1
|
Scheller J, Ettich J, Wittich C, Pudewell S, Floss DM, Rafii P. Exploring the landscape of synthetic IL-6-type cytokines. FEBS J 2024; 291:2030-2050. [PMID: 37467060 DOI: 10.1111/febs.16909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/30/2023] [Accepted: 07/17/2023] [Indexed: 07/21/2023]
Abstract
Interleukin-6 (IL-6)-type cytokines not only have key immunomodulatory functions that affect the pathogenesis of diseases such as autoimmune diseases, chronic inflammatory conditions, and cancer, but also fulfill important homeostatic tasks. Even though the pro-inflammatory arm has hindered the development of therapeutics based on natural-like IL-6-type cytokines to date, current synthetic trends might pave the way to overcome these limitations and eventually lead to immune-inert designer cytokines to aid type 2 diabetes and brain injuries. Those synthetic biology approaches include mutations, fusion proteins, and inter-cytokine swapping, and resulted in IL-6-type cytokines with altered receptor affinities, extended target cell profiles, and targeting of non-natural cytokine receptor complexes. Here, we survey synthetic cytokine developments within the IL-6-type cytokine family and discuss potential clinical applications.
Collapse
Affiliation(s)
- Jürgen Scheller
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Julia Ettich
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Christoph Wittich
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Silke Pudewell
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Doreen M Floss
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Puyan Rafii
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|
2
|
Buyuktaskin D, Guney E, Gulbahar O, Ozaslan A, Arslan B. Serum ciliary neurotrophic factor levels in children with attention deficit hyperactivity disorder. Int J Neurosci 2024; 134:313-317. [PMID: 35815398 DOI: 10.1080/00207454.2022.2100782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/07/2022] [Accepted: 06/23/2022] [Indexed: 10/17/2022]
Abstract
Purpose/aim of the study: The study aimed to highlight the possible role of ciliary neurotrophic factor (CNTF) in the pathophysiology of attention deficit hyperactivity disorder (ADHD) and determine whether CNTF can be used as a biomarker for ADHD.Materials and methods: Patients with a diagnosis of ADHD and neurotypical subjects aged 6-12 years were recruited prospectively. The study applied Conners' Teacher Rating Scale (CTRS) to determine the patients' ADHD predominance and severity. Serum CNTF levels were measured with an enzyme-linked immunosorbent assay (ELISA) kit.Results: A total of 43 ADHD patients and 33 healthy controls were included in the study. A significant difference was found between the serum CNTF levels of the ADHD patients (22.17 pg/ml) and the controls (22.80 pg/ml). Correlations between the CNTF levels and CTRS scores were not significant.Conclusions: The study identified an alteration of serum CNTF levels in ADHD patients and thus asserted a link between CNTF and ADHD pathophysiology; children with ADHD had significantly lower serum CNTF levels compared to the neurotypical controls. Further research is needed to understand the mechanisms of CNTF.
Collapse
Affiliation(s)
- Dicle Buyuktaskin
- Department of Child and Adolescent Psychiatry, Gazi University Medical Faculty, Ankara, Turkey
- Department of Child and Adolescent Psychiatry, Cizre State Hospital, Sirnak, Turkey
| | - Esra Guney
- Department of Child and Adolescent Psychiatry, Gazi University Medical Faculty, Ankara, Turkey
| | - Ozlem Gulbahar
- Department of Medical Biochemistry, Gazi University Medical Faculty, Ankara, Turkey
| | - Ahmet Ozaslan
- Department of Child and Adolescent Psychiatry, Gazi University Medical Faculty, Ankara, Turkey
| | - Burak Arslan
- Department of Medical Biochemistry, Gazi University Medical Faculty, Ankara, Turkey
- Department of Medical Biochemistry, Erciş Şehit Rıdvan Çevik State Hospital, Van, Turkey
| |
Collapse
|
3
|
Kazakov AS, Deryusheva EI, Rastrygina VA, Sokolov AS, Permyakova ME, Litus EA, Uversky VN, Permyakov EA, Permyakov SE. Interaction of S100A6 Protein with the Four-Helical Cytokines. Biomolecules 2023; 13:1345. [PMID: 37759746 PMCID: PMC10526228 DOI: 10.3390/biom13091345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/19/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
S100 is a family of over 20 structurally homologous, but functionally diverse regulatory (calcium/zinc)-binding proteins of vertebrates. The involvement of S100 proteins in numerous vital (patho)physiological processes is mediated by their interaction with various (intra/extra)cellular protein partners, including cell surface receptors. Furthermore, recent studies have revealed the ability of specific S100 proteins to modulate cell signaling via direct interaction with cytokines. Previously, we revealed the binding of ca. 71% of the four-helical cytokines via the S100P protein, due to the presence in its molecule of a cytokine-binding site overlapping with the binding site for the S100P receptor. Here, we show that another S100 protein, S100A6 (that has a pairwise sequence identity with S100P of 35%), specifically binds numerous four-helical cytokines. We have studied the affinity of the recombinant forms of 35 human four-helical cytokines from all structural families of this fold to Ca2+-loaded recombinant human S100A6, using surface plasmon resonance spectroscopy. S100A6 recognizes 26 of the cytokines from all families of this fold, with equilibrium dissociation constants from 0.3 nM to 12 µM. Overall, S100A6 interacts with ca. 73% of the four-helical cytokines studied to date, with a selectivity equivalent to that for the S100P protein, with the differences limited to the binding of interleukin-2 and oncostatin M. The molecular docking study evidences the presence in the S100A6 molecule of a cytokine-binding site, analogous to that found in S100P. The findings argue the presence in some of the promiscuous members of the S100 family of a site specific to a wide range of four-helical cytokines. This unique feature of the S100 proteins potentially allows them to modulate the activity of the numerous four-helical cytokines in the disorders accompanied by an excessive release of the cytokines.
