (up to 2.1 cm). On step 1 significant increases in vertical foot clearance were found for a single horizontal-vertical illusion when compared to plain (1.19 cm increase). The horizontal-vertical illusions caused significant increases in the perceived riser height (young; 13% increase, older; 11% increase) with no differences between illusion design, group or before and after stair ascent. No further differences were found for the remaining variables and steps. CONCLUSION Results indicate a perception-action link between perceived riser height and vertical foot clearance in response to modified versions of the horizontal-vertical illusion in both young and older adults. This was shown with no detriment to additional stair safety measures. Further evaluating these illusions on private/public stairs, especially those with inconsistently taller steps, may be beneficial to help improve stair safety for older adults.
Collapse
Affiliation(s)
- Timmion K Skervin
- Research to Improve Stair Climbing Safety (RISCS), Faculty of Science, School of Sport and Exercise Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, United Kingdom
| | - Neil M Thomas
- Research to Improve Stair Climbing Safety (RISCS), Faculty of Science, School of Sport and Exercise Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, United Kingdom
| | - Andrew J Schofield
- School of Psychology, College of Health and Life Sciences, Aston University, Birmingham B4 7ET, United Kingdom
| | - Mark A Hollands
- Research to Improve Stair Climbing Safety (RISCS), Faculty of Science, School of Sport and Exercise Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, United Kingdom
| | - Constantinos N Maganaris
- Research to Improve Stair Climbing Safety (RISCS), Faculty of Science, School of Sport and Exercise Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, United Kingdom
| | - Richard J Foster
- Research to Improve Stair Climbing Safety (RISCS), Faculty of Science, School of Sport and Exercise Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, United Kingdom.
| |
Collapse
|
11
|
Freud E, Binur N, Srikanth A, Davidson E, Ganel T, Hadad BS. Double dissociation between perception and action in children. J Exp Child Psychol 2020; 201:104986. [PMID: 33011386 DOI: 10.1016/j.jecp.2020.104986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/14/2020] [Accepted: 08/12/2020] [Indexed: 10/23/2022]
Abstract
Previous research has demonstrated a functional dissociation between vision for perception and vision for action. However, the developmental trajectory of this functional dissociation is not well understood. We directly compared the sensitivity of grasping and perceptual estimations within the same experimental design to the real and illusory sizes of objects positioned in the Ponzo illusion display. Two different-sized objects were placed such that the differences between their real sizes and their perceived sizes were pitted against each other. Children aged 5-8 years and adults made perceptual size discriminations and then grasped (action) or estimated (perception) one of the objects based on its perceived size. Consistent with previous results, for the action task, grasping apertures of adults were scaled with the physical differences in the objects' sizes, even in trials where their overt perceptual decisions were deceived by the illusion. In contrast, perceptual estimations were robustly modulated by the illusion. Interestingly, children outperformed adults in their perceptual discriminations but exhibited adult-like behavior in grasping and in perceptual estimations of the objects, demonstrating a dissociation between perception and action. These results suggest that although the two visual functions are not operating at fully mature levels during childhood, some key mechanisms that support a dissociation between these functions are already in place.
Collapse
Affiliation(s)
- Erez Freud
- Department of Psychology and Centre for Vision Research, York University, Toronto, Ontario M3J 1P3, Canada.
| | - Nahal Binur
- Department of Special Education and The Edmond J. Safra Brain Research Center, University of Haifa, Haifa 3498838, Israel
| | - Ashish Srikanth
- Department of Psychology and Centre for Vision Research, York University, Toronto, Ontario M3J 1P3, Canada
| | - Emily Davidson
- Department of Psychology and Centre for Vision Research, York University, Toronto, Ontario M3J 1P3, Canada
| | - Tzvi Ganel
- Department of Psychology, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel
| | - Bat-Sheva Hadad
- Department of Special Education and The Edmond J. Safra Brain Research Center, University of Haifa, Haifa 3498838, Israel
| |
Collapse
|
12
|
Consciously monitored grasping is vulnerable to perceptual intrusions. Conscious Cogn 2020; 85:103019. [DOI: 10.1016/j.concog.2020.103019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/09/2020] [Accepted: 09/01/2020] [Indexed: 11/17/2022]
|
13
|
Ozana A, Ganel T. A double dissociation between action and perception in bimanual grasping: evidence from the Ponzo and the Wundt-Jastrow illusions. Sci Rep 2020; 10:14665. [PMID: 32887921 PMCID: PMC7473850 DOI: 10.1038/s41598-020-71734-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 07/24/2020] [Indexed: 11/11/2022] Open
Abstract
Research on visuomotor control suggests that visually guided actions toward objects rely on functionally distinct computations with respect to perception. For example, a double dissociation between grasping and between perceptual estimates was reported in previous experiments that pit real against illusory object size differences in the context of the Ponzo illusion. While most previous research on the relation between action and perception focused on one-handed grasping, everyday visuomotor interactions also entail the simultaneous use of both hands to grasp objects that are larger in size. Here, we examined whether this double dissociation extends to bimanual movement control. In Experiment 1, participants were presented with different-sized objects embedded in the Ponzo Illusion. In Experiment 2, we tested whether the dissociation between perception and action extends to a different illusion, the Wundt-Jastrow illusion, which has not been previously used in grasping experiments. In both experiments, bimanual grasping trajectories reflected the differences in physical size between the objects; At the same time, perceptual estimates reflected the differences in illusory size between the objects. These results suggest that the double dissociation between action and perception generalizes to bimanual movement control. Unlike conscious perception, bimanual grasping movements are tuned to real-world metrics, and can potentially resist irrelevant information on relative size and depth.
