1
|
Gill EL, Wang J, Viaene AN, Master SR, Ganetzky RD. Methodologies in Mitochondrial Testing: Diagnosing a Primary Mitochondrial Respiratory Chain Disorder. Clin Chem 2023:7143230. [PMID: 37099687 DOI: 10.1093/clinchem/hvad037] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 03/03/2023] [Indexed: 04/28/2023]
Abstract
BACKGROUND Mitochondria are cytosolic organelles within most eukaryotic cells. Mitochondria generate the majority of cellular energy in the form of adenosine triphosphate (ATP) through oxidative phosphorylation (OxPhos). Pathogenic variants in mitochondrial DNA (mtDNA) and nuclear DNA (nDNA) lead to defects in OxPhos and physiological malfunctions (Nat Rev Dis Primer 2016;2:16080.). Patients with primary mitochondrial disorders (PMD) experience heterogeneous symptoms, typically in multiple organ systems, depending on the tissues affected by mitochondrial dysfunction. Because of this heterogeneity, clinical diagnosis is challenging (Annu Rev Genomics Hum Genet 2017;18:257-75.). Laboratory diagnosis of mitochondrial disease depends on a multipronged analysis that can include biochemical, histopathologic, and genetic testing. Each of these modalities has complementary strengths and limitations in diagnostic utility. CONTENT The primary focus of this review is on diagnosis and testing strategies for primary mitochondrial diseases. We review tissue samples utilized for testing, metabolic signatures, histologic findings, and molecular testing approaches. We conclude with future perspectives on mitochondrial testing. SUMMARY This review offers an overview of the current biochemical, histologic, and genetic approaches available for mitochondrial testing. For each we review their diagnostic utility including complementary strengths and weaknesses. We identify gaps in current testing and possible future avenues for test development.
Collapse
Affiliation(s)
- Emily L Gill
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Jing Wang
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Angela N Viaene
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Stephen R Master
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Rebecca D Ganetzky
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States
- Division of Human Genetics, Children's Hospital of Philadelphia, Mitochondrial Medicine Frontier Program, Philadelphia, PA, United States
- Department of Pediatrics, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
2
|
Farnezi HCM, Goulart ACX, Santos AD, Ramos MG, Penna MLF. Three-parent babies: Mitochondrial replacement therapies. JBRA Assist Reprod 2020; 24:189-196. [PMID: 32073245 PMCID: PMC7169912 DOI: 10.5935/1518-0557.20190086] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The mitochondria are intracellular organelles, and just like the cell nucleus they have their own genome. They are extremely important for normal body functioning and are responsible for ATP production - the main energy source for the cell. Mitochondrial diseases are associated with mutations in mitochondrial DNA and are inherited exclusively from the mother. They can affect organs that depend on energy metabolism, such as skeletal muscles, the cardiac system, the central nervous system, the endocrine system, the retina and liver, causing various incurable diseases. Mitochondrial replacement techniques provide women with mitochondrial defects a chance to have normal biological children. The goal of such treatment is to reconstruct functional oocytes and zygotes, in order to avoid the inheritance of mutated genes; for this the nuclear genome is withdrawn from an oocyte or zygotes, which carries mitochondrial mutations, and is implanted in a normal anucleated cell donor. Currently, the options of a couple to prevent the transmission of mitochondrial diseases are limited, and mitochondrial donation techniques provide women with mitochondrial defects a chance to have normal children. The nuclear genome can be transferred from oocytes or zygotes using techniques such as pronuclear transfer, spindle transfer, polar body transfer and germinal vesicle transfer. This study presents a review of developed mitochondrial substitution techniques, and its ability to prevent hereditary diseases.
Collapse
Affiliation(s)
| | | | - Adriana Dos Santos
- Faculdade de Ciências Humanas, Universidade FUMEC, Belo Horizonte, MG, Brazil
| | | | | |
Collapse
|
3
|
Zhang G, Hou Y, Wang Z, Ye Z. Cognitive Profile of Patients With Mitochondrial Chronic Progressive External Ophthalmoplegia. Front Neurol 2020; 11:36. [PMID: 32063883 PMCID: PMC7000654 DOI: 10.3389/fneur.2020.00036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 01/10/2020] [Indexed: 11/22/2022] Open
Abstract
Mitochondrial chronic progressive external ophthalmoplegia (CPEO) is a major manifestation of human mitochondrial encephalomyopathies. Previous studies have shown cognitive deficits in patients with mitochondrial diseases. However, these studies often included patients with heterogeneous subtypes of mitochondrial diseases. Here, we aimed to provide a better cognitive profile of patients with CPEO by applying a comprehensive battery of neuropsychological assessments in a pure sample of patients with CPEO. We recruited 28 patients with CPEO (19 women, age 16–62 years) and 38 age- and education-matched healthy control subjects (25 women, age 16–60 years). The neuropsychological assessments covered global cognition and five cognitive domains (executive functions, language, working memory, memory, and visuospatial functions). We found that the patients were impaired in global cognition [Montreal Cognitive Assessment (MoCA)], executive functions [Trail Making Test Part B (TMT-B)], and language [Boston Naming Test (BNT)], but not in working memory, memory or visuospatial functions. Moreover, individual patients' performances in the TMT-B (completion time) were predicted by the severity of non-ophthalmoplegia mitochondrial symptoms/signs [Newcastle Mitochondrial Disease Adult Scale (NMDAS)] and duration of the mitochondrial disease (years). Namely, patients with more severe non-ophthalmoplegia mitochondrial symptoms/signs and a longer disease duration took a longer time to complete the TMT-B. No clinical measures predicted individual patients' performances in the BNT.
Collapse
Affiliation(s)
- Guanyu Zhang
- Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Yue Hou
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Zhaoxia Wang
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Zheng Ye
- Key Laboratory of Primate Neurobiology, Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
4
|
Pek NMQ, Phua QH, Ho BX, Pang JKS, Hor JH, An O, Yang HH, Yu Y, Fan Y, Ng SY, Soh BS. Mitochondrial 3243A > G mutation confers pro-atherogenic and pro-inflammatory properties in MELAS iPS derived endothelial cells. Cell Death Dis 2019; 10:802. [PMID: 31641105 PMCID: PMC6805858 DOI: 10.1038/s41419-019-2036-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 09/11/2019] [Accepted: 10/04/2019] [Indexed: 12/12/2022]
Abstract
Mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS) syndrome is a mitochondrial disorder