Collapse
Affiliation(s)
- Alexey S. Kazakov
- Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institute for Biological Instrumentation, Institutskaya str., 7, Pushchino, Moscow Region 142290, Russia; (A.S.K.); (E.I.D.); (V.A.R.); (A.S.S.); (M.E.P.); (E.A.L.); (E.A.P.)
| | - Evgenia I. Deryusheva
- Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institute for Biological Instrumentation, Institutskaya str., 7, Pushchino, Moscow Region 142290, Russia; (A.S.K.); (E.I.D.); (V.A.R.); (A.S.S.); (M.E.P.); (E.A.L.); (E.A.P.)
| | - Victoria A. Rastrygina
- Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institute for Biological Instrumentation, Institutskaya str., 7, Pushchino, Moscow Region 142290, Russia; (A.S.K.); (E.I.D.); (V.A.R.); (A.S.S.); (M.E.P.); (E.A.L.); (E.A.P.)
| | - Andrey S. Sokolov
- Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institute for Biological Instrumentation, Institutskaya str., 7, Pushchino, Moscow Region 142290, Russia; (A.S.K.); (E.I.D.); (V.A.R.); (A.S.S.); (M.E.P.); (E.A.L.); (E.A.P.)
| | - Maria E. Permyakova
- Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institute for Biological Instrumentation, Institutskaya str., 7, Pushchino, Moscow Region 142290, Russia; (A.S.K.); (E.I.D.); (V.A.R.); (A.S.S.); (M.E.P.); (E.A.L.); (E.A.P.)
| | - Ekaterina A. Litus
- Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institute for Biological Instrumentation, Institutskaya str., 7, Pushchino, Moscow Region 142290, Russia; (A.S.K.); (E.I.D.); (V.A.R.); (A.S.S.); (M.E.P.); (E.A.L.); (E.A.P.)
| | - Vladimir N. Uversky
- Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institute for Biological Instrumentation, Institutskaya str., 7, Pushchino, Moscow Region 142290, Russia; (A.S.K.); (E.I.D.); (V.A.R.); (A.S.S.); (M.E.P.); (E.A.L.); (E.A.P.)
- Department of Molecular, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Eugene A. Permyakov
- Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institute for Biological Instrumentation, Institutskaya str., 7, Pushchino, Moscow Region 142290, Russia; (A.S.K.); (E.I.D.); (V.A.R.); (A.S.S.); (M.E.P.); (E.A.L.); (E.A.P.)
| | - Sergei E. Permyakov
- Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institute for Biological Instrumentation, Institutskaya str., 7, Pushchino, Moscow Region 142290, Russia; (A.S.K.); (E.I.D.); (V.A.R.); (A.S.S.); (M.E.P.); (E.A.L.); (E.A.P.)
| |
Collapse
|
4
|
Stansberry WM, Pierchala BA. Neurotrophic factors in the physiology of motor neurons and their role in the pathobiology and therapeutic approach to amyotrophic lateral sclerosis. Front Mol Neurosci 2023; 16:1238453. [PMID: 37692101 PMCID: PMC10483118 DOI: 10.3389/fnmol.2023.1238453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 08/11/2023] [Indexed: 09/12/2023] Open
Abstract
The discovery of the neurotrophins and their potent survival and trophic effects led to great enthusiasm about their therapeutic potential to rescue dying neurons in neurodegenerative diseases. The further discovery that brain-derived neurotrophic factor (BDNF), ciliary neurotrophic factor (CNTF) and glial cell line-derived neurotrophic factor (GDNF) had potent survival-promoting activity on motor neurons led to the proposal for their use in motor neuron diseases such as amyotrophic lateral sclerosis (ALS). In this review we synthesize the literature pertaining to the role of NGF, BDNF, CNTF and GDNF on the development and physiology of spinal motor neurons, as well as the preclinical studies that evaluated their potential for the treatment of ALS. Results from the clinical trials of these molecules will also be described and, with the aid of decades of hindsight, we will discuss what can reasonably be concluded and how this information can inform future clinical development of neurotrophic factors for ALS.