Collapse
Affiliation(s)
- Aviad Ozana
- Department of Psychology, Ben-Gurion University of the Negev, 8410500, Beer-Sheva, Israel
| | - Tzvi Ganel
- Department of Psychology, Ben-Gurion University of the Negev, 8410500, Beer-Sheva, Israel.
| |
Collapse
|
14
|
Abstract
There is extensive literature debating whether perceived size is used to guide grasping. A possible reason for not using judged size is that using judged positions might lead to more precise movements. As this argument does not hold for small objects and all studies showing an effect of the Ebbinghaus illusion on grasping used small objects, we hypothesized that size information is used for small objects but not for large ones. Using a modified diagonal illusion, we obtained an effect of about 10% on perceptual judgements, without an effect on grasping, irrespective of object size. We therefore reject our precision hypothesis. We discuss the results in the framework of grasping as moving digits to positions on an object. We conclude that the reported disagreement on the effect of illusions is because the Ebbinghaus illusion not only affects size, but—unlike most size illusions—also affects perceived positions.
Collapse
|
15
|
Yan S, Hondzinski JM. Gaze Direction Changes the Vertical-Horizontal Illusory Effects on Manual Length Estimations. J Mot Behav 2020; 53:92-104. [PMID: 32107981 DOI: 10.1080/00222895.2020.1732286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
We examined potentially deceptive influences of the vertical-horizontal (V-H) illusion on manual length estimations. When viewing V-H illusory configurations, people perceive that the bisecting segment length exceeds the bisected segment length when segments are actually equal. Participants used downward or rightward pointing movements to manually estimate the length of a short bisecting segment of the V-H illusion in upright or rotated configurations. Participants directed their gaze freely, on the configuration, or on the movement space. Manual length estimations for upright and rotated configurations depended on gaze direction, revealing bisection influences only for restricted viewing. People produced illusory influences on perceptuomotor control only when gaze was directed toward V-H configurations or their movement. Exploitation of deceptive visual cues can direct upper limb control for sensorimotor coordination.
Collapse
Affiliation(s)
- Shijun Yan
- School of Kinesiology, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Jan M Hondzinski
- School of Kinesiology, Louisiana State University, Baton Rouge, Louisiana, USA
| |
Collapse
|
16
|
Tang TY, McBeath MK. Egocentric Temporal Order Bias Robust Across Manipulations of Cue Predictability and Sensory Modality. Sci Rep 2020; 10:2958. [PMID: 32076071 PMCID: PMC7031297 DOI: 10.1038/s41598-020-59912-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 02/03/2020] [Indexed: 11/30/2022] Open
Abstract
The Egocentric Temporal Order (ETO) bias is the finding that self-initiated action-events are perceived as having occurred prior to simultaneous externally triggered events. Here, we test if the ETO bias is affected by predictability of the stimulus cue used to initiate a self-action or by the sensory modality of that cue. Without separating out the potential influence of the stimulus cue on the ETO bias, further investigations into the mechanisms underlying the bias are difficult to interpret. Our findings robustly confirm and replicate the ETO bias, providing evidence that the bias is not an artifact of the experimental design, but rather indicates a true temporal bias in the perception of self-initiated action-events.
Collapse
Affiliation(s)
- Ty Y Tang
- Department of Psychology, Arizona State University, Tempe, USA.
| | | |
Collapse
|
17
|
Language Processing. Cognition 2019. [DOI: 10.1017/9781316271988.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
18
|
Methods of Cognitive Psychology. Cognition 2019. [DOI: 10.1017/9781316271988.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
19
|
Cognitive Psychologists’ Approach to Research. Cognition 2019. [DOI: 10.1017/9781316271988.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
20
|
Visual Imagery. Cognition 2019. [DOI: 10.1017/9781316271988.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
21
|
Index. Cognition 2019. [DOI: 10.1017/9781316271988.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
22
|
Decision Making and Reasoning. Cognition 2019. [DOI: 10.1017/9781316271988.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
23
|
Attention. Cognition 2019. [DOI: 10.1017/9781316271988.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
24
|
Long-Term Memory Structure. Cognition 2019. [DOI: 10.1017/9781316271988.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
25
|
Problem Solving. Cognition 2019. [DOI: 10.1017/9781316271988.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
26
|
Preface. Cognition 2019. [DOI: 10.1017/9781316271988.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
27
|
Sensory and Working Memory. Cognition 2019. [DOI: 10.1017/9781316271988.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
28
|
Memory Retrieval. Cognition 2019. [DOI: 10.1017/9781316271988.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
29
|
Visual Perception. Cognition 2019. [DOI: 10.1017/9781316271988.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
30
|
References. Cognition 2019. [DOI: 10.1017/9781316271988.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
31
|
Language Structure. Cognition 2019. [DOI: 10.1017/9781316271988.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
32
|
Concepts and Categories. Cognition 2019. [DOI: 10.1017/9781316271988.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
33
|
Long-Term Memory Processes. Cognition 2019. [DOI: 10.1017/9781316271988.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
34
|
Glossary. Cognition 2019. [DOI: 10.1017/9781316271988.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
35
|
Paterson G, van der Kamp J, Bressan E, Savelsbergh G. The differential effects of task difficulty on the perception of passing distance and subsequent passing action in a field hockey push pass task. Acta Psychol (Amst) 2019; 197:16-22. [PMID: 31077994 DOI: 10.1016/j.actpsy.2019.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 03/19/2019] [Accepted: 04/22/2019] [Indexed: 10/26/2022] Open
Abstract
The aims of the study were to initially investigate whether the perceived distance of a field hockey push pass task was influenced by manipulating task difficulty (Experiment 1), and further, expanding on the research, whether perceptual biases would translate into the execution of a corresponding push pass action (Experiment 2). Based on predictions from the two-visual systems model, we hypothesized that the action-specific perceptual biases in distance perception would not translate into the control of movement. In Experiment 1, elite field hockey players estimated the distance from targets that differed in size before making push pass actions toward the target (i.e., the smaller targets being more difficult). Results showed that participants did estimate the perceived distance of the push pass task to be larger as a function of task difficulty. We found a similar result in Experiment 2, and in addition, manipulated the required outcome of the push-pass while measuring the speed of the push-pass and found that a perceptual bias did not translate into the execution of the actual push pass task (Experiment 2). In line with the action-specific account of perception, a perceptual bias arose that may assist in making adaptive action choices. However, consistent with the two-visual systems model, this perceptual bias did not affect subsequent control of movement, preventing it from becoming maladaptive. Implications for talent identification and development are briefly discussed.
Collapse
|
36
|
Real-world size coding of solid objects, but not 2-D or 3-D images, in visual agnosia patients with bilateral ventral lesions. Cortex 2019; 119:555-568. [PMID: 30987739 DOI: 10.1016/j.cortex.2019.02.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 01/29/2019] [Accepted: 02/12/2019] [Indexed: 12/21/2022]
Abstract
Patients with visual agnosia show severe deficits in recognizing two-dimensional (2-D) images of objects, despite the fact that early visual processes such as figure-ground segmentation, and stereopsis, are largely intact. Strikingly, however, these patients can nevertheless show a preservation in their ability to recognize real-world objects -a phenomenon known as the 'real-object advantage' (ROA) in agnosia. To uncover the mechanisms that support the ROA, patients were asked to identify objects whose size was congruent or incongruent with typical real-world size, presented in different display formats (real objects, 2-D and 3-D images). While recognition of images was extremely poor, real object recognition was surprisingly preserved, but only when physical size matched real-world size. Analogous display format and size manipulations did not influence the recognition of common geometric shapes that lacked real-world size associations. These neuropsychological data provide evidence for a surprising preservation of size-coding of real-world-sized tangible objects in patients for whom ventral contributions to image processing are severely disrupted. We propose that object size information is largely mediated by dorsal visual cortex and that this information, together with detailed representation of object shape which is also subserved by dorsal cortex, serve as the basis of the ROA.