Collapse
Affiliation(s)
- Wesley M. Stansberry
- The Department of Anatomy, Cell Biology and Physiology, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
- Medical Neuroscience Graduate Program, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Brian A. Pierchala
- The Department of Anatomy, Cell Biology and Physiology, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
- Medical Neuroscience Graduate Program, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
5
|
Ciliary neurotrophic factor is increased in the plasma of patients with obesity and its levels correlate with diabetes and inflammation indices. Sci Rep 2022; 12:8331. [PMID: 35585213 PMCID: PMC9117681 DOI: 10.1038/s41598-022-11942-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 04/22/2022] [Indexed: 11/09/2022] Open
Abstract
To establish whether obesity involves activation of endogenous ciliary neurotrophic factor (CNTF) signalling, we evaluated its plasma levels in patients with obesity and correlated its values with the major clinical and haematological indices of obesity, insulin resistance and systemic inflammation. This study involved 118 subjects: 39 healthy controls (19 men), 39 subjects with obesity (19 men) and 40 subjects with obesity and diabetes (20 men). Plasma CNTF and CNTF receptor α (CNTFRα) were measured using commercial ELISA kits. The results showed that plasma CNTF was significantly higher in males and females with obesity with and without diabetes than in healthy subjects. Women consistently exhibited higher levels of circulating CNTF. In both genders, CNTF levels correlated significantly and positively with obesity (BMI, WHR, leptin), diabetes (fasting insulin, HOMA index and HbA1c) and inflammation (IL-6 and hsCRP) indices. Circulating CNTFRα and the CNTF/CNTFRα molar ratio tended to be higher in the patient groups than in controls. In conclusion, endogenous CNTF signalling is activated in human obesity and may help counteract some adverse effects of obesity. Studies involving a higher number of selected patients may reveal circulating CNTF and/or CNTFRα as potential novel diagnostic and/or prognostic markers of obesity, diabetes and associated diseases.
Collapse
|
6
|
Kazakov AS, Sokolov AS, Permyakova ME, Litus EA, Uversky VN, Permyakov EA, Permyakov SE. Specific cytokines of interleukin-6 family interact with S100 proteins. Cell Calcium 2021; 101:102520. [PMID: 34933172 DOI: 10.1016/j.ceca.2021.102520] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/10/2021] [Accepted: 12/12/2021] [Indexed: 02/07/2023]
Abstract
Cytokines of interleukin-6 (IL-6) family are important signaling proteins involved in various physiological and pathological processes. Earlier, we described interactions between IL-11 and S100P/B proteins from the family of S100 proteins engaged in the pathogenesis of numerous diseases. We probed here interactions between seven IL-6 family cytokines (IL-6, IL-11, OSM, LIF, CNTF, CT-1, and CLCF1) and fourteen S100 proteins (S100A1/A4/A6/A7/A8/A9/A10/A11/A12/A13/A14/A15/B/P). Surface plasmon resonance spectroscopy revealed formation of calcium-dependent complexes between IL-11, OSM, CNTF, CT-1, and CLCF1 and distinct subsets of S100A1/A6/B/P proteins with equilibrium dissociation constants of 19 nM - 12 µM. The existence of a network of interactions between Ca2+-loaded S100 proteins and IL-6 family cytokines suggest regulation of these cytokines by the extracellular forms of S100 proteins.
Collapse
Affiliation(s)
- Alexey S Kazakov
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institutskaya str., 7, Pushchino, Moscow region 142290 Russia
| | - Andrey S Sokolov
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institutskaya str., 7, Pushchino, Moscow region 142290 Russia
| | - Maria E Permyakova
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institutskaya str., 7, Pushchino, Moscow region 142290 Russia
| | - Ekaterina A Litus
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institutskaya str., 7, Pushchino, Moscow region 142290 Russia
| | - Vladimir N Uversky
- Department of Molecular Medicine and Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL MDC07, USA.
| | - Eugene A Permyakov
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institutskaya str., 7, Pushchino, Moscow region 142290 Russia
| | - Sergei E Permyakov
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institutskaya str., 7, Pushchino, Moscow region 142290 Russia.
| |
Collapse
|
7
|
Shpak A, Guekht A, Druzhkova T, Rider F, Gudkova A, Gulyaeva N. Increased ciliary neurotrophic factor in blood serum and lacrimal fluid as a potential biomarkers of focal epilepsy. Neurol Sci 2021; 43:493-498. [PMID: 34031798 DOI: 10.1007/s10072-021-05338-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 05/17/2021] [Indexed: 01/09/2023]
Abstract
PURPOSE To evaluate ciliary neurotrophic factor (CNTF) level in blood serum (BS) and lacrimal fluid (LF) of people with epilepsy (PWE). METHODS A case-control study of 72 consecutive patients with focal epilepsy (cases, epilepsy group) and 60 age- and gender-matched healthy volunteers (controls) was performed. Based on comorbid depression, two subgroups of PWE were formed. CNTF level was measured by an enzyme-linked immunosorbent assay (ELISA) in the BS and LF. For measurements of low CNTF levels in the BS, the methodology previously improved by the authors was applied. RESULTS As compared to controls, CNTF level (pg/mL) in PWE was increased both in the BS (7.0±2.9 vs. 3.7±2.0, P<0.000) and in LF (34.0±8.0 vs. 30.6±4.8, P=0.005). No significant correlation was found between CNTF level in the BS and LF either in PWE or in controls. No impact of comorbid depression or any demographic or clinical parameters studied on CNTF level in the BS or LF of PWE could be detected. CONCLUSIONS In patients with focal epilepsy, CNTF level is increased both in the BS and LF, though without correlation between them. No association of CNTF levels with age, gender, or clinical parameters, as well as depression occurrence, was found. High CNTF levels in the BS and LF could be considered as non-invasive biomarkers of focal epilepsy.