Collapse
|
37
|
Abstract
Do illusory distortions of perceived object size influence how wide the hand is opened during a grasping movement? Many studies on this question have reported illusion-resistant grasping, but this finding has been contradicted by other studies showing that grasping movements and perceptual judgments are equally susceptible. One largely unexplored explanation for these contradictions is that illusion effects on grasping can be reduced with repeated movements. Using a visuomotor adaptation paradigm, we investigated whether an adaptation model could predict the time course of Ponzo illusion effects on grasping. Participants performed a series of trials in which they viewed a thin wooden target, manually reported an estimate of the target's length, then reached to grasp the target. Manual size estimates (MSEs) were clearly biased by the illusion, but maximum grip apertures (MGAs) of grasping movements were consistently accurate. Illusion-resistant MGAs were observed immediately upon presentation of the illusion, so there was no decrement in susceptibility for the adaptation model to explain. To determine whether online corrections based on visual feedback could have produced illusion-resistant MGAs, we performed an exploratory post hoc analysis of movement trajectories. Early portions of the illusion effect profile evolved as if they were biased by the illusion to the same magnitude as the perceptual responses (MSEs), but this bias was attenuated prior to the MGA. Overall, this preregistered study demonstrated that visuomotor adaptation of grasping is not the primary source of illusion resistance in closed-loop grasping.
Collapse
|
38
|
Prpic V, Soranzo A, Santoro I, Fantoni C, Galmonte A, Agostini T, Murgia M. SNARC-like compatibility effects for physical and phenomenal magnitudes: a study on visual illusions. PSYCHOLOGICAL RESEARCH 2018; 84:950-965. [PMID: 30511158 DOI: 10.1007/s00426-018-1125-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 11/26/2018] [Indexed: 11/25/2022]
Abstract
Both numerical and non-numerical magnitudes elicit similar Spatial-Numerical Association of Response Codes (SNARC) effects, with small magnitudes associated with left hand responses and large magnitudes associated with right hand responses (Dehaene et al., J Exp Psychol Gen 122(3), 371, 1993). In the present study, we investigated whether the phenomenal size of visual illusions elicits the same SNARC-like effect revealed for the physical size of pictorial surfaces. Four experiments were conducted by using the Delboeuf illusion (Experiment 1) and the Kanizsa triangle illusion (Experiments 2, 3 and 4). Experiment 1 suggests the presence of a SNARC-like compatibility effect for the physical size of the inducers, while this effect was not revealed for the phenomenal size of the induced elements, possibly masked by a stronger effect of the inducers. A SNARC-like effect for the phenomenal size of the Kanizsa triangle was revealed when participants directly compared the size of the triangles (Experiment 4). Conversely, when participants performed an indirect task (orientation judgment), the SNARC-like effect was present neither for the illusory nor for the physical displays (Experiments 2 and 3). The effect revealed for the size of illusory triangles was comparable to that of real triangles with physical contours, suggesting that both phenomenal and physical magnitudes similarly elicit SNARC-like effects.
Collapse
Affiliation(s)
- Valter Prpic
- Institue for Psychological Science, Faculty of Health and Life Sciences, De Montfort University, The Newarke, Leicester, LE1 9BH, UK.