Collapse
Affiliation(s)
- Alexander Shpak
- The S. Fyodorov Eye Microsurgery Federal State Institution, 59-a Beskudnikovsky Blvd., Moscow, Russian Federation, 127486.
| | - Alla Guekht
- Moscow Research and Clinical Center for Neuropsychiatry, Moscow Healthcare Department, Moscow, Russian Federation
- Pirogov Russian National Research Medical University, Moscow, Russian Federation
| | - Tatiana Druzhkova
- Moscow Research and Clinical Center for Neuropsychiatry, Moscow Healthcare Department, Moscow, Russian Federation
| | - Flora Rider
- Moscow Research and Clinical Center for Neuropsychiatry, Moscow Healthcare Department, Moscow, Russian Federation
| | - Anna Gudkova
- Moscow Research and Clinical Center for Neuropsychiatry, Moscow Healthcare Department, Moscow, Russian Federation
| | - Natalia Gulyaeva
- Moscow Research and Clinical Center for Neuropsychiatry, Moscow Healthcare Department, Moscow, Russian Federation
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russian Federation
| |
Collapse
|
8
|
Volonté C, Morello G, Spampinato AG, Amadio S, Apolloni S, D’Agata V, Cavallaro S. Omics-based exploration and functional validation of neurotrophic factors and histamine as therapeutic targets in ALS. Ageing Res Rev 2020; 62:101121. [PMID: 32653439 DOI: 10.1016/j.arr.2020.101121] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 05/27/2020] [Accepted: 07/07/2020] [Indexed: 12/13/2022]
Abstract
A plethora of genetic and molecular mechanisms have been implicated in the pathophysiology of the heterogeneous and multifactorial amyotrophic lateral sclerosis (ALS) disease, and hence the conventional "one target-one drug" paradigm has failed so far to provide effective therapeutic solutions, precisely because of the complex nature of ALS. This review intends to highlight how the integration of emerging "omics" approaches may provide a rational foundation for the comprehensive exploration of molecular pathways and dynamic interactions involved in ALS, for the identification of candidate targets and biomarkers that will assist in the rapid diagnosis and prognosis, lastly for the stratification of patients into different subgroups with the aim of personalized therapeutic strategies. To this purpose, particular emphasis will be placed on some potential therapeutic targets, including neurotrophic factors and histamine signaling that both have emerged as dysregulated at different omics levels in specific subgroups of ALS patients, and have already shown promising results in in vitro and in vivo models of ALS. To conclude, we will discuss about the utility of using integrated omics coupled with network-based approaches to provide additional guidance for personalization of medicine applications in ALS.
Collapse
|
9
|
Venema W, Severi I, Perugini J, Di Mercurio E, Mainardi M, Maffei M, Cinti S, Giordano A. Ciliary Neurotrophic Factor Acts on Distinctive Hypothalamic Arcuate Neurons and Promotes Leptin Entry Into and Action on the Mouse Hypothalamus. Front Cell Neurosci 2020; 14:140. [PMID: 32528252 PMCID: PMC7253709 DOI: 10.3389/fncel.2020.00140] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 04/24/2020] [Indexed: 12/13/2022] Open
Abstract
In humans and experimental animals, the administration of ciliary neurotrophic factor (CNTF) reduces food intake and body weight. To gain further insights into the mechanism(s) underlying its satiety effect, we: (i) evaluated the CNTF-dependent activation of the Janus kinase 2 (JAK2) and signal transducer and activator of transcription 3 (STAT3) pathway in mouse models where neuropeptide Y (NPY) and pro-opiomelanocortin (POMC) neurons can be identified by green fluorescent protein (GFP); and (ii) assessed whether CNTF promotes leptin signaling in hypothalamic feeding centers. Immunohistochemical experiments enabled us to establish that intraperitoneal injection of mouse recombinant CNTF activated the JAK2-STAT3 pathway in a substantial proportion of arcuate nucleus (ARC) NPY neurons (18.68% ± 0.60 in 24-h fasted mice and 25.50% ± 1.17 in fed mice) but exerted a limited effect on POMC neurons (4.15% ± 0.33 in 24-h fasted mice and 2.84% ± 0.45 in fed mice). CNTF-responsive NPY neurons resided in the ventromedial ARC, facing the median eminence (ME), and were surrounded by albumin immunoreactivity, suggesting that they are located outside the blood-brain barrier (BBB). In both normally fed and high-fat diet (HFD) obese animals, CNTF activated extracellular signal-regulated kinase signaling in ME β1- and β2-tanycytes, an effect that has been linked to the promotion of leptin entry into the brain. Accordingly, compared to the animals treated with leptin, mice treated with leptin/CNTF showed: (i) a significantly greater leptin content in hypothalamic protein extracts; (ii) a significant increase in phospho-STAT3 (P-STAT3)-positive neurons in the ARC and the ventromedial hypothalamic nucleus of normally fed mice; and (iii) a significantly increased number of P-STAT3-positive neurons in the ARC and dorsomedial hypothalamic nucleus of HFD obese mice. Collectively, these data suggest that exogenously administered CNTF reduces food intake by exerting a leptin-like action on distinctive NPY ARC neurons and by promoting leptin signaling in hypothalamic feeding centers.
Collapse
Affiliation(s)
- Wiebe Venema
- Section of Neuroscience and Cell Biology, Department of Experimental and Clinical Medicine, Università Politecnica Delle Marche, Ancona, Italy
| | - Ilenia Severi
- Section of Neuroscience and Cell Biology, Department of Experimental and Clinical Medicine, Università Politecnica Delle Marche, Ancona, Italy
| | - Jessica Perugini
- Section of Neuroscience and Cell Biology, Department of Experimental and Clinical Medicine, Università Politecnica Delle Marche, Ancona, Italy
| | - Eleonora Di Mercurio
- Section of Neuroscience and Cell Biology, Department of Experimental and Clinical Medicine, Università Politecnica Delle Marche, Ancona, Italy
| | - Marco Mainardi
- Institute of Neuroscience, National Research Council, Pisa, Italy
| | | | - Saverio Cinti
- Section of Neuroscience and Cell Biology, Department of Experimental and Clinical Medicine, Università Politecnica Delle Marche, Ancona, Italy.,Center of Obesity, Università Politecnica delle Marche-United Hospitals, Ancona, Italy
| | - Antonio Giordano
- Section of Neuroscience and Cell Biology, Department of Experimental and Clinical Medicine, Università Politecnica Delle Marche, Ancona, Italy
| |
Collapse
|
10
|
Brondino N, Rocchetti M, Fusar-Poli L, Damiani S, Goggi A, Chiodelli G, Corti S, Visai L, Politi P. Increased CNTF levels in adults with autism spectrum disorders. World J Biol Psychiatry 2019; 20:742-746. [PMID: 29869578 DOI: 10.1080/15622975.2018.1481999] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Objectives: Ciliary neurotrophic factor (CNTF) is a neurotrophin which could signal neuronal suffering and at the same time acts as a neuroprotective agent. In the present study we aimed to evaluate CNTF serum levels in autism spectrum disorders (ASDs). In fact, considering the role of CNTF as a neuronal damage signal and the role of neuroinflammation, excito-inhibitory imbalance and excitotoxicity in the pathogenesis of ASDs, a possible alteration of CNTF in ASDs could be hypothesised.Methods: We recruited 23 individuals with ASDs and intellectual disability (ID), 20 ID subjects and 26 typical adults. A complete medical and psychopathological characterisation of the participants was performed. CNTF serum levels were measured with ELISA.Results: CNTF serum levels were significantly higher in the ASD + ID group compared to ID (p < .001) or typically developed subjects (p < .001).Conclusions: CNTF may be considered as a potential biomarker candidate for ASDs in the context of severe ID. Our results support the hypothesis of neurotrophic imbalance in ASDs.
Collapse
Affiliation(s)
- Natascia Brondino
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Matteo Rocchetti
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Laura Fusar-Poli
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Stefano Damiani
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Arianna Goggi
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | | | - Serafino Corti
- Disability Department, Sospiro Foundation, Sospiro (CR), Italy
| | - Livia Visai
- Molecular Medicine Department, Centre for Health Technologies (CHT), UdR INSTM, University of Pavia, Pavia, Italy.,Department of Occupational Medicine, Toxicology and Environmental Risks, Istituti Clinici Scientifici (ICS) Maugeri, Società Benefit SpA, IRCCS, Pavia, Italy
| | - Pierluigi Politi
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
11
|
Musina LO, Uzbekov MG. Changes in the level of ciliary neurotrophic factor are related to the degree of severity of epilepsy. NEUROCHEM J+ 2017. [DOI: 10.1134/s181971241701010x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Gandolfi M, Smania N, Vella A, Picelli A, Chirumbolo S. Assessed and Emerging Biomarkers in Stroke and Training-Mediated Stroke Recovery: State of the Art. Neural Plast 2017; 2017:1389475. [PMID: 28373915 PMCID: PMC5360976 DOI: 10.1155/2017/1389475] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 01/11/2017] [Indexed: 12/13/2022] Open
Abstract
Since the increasing update of the biomolecular scientific literature, biomarkers in stroke have reached an outstanding and remarkable revision in the very recent years. Besides the diagnostic and prognostic role of some inflammatory markers, many further molecules and biological factors have been added to the list, including tissue derived cytokines, growth factor-like molecules, hormones, and microRNAs. The literatures on brain derived growth factor and other neuroimmune mediators, bone-skeletal muscle biomarkers, cellular and immunity biomarkers, and the role of microRNAs in stroke recovery were reviewed. To date, biomarkers represent a possible challenge in the diagnostic and prognostic evaluation of stroke onset, pathogenesis, and recovery. Many molecules are still under investigation and may become promising and encouraging biomarkers. Experimental and clinical research should increase this list and promote new discoveries in this field, to improve stroke diagnosis and treatment.