| | - Alessandro Soranzo
- Department of Psychology, Sociology and Politics, Sheffield Hallam University, Sheffield, S10 2BQ, UK
| | - Ilaria Santoro
- Department of Life Sciences, University of Trieste, Via Weiss, 21, building "W", 34128, Trieste, Italy
| | - Carlo Fantoni
- Department of Life Sciences, University of Trieste, Via Weiss, 21, building "W", 34128, Trieste, Italy
| | - Alessandra Galmonte
- Department of Medical, Surgical and Health Sciences, University of Trieste, strada di Fiume, 447, 34100, Trieste, Italy
| | - Tiziano Agostini
- Department of Life Sciences, University of Trieste, Via Weiss, 21, building "W", 34128, Trieste, Italy
| | - Mauro Murgia
- Department of Life Sciences, University of Trieste, Via Weiss, 21, building "W", 34128, Trieste, Italy
| |
Collapse
|
39
|
Freud E, Culham JC, Namdar G, Behrmann M. Object complexity modulates the association between action and perception in childhood. J Exp Child Psychol 2018; 179:56-72. [PMID: 30476695 DOI: 10.1016/j.jecp.2018.11.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 11/07/2018] [Accepted: 11/07/2018] [Indexed: 11/17/2022]
Abstract
Vision for action and vision for perception both rely on shape representations derived within the visual system. Whether the same psychological and neural mechanisms underlie both forms of behavior remains hotly contested, and whether this arrangement is equivalent in adults and children is controversial as well. To address these outstanding questions, we used an established psychophysical heuristic, Weber's law, which, in adults, has typically been observed for perceptual judgment tasks but not for actions such as grasping. We examined whether this perception-action dissociation in Weber's law was present in childhood as it is in adulthood and whether it was modulated by stimulus complexity. Two major results emerged. First, although adults evinced visuomotor behavior that violated Weber's law, young children (4.5-6.5 years) adhered to Weber's law when they grasped complex objects ("Efron" blocks), which varied along both the graspable and non-graspable dimensions to maintain a constant surface area, but not when they grasped simple objects, which varied only along the graspable dimension. Second, adherence to Weber's law was found across all ages in the context of a perceptual task. Together, these findings suggest that, in early childhood, visuomotor representations are modulated by perceptual representations, particularly when a refined description of object shape is needed.
Collapse
Affiliation(s)
- Erez Freud
- Department of Psychology, York University, Toronto, Ontario M3J 1P3, Canada; Vision: Science to Applications (VISTA) Program, York University, Toronto, Ontario M3J 1P3, Canada; Department of Psychology, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| | - Jody C Culham
- Department of Psychology, University of Western Ontario, London, Ontario N6A 3K7, Canada; Brain and Mind Institute, University of Western Ontario, London, Ontario N6A 3K7, Canada; Neuroscience Program, University of Western Ontario, London, Ontario N6A 3K7, Canada
| | - Gal Namdar
- Department of Psychology, Ben-Gurion University of the Negev, Beersheba 8410501, Israel
| | - Marlene Behrmann
- Department of Psychology, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| |
Collapse
|
40
|
The Size Congruity Effect Vanishes in Grasping: Implications for the Processing of Numerical Information. Sci Rep 2018; 8:2723. [PMID: 29426827 PMCID: PMC5807327 DOI: 10.1038/s41598-018-21003-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 01/29/2018] [Indexed: 01/28/2023] Open
Abstract
Judgments of the physical size in which a numeral is presented are often affected by the task-irrelevant attribute of its numerical magnitude, the Size Congruity Effect (SCE). The SCE is typically interpreted as a marker of the automatic activation of numerical magnitude. However, a growing literature shows that the SCE is not robust, a possible indication that numerical information is not always activated in an automatic fashion. In the present study, we tested the SCE via grasping by way of resolving the automaticity debate. We found results that challenge the robustness of the SCE and, consequently, the validity of the automaticity assumption. The SCE was absent when participants grasped the physically larger object of a pair of 3D wooden numerals. An SCE was still recorded when the participants perceptually indicated the general location of the larger object, but not when they grasped that object. These results highlight the importance of the sensory domain when considering the generality of a perceptual effect.
Collapse
|
41
|
Dissociable effects of stimulus range on perception and action. Cortex 2018; 98:28-33. [DOI: 10.1016/j.cortex.2016.12.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 12/18/2016] [Accepted: 12/20/2016] [Indexed: 11/24/2022]
|
42
|
Abstract
It has been demonstrated that pictorial illusions have a smaller influence on grasping than they do on perceptual judgments. Yet to date this work has not considered the reduced influence of an illusion as it is measured repeatedly. Here we studied this decrement in the context of a Ponzo illusion to further characterize the dissociation between vision for perception and for action. Participants first manually estimated the lengths of single targets in a Ponzo display with their thumb and index finger, then actually grasped these targets in another series of trials, and then manually estimated the target lengths again in a final set of trials. The results showed that although the perceptual estimates and grasp apertures were equally sensitive to real differences in target length on the initial trials, only the perceptual estimates remained biased by the illusion over repeated measurements. In contrast, the illusion's effect on the grasps decreased rapidly, vanishing entirely after only a few trials. Interestingly, a closer examination of the grasp data revealed that this initial effect was driven largely by undersizing the grip aperture for the display configuration in which the target was positioned between the diverging background lines (i.e., when the targets appeared to be shorter than they really were). This asymmetry between grasping apparently shorter and longer targets suggests that the sensorimotor system may initially treat the edges of the configuration as obstacles to be avoided. This finding highlights the sensorimotor system's ability to rapidly update motor programs through error feedback, manifesting as an immunity to the effects of illusion displays even after only a few trials.
Collapse
|
43
|
Cesanek E, Domini F. Error correction and spatial generalization in human grasp control. Neuropsychologia 2017; 106:112-122. [DOI: 10.1016/j.neuropsychologia.2017.09.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 09/08/2017] [Accepted: 09/24/2017] [Indexed: 11/30/2022]
|
44
|
Whitwell RL, Goodale MA, Merritt KE, Enns JT. The Sander parallelogram illusion dissociates action and perception despite control for the litany of past confounds. Cortex 2017; 98:163-176. [PMID: 29100659 DOI: 10.1016/j.cortex.2017.09.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 02/07/2017] [Accepted: 09/20/2017] [Indexed: 10/18/2022]
Abstract
The two visual systems hypothesis proposes that human vision is supported by an occipito-temporal network for the conscious visual perception of the world and a fronto-parietal network for visually-guided, object-directed actions. Two specific claims about the fronto-parietal network's role in sensorimotor control have generated much data and controversy: (1) the network relies primarily on the absolute metrics of target objects, which it rapidly transforms into effector-specific frames of reference to guide the fingers, hands, and limbs, and (2) the network is largely unaffected by scene-based information extracted by the occipito-temporal network for those same targets. These two claims lead to the counter-intuitive prediction that in-flight anticipatory configuration of the fingers during object-directed grasping will resist the influence of pictorial illusions. The research confirming this prediction has been criticized for confounding the difference between grasping and explicit estimates of object size with differences in attention, sensory feedback, obstacle avoidance, metric sensitivity, and priming. Here, we address and eliminate each of these confounds. We asked participants to reach out and pick up 3D target bars resting on a picture of the Sander Parallelogram illusion and to make explicit estimates of the length of those bars. Participants performed their grasps without visual feedback, and were permitted to grasp the targets after making their size-estimates to afford them an opportunity to reduce illusory error with haptic feedback. The results show unequivocally that the effect of the illusion is stronger on perceptual judgments than on grasping. Our findings from the normally-sighted population provide strong support for the proposal that human vision is comprised of functionally and anatomically dissociable systems.
Collapse
Affiliation(s)
- Robert L Whitwell
- Department of Psychology, The University of British Columbia, Canada
| | - Melvyn A Goodale
- The Brain and Mind Institute, The University of Western Ontario, Canada; Department of Psychology, The University of Western Ontario, Canada
| | - Kate E Merritt
- The Brain and Mind Institute, The University of Western Ontario, Canada
| | - James T Enns
- Department of Psychology, The University of British Columbia, Canada
| |
Collapse
|
45
|
Ambron E, Schettino LF, Coyle M, Jax S, Coslett HB. When perception trips action! The increase in the perceived size of both hand and target matters in reaching and grasping movements. Acta Psychol (Amst) 2017; 180:160-168. [PMID: 28957732 DOI: 10.1016/j.actpsy.2017.09.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 08/22/2017] [Accepted: 09/20/2017] [Indexed: 10/18/2022] Open
Abstract
Reaching and grasping movements rely on visual information regarding the target characteristics (e.g. size) and the hand position during the action execution. Changes in the visual representation of the body (e.g. increase in the perceived size of the hand) can modify action performance, but it is still unclear how these modifications interact with changes in the external environment. We investigated this topic by manipulating the perceived size of both hand and target objects and the degree of visual feedback available during the movement execution. Ten young adults were asked to reach and grasp geometrical objects in four different conditions: (i) with normal vision with the light on, (ii) with normal vision in the dark, (iii) using magnifying lenses in the light and (iv) using magnifying lenses in the dark. In contrast with previous works, our results show that movement execution is longer in magnified vision compared to normal when the action is executed in the light, but the grasping component was not affected by changes in size in this condition. On the contrary, when the visual feedback of the hand was removed and participants performed the action in the dark, movements were faster and the distances across fingers larger in the magnified than normal vision. This pattern of data suggests that grasping movements adapt rapidly and compensate for changes in vision when this process depends on the degree of visual feedback and/or environmental cues available. In the debate regarding the dissociation between action and perception, our data suggest that action may overcome changes in perception when visual feedback is available, but perception may trick action in situations of reduced visual information.