Collapse
Affiliation(s)
- Marialuisa Gandolfi
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
- UOC Neurorehabilitation, AOUI Verona, Verona, Italy
| | - Nicola Smania
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
- UOC Neurorehabilitation, AOUI Verona, Verona, Italy
| | - Antonio Vella
- Immunology Unit, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Alessandro Picelli
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
- UOC Neurorehabilitation, AOUI Verona, Verona, Italy
| | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| |
Collapse
|
13
|
Senzacqua M, Severi I, Perugini J, Acciarini S, Cinti S, Giordano A. Action of Administered Ciliary Neurotrophic Factor on the Mouse Dorsal Vagal Complex. Front Neurosci 2016; 10:289. [PMID: 27445662 PMCID: PMC4921504 DOI: 10.3389/fnins.2016.00289] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 06/10/2016] [Indexed: 12/13/2022] Open
Abstract
Ciliary neurotrophic factor (CNTF) induces weight loss in obese rodents and humans through activation of the hypothalamic Jak-STAT (Janus kinase-signal transducer and activator of transcription) signaling pathway. Here, we tested the hypothesis that CNTF also affects the brainstem centers involved in feeding and energy balance regulation. To this end, wild-type and leptin-deficient (ob/ob and db/db) obese mice were acutely treated with intraperitoneal recombinant CNTF. Coronal brainstem sections were processed for immunohistochemical detection of STAT3, STAT1, STAT5 phosphorylation and c-Fos. In wild-type mice, CNTF treatment for 45 min induced STAT3, STAT1, and STAT5 phosphorylation in neurons as well as glial cells of the area postrema; here, the majority of CNTF-responsive cells activated multiple STAT isoforms, and a significant proportion of CNTF-responsive glial cells bore the immaturity and plasticity markers nestin and vimentin. After 120 min CNTF treatment, c-Fos expression was intense in glial cells and weak in neurons of the area postrema, it was intense in several neurons of the rostral and caudal solitary tract nucleus (NTS), and weak in some cholinergic neurons of the dorsal motor nucleus of the vagus. In the ob/ob and db/db mice, Jak-STAT activation and c-Fos expression were similar to those induced in wild-type mouse brainstem. Treatment with CNTF (120 min, to induce c-Fos expression) and leptin (25 min, to induce STAT3 phosphorylation) demonstrated the co-localization of the two transcription factors in a small neuron population in the caudal NTS portion. Finally, weak immunohistochemical CNTF staining, detected in funiculus separans, and meningeal glial cells, matched the modest amount of CNTF found by RT-qPCR in micropunched area postrema tissue, which in contrast exhibited a very high amount of CNTF receptor. Collectively, the present findings show that the area postrema and the NTS exhibit high, distinctive responsiveness to circulating exogenous and, probably, endogenous CNTF.
Collapse
Affiliation(s)
- Martina Senzacqua
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche Ancona, Italy
| | - Ilenia Severi
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche Ancona, Italy
| | - Jessica Perugini
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche Ancona, Italy
| | - Samantha Acciarini
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche Ancona, Italy
| | - Saverio Cinti
- Department of Experimental and Clinical Medicine, Università Politecnica delle MarcheAncona, Italy; Center of Obesity, Università Politecnica delle Marche-United HospitalsAncona, Italy
| | - Antonio Giordano
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche Ancona, Italy
| |
Collapse
|
14
|
Pasquin S, Sharma M, Gauchat JF. Ciliary neurotrophic factor (CNTF): New facets of an old molecule for treating neurodegenerative and metabolic syndrome pathologies. Cytokine Growth Factor Rev 2015; 26:507-15. [PMID: 26187860 DOI: 10.1016/j.cytogfr.2015.07.007] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 07/01/2015] [Indexed: 12/13/2022]
Abstract
Ciliary neurotrophic factor (CNTF) is the most extensively studied member of the cytokine family that signal through intracellular chains of the gp130/LIFRβ receptor. The severe phenotype in patients suffering from mutations inactivating LIFRβ indicates that members of this cytokine family play key, non-redundant roles during development. Accordingly, three decades of research has revealed potent and promising trophic and regulatory activities of CNTF in neurons, oligodendrocytes, muscle cells, bone cells, adipocytes and retinal cells. These findings led to clinical trials to test the therapeutic potential of CNTF and CNTF derivatives for treating neurodegenerative and metabolic diseases. Promising results have encouraged continuation of studies for treating retinal degenerative diseases. Results of some clinical trials showed that side-effects may limit the systemically administrated doses of CNTF. Therefore, therapies being currently tested rely on local delivery of CNTF using encapsulated cytokine-secreting implants. Since the side effects of CNTF might be linked to its ability to activate the alternative IL6Rα-LIFRβ-gp130 receptor, CNTFR-specific mutants of CNTF have been developed that bind to the CNTFRα-LIFRβ-gp130 receptor. These developments may prove to be a breakthrough for therapeutic applications of systemically administered CNTF in pathologies such as multiple sclerosis or Alzheimer's disease. The "designer cytokine approach" offers future opportunities to further enhance specificity by conjugating mutant CNTF with modified soluble CNTFRα to target therapeutically relevant cells that express gp130-LIFRβ and a specific cell surface marker.