Collapse
|
46
|
Gamble CM, Song JH. Dynamic modulation of illusory and physical target size on separate and coordinated eye and hand movements. J Vis 2017; 17:23. [PMID: 28362898 PMCID: PMC5381334 DOI: 10.1167/17.3.23] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
In everyday behavior, two of the most common visually guided actions-eye and hand movements-can be performed independently, but are often synergistically coupled. In this study, we examine whether the same visual representation is used for different stages of saccades and pointing, namely movement preparation and execution, and whether this usage is consistent between independent and naturalistic coordinated eye and hand movements. To address these questions, we used the Ponzo illusion to dissociate the perceived and physical sizes of visual targets and measured the effects on movement preparation and execution for independent and coordinated saccades and pointing. During independent movements, we demonstrated that both physically and perceptually larger targets produced faster preparation for both effectors. Furthermore, participants who showed a greater influence of the illusion on saccade preparation also showed a greater influence on pointing preparation, suggesting that a shared mechanism involved in preparation across effectors is influenced by illusions. However, only physical but not perceptual target sizes influenced saccade and pointing execution. When pointing was coordinated with saccades, we observed different dynamics: pointing no longer showed modulation from illusory size, while saccades showed illusion modulation for both preparation and execution. Interestingly, in independent and coordinated movements, the illusion modulated saccade preparation more than pointing preparation, with this effect more pronounced during coordination. These results suggest a shared mechanism, dominated by the eyes, may underlie visually guided action preparation across effectors. Furthermore, the influence of illusions on action may operate within such a mechanism, leading to dynamic interactions between action modalities based on task demands.
Collapse
Affiliation(s)
- Christine M Gamble
- Department of Cognitive, Linguistic, & Psychological Sciences, Brown University, Providence, RI,
| | - Joo-Hyun Song
- Department of Cognitive, Linguistic, & Psychological Sciences, Brown University, Providence, RI, USABrown Institute for Brain Science, Brown University, Providence, RI, ://research.clps.brown.edu/songlab/
| |
Collapse
|
47
|
Rinsma T, van der Kamp J, Dicks M, Cañal-Bruland R. Nothing magical: pantomimed grasping is controlled by the ventral system. Exp Brain Res 2017; 235:1823-1833. [PMID: 28299409 PMCID: PMC5435791 DOI: 10.1007/s00221-016-4868-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 12/26/2016] [Indexed: 11/25/2022]
Abstract
In a recent amendment to the two-visual-system model, it has been proposed that actions must result in tactile contact with the goal object for the dorsal system to become engaged (Whitwell et al., Neuropsychologia 55:41-50, 2014). The present study tested this addition by assessing the use of allocentric information in normal and pantomime actions. To this end, magicians, and participants who were inexperienced in performing pantomime actions made normal and pantomime grasps toward objects embedded in the Müller-Lyer illusion. During pantomime grasping, a grasp was made next to an object that was in full view (i.e., a displaced pantomime grasping task). The results showed that pantomime grasps took longer, were slower, and had smaller hand apertures than normal grasping. Most importantly, hand apertures were affected by the illusion during pantomime grasping but not in normal grasping, indicating that displaced pantomime grasping is based on allocentric information. This was true for participants without experience in performing pantomime grasps as well as for magicians with experience in pantomiming. The finding that the illusory bias is limited to pantomime grasping and persists with experience supports the conjecture that the normal engagement of the dorsal system's contribution requires tactile contact with a goal object. If no tactile contact is made, then movement control shifts toward the ventral system.
Collapse
Affiliation(s)
- Thijs Rinsma
- Research Institute MOVE Amsterdam, Faculty of Behavioural and Movement Sciences, VU University Amsterdam, Van der Boechorststraat 9, 1081 BT, Amsterdam, The Netherlands
| | - John van der Kamp
- Research Institute MOVE Amsterdam, Faculty of Behavioural and Movement Sciences, VU University Amsterdam, Van der Boechorststraat 9, 1081 BT, Amsterdam, The Netherlands.