Collapse
Affiliation(s)
- Sarah Pasquin
- Département de Pharmacologie, Université de Montréal, 2900 Édouard Montpetit, Montreal, QC H3T 1J4, Canada
| | - Mukut Sharma
- Renal Division, KCVA Medical Center, 4801 Linwood Blvd, Kansas City, MO 64128, USA
| | - Jean-François Gauchat
- Département de Pharmacologie, Université de Montréal, 2900 Édouard Montpetit, Montreal, QC H3T 1J4, Canada.
| |
Collapse
|
15
|
Tovar-Y-Romo LB, Ramírez-Jarquín UN, Lazo-Gómez R, Tapia R. Trophic factors as modulators of motor neuron physiology and survival: implications for ALS therapy. Front Cell Neurosci 2014; 8:61. [PMID: 24616665 PMCID: PMC3937589 DOI: 10.3389/fncel.2014.00061] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 02/11/2014] [Indexed: 12/12/2022] Open
Abstract
Motor neuron physiology and development depend on a continuous and tightly regulated trophic support from a variety of cellular sources. Trophic factors guide the generation and positioning of motor neurons during every stage of the developmental process. As well, they are involved in axon guidance and synapse formation. Even in the adult spinal cord an uninterrupted trophic input is required to maintain neuronal functioning and protection from noxious stimuli. Among the trophic factors that have been demonstrated to participate in motor neuron physiology are vascular endothelial growth factor (VEGF), glial-derived neurotrophic factor (GDNF), ciliary neurotrophic factor (CNTF) and insulin-like growth factor 1 (IGF-1). Upon binding to membrane receptors expressed in motor neurons or neighboring glia, these trophic factors activate intracellular signaling pathways that promote cell survival and have protective action on motor neurons, in both in vivo and in vitro models of neuronal degeneration. For these reasons these factors have been considered a promising therapeutic method for amyotrophic lateral sclerosis (ALS) and other neurodegenerative diseases, although their efficacy in human clinical trials have not yet shown the expected protection. In this minireview we summarize experimental data on the role of these trophic factors in motor neuron function and survival, as well as their mechanisms of action. We also briefly discuss the potential therapeutic use of the trophic factors and why these therapies may have not been yet successful in the clinical use.
Collapse
Affiliation(s)
- Luis B Tovar-Y-Romo
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México Mexico City, Mexico
| | - Uri Nimrod Ramírez-Jarquín
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México Mexico City, Mexico
| | - Rafael Lazo-Gómez
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México Mexico City, Mexico
| | - Ricardo Tapia
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México Mexico City, Mexico
| |
Collapse
|
16
|
Gould TW, Oppenheim RW. Motor neuron trophic factors: therapeutic use in ALS? BRAIN RESEARCH REVIEWS 2011; 67:1-39. [PMID: 20971133 PMCID: PMC3109102 DOI: 10.1016/j.brainresrev.2010.10.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2010] [Revised: 10/12/2010] [Accepted: 10/18/2010] [Indexed: 12/12/2022]
Abstract
The modest effects of neurotrophic factor (NTF) treatment on lifespan in both animal models and clinical studies of Amyotropic Lateral Sclerosis (ALS) may result from any one or combination of the four following explanations: 1.) NTFs block cell death in some physiological contexts but not in ALS; 2.) NTFs do not rescue motoneurons (MNs) from death in any physiological context; 3.) NTFs block cell death in ALS but to no avail; and 4.) NTFs are physiologically effective but limited by pharmacokinetic constraints. The object of this review is to critically evaluate the role of both NTFs and the intracellular cell death pathway itself in regulating the survival of spinal and cranial (lower) MNs during development, after injury and in response to disease. Because the role of molecules mediating MN survival has been most clearly resolved by the in vivo analysis of genetically engineered mice, this review will focus on studies of such mice expressing reporter, null or other mutant alleles of NTFs, NTF receptors, cell death or ALS-associated genes.
Collapse
Affiliation(s)
- Thomas W Gould
- Department of Neurobiology and Anatomy, Wake Forest University School of Medicine, Winston-Salem, NC 27157-1010, USA.
| | | |
Collapse
|
17
|
Abstract
Cytokines that bind to and signal through the gp130 co-receptor subunit include interleukin (IL)-6, IL-11, oncostatin M (OSM), leukemia inhibitory factor (LIF), cardiotrophin-1 (CT-1), and ciliary neutrophic factor (CNTF). Apart from contributing to inflammation, gp130 signalling cytokines also function in the maintenance of bone homeostasis. Expression of each of these cytokines and their ligand-specific receptors is observed in bone and joint cells, and bone-active hormones and inflammatory cytokines regulate their expression. gp130 signalling cytokines have been shown to regulate the differentiation and activity of osteoblasts, osteoclasts and chondrocytes. Furthermore, cytokine and receptor specific gene-knockout mouse models have identified distinct roles for each of these cytokines in regulating bone resorption, bone formation and bone growth. This review will discuss the current models of paracrine and endocrine actions of gp130-signalling cytokines in bone remodelling and growth, as well as their impact in pathologic bone remodelling evident in periodontal disease, rheumatoid arthritis, spondylarthropathies and osteoarthritis.
Collapse
Affiliation(s)
- Natalie A Sims
- St Vincent's Institute, 9 Princes St, Fitzroy, Victoria 3065, Australia.
| | | |
Collapse
|
18
|
Kuzma-Kozakiewicz M, Kwiecinski H. New therapeutic targets for amyotrophic lateral sclerosis. Expert Opin Ther Targets 2010; 15:127-43. [PMID: 21133819 DOI: 10.1517/14728222.2011.542152] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
INTRODUCTION Amyotrophic lateral sclerosis (ALS) is one of the most devastating neurological disorders, affecting approximately half a million people worldwide. Currently there is no cure or prevention for ALS. Although ALS is a rare condition, it places a tremendous socioeconomic burden on patients, family members, caregivers and health systems. AREAS COVERED The review examines the mechanisms that may contribute to motor neuron degeneration in ALS, among which oxidative damage, glutatamate excitoxicity, mitochondrial dysfunction, impaired axonal transport, apoptotic cell death, growth factor deficiency, glial cell pathology and abnormal RNA metabolism are potential targets for ALS treatment. The article provides an overview of clinical trials performed to date in attempts to treat ALS with regard to molecular mechanisms and pathways they act on. It also discusses new trials based on recently developed molecular biology techniques. EXPERT OPINION Despite significant effectiveness of several potential therapeutics observed in preclinical trials, the results were not translatable to patients with ALS. The development of effective treatments of ALS strictly depends on understanding the primary cause of the disease. This goal will only be achieved when we identify the trigger point for motor neuron death in ALS.
Collapse
|
19
|
Jazayeri JA, Upadhyay A, Vernallis AB, Carroll GJ. Targeting the Glycoprotein 130 Receptor Subunit to Control Pain and Inflammation. J Interferon Cytokine Res 2010; 30:865-73. [DOI: 10.1089/jir.2010.0035] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Jalal A. Jazayeri
- Medicinal Chemistry and Drug Action, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), Melbourne, Australia
| | - Aradhana Upadhyay
- Medicinal Chemistry and Drug Action, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), Melbourne, Australia
| | - Ann B. Vernallis
- School of Life and Health Sciences, Aston University Birmingham, Birmingham, United Kingdom
| | - Graeme J. Carroll
- Department of Rheumatology, Fremantle Hospital, University of Notre Dame, Australia (Fremantle) and University of Western Australia, Fremantle Hospital, Perth, Western Australia
| |
Collapse
|
20
|
Neurology in the European Journal of Neurology. Eur J Neurol 2010. [DOI: 10.1111/j.1468-1331.2010.03248.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
21
|
Zoccolella S, Santamato A, Lamberti P. Current and emerging treatments for amyotrophic lateral sclerosis. Neuropsychiatr Dis Treat 2009; 5:577-95. [PMID: 19966906 PMCID: PMC2785861 DOI: 10.2147/ndt.s7788] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a relatively rare neurodegenerative disorder of both upper and lower motoneurons. Currently, the management of ALS is essentially symptoms-based, and riluzole, an antiglutamatergic agent, is the only drug for the treatment of ALS approved by the food and drug administration. OBJECTIVE We reviewed current literature concerning emerging treatments for amyotrophic lateral sclerosis. METHODS A Medline literature search was performed to identify all studies on ALS treatment published from January 1st, 1986 through August 31st, 2009. We selected papers concerning only disease-modifying therapy. RESULTS Forty-eight compounds were identified and reviewed in this study. CONCLUSIONS Riluzole is the only compound that demonstrated a beneficial effect on ALS patients, but with only modest increase in survival. Although several drugs showed effective results in the animal models for ALS, none of them significantly prolonged survival or improved quality of life of ALS patients. Several factors have been implicated in explaining the predominantly negative results of numerous randomized clinical trials in ALS, including methodological problems in the use of animal-drug screening, the lack of assessment of pharmacokinetic profile of the drugs, and methodological pitfalls of clinical trials in ALS patients.
Collapse
Affiliation(s)
- Stefano Zoccolella
- Azienda Ospedaliero-Universitaria Ospedali Riuniti, Department of Medical and Neurological Sciences, Clinic of Nervous System Diseases, University of Foggia, Italy.
| | | | | |
Collapse
|