- Institute of Human Performance, University of Hong Kong, Hong Kong SAR, China.
| | - Matt Dicks
- Department of Sport and Exercise Science, University of Portsmouth, Portsmouth, UK
| | | |
Collapse
|
48
|
Olthuis R, Van Der Kamp J, Caljouw S. Verbalizations Affect Visuomotor Control in Hitting Objects to Distant Targets. Front Psychol 2017; 8:661. [PMID: 28496425 PMCID: PMC5406461 DOI: 10.3389/fpsyg.2017.00661] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 04/12/2017] [Indexed: 11/13/2022] Open
Abstract
There is a long-standing proposal for the existence of two neuroanatomically and functionally separate visual systems; one supported by the dorsal pathway to control action and the second supported by the ventral pathway to handle explicit perceptual judgments. The dorsal pathway requires fast access to egocentric information, while the ventral pathway primarily requires allocentric information. Despite the evidence for functionally distinct systems, researchers have posited important interactions. This paper examines evidence to what degree the interaction becomes more important when target-identity, the perception of which is supported by the ventral stream, is verbalized during the execution of a target-directed far-aiming movement. In the experiment reported here participants hit balls toward distant targets while concurrently making explicit perceptual judgments of target properties. The endpoint of a shaft served as the target, with conditions including illusory arrow fins at the endpoint. Participants verbalized the location of the target by comparing it to a reference line and calling out "closer" or "further" while propelling the ball to the target. The impact velocity at ball contact was compared for hits toward three shafts of lengths, 94, 100, and 106 cm, with and without verbalizations and delays. It was observed that the meaning of the expressed words modulated movement execution when the verbalizations were consistent with the action characteristics. This effect of semantic content was evident regardless of target visibility during movement execution, demonstrating it was not restricted to movements that rely on visual memory. In addition to a direct effect of semantic content we anticipated an indirect effect of verbalization to result in action shifting toward the use of context-dependent allocentric information. This would result in an illusion bias on the impact velocity when the target is embedded in a Müller-Lyer configuration. We observed an ubiquitous effect of illusory context on movement execution, and not only when verbalizations were made. We suggest that the current experimental design with a far-aiming task where most conditions required reporting or retaining spatial characteristics of targets for action over time may have elicited a strong reliance on allocentric information to guide action.
Collapse
Affiliation(s)
- Raimey Olthuis
- Center for Human Movement Sciences, University Medical Centre Groningen, University of GroningenGroningen, Netherlands
| | - John Van Der Kamp
- MOVE Research Institute Amsterdam, Faculty of Behavioural and Movement Sciences, Vrije Universiteit AmsterdamAmsterdam, Netherlands
| | - Simone Caljouw
- Center for Human Movement Sciences, University Medical Centre Groningen, University of GroningenGroningen, Netherlands
| |
Collapse
|
49
|
Milner AD. How do the two visual streams interact with each other? Exp Brain Res 2017; 235:1297-1308. [PMID: 28255843 PMCID: PMC5380689 DOI: 10.1007/s00221-017-4917-4] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 02/13/2017] [Indexed: 11/28/2022]
Abstract
The current consensus divides primate cortical visual processing into two broad networks or "streams" composed of highly interconnected areas (Milner and Goodale 2006, 2008; Goodale 2014). The ventral stream, passing from primary visual cortex (V1) through to inferior parts of the temporal lobe, is considered to mediate the transformation of the contents of the visual signal into the mental furniture that guides memory, recognition and conscious perception. In contrast the dorsal stream, passing from V1 through to various areas in the posterior parietal lobe, is generally considered to mediate the visual guidance of action, primarily in real time. The brain, however, does not work through mutually insulated subsystems, and indeed there are well-documented interconnections between the two streams. Evidence for contributions from ventral stream systems to the dorsal stream comes from human neuropsychological and neuroimaging research, and indicates a crucial role in mediating complex and flexible visuomotor skills. Complementary evidence points to a role for posterior dorsal-stream visual analysis in certain aspects of 3-D perceptual function in the ventral stream. A series of studies of a patient with visual form agnosia has been instrumental in shaping our knowledge of what each stream can achieve in isolation; but it has also helped us to tease apart the relative dependence of parietal visuomotor systems on direct bottom-up visual inputs versus inputs redirected via perceptual systems within the ventral stream.
Collapse
Affiliation(s)
- A D Milner
- Durham University, Durham, UK.
- Department of Psychology, Science Laboratories, Durham University, South Road, Durham, DH1 3LE, UK.
| |
Collapse
|
50
|
Lamy D, Carmel T, Peremen Z. Prior conscious experience enhances conscious perception but does not affect response priming☆. Cognition 2017; 160:62-81. [DOI: 10.1016/j.cognition.2016.12.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 12/18/2016] [Accepted: 12/23/2016] [Indexed: 11/25/2022]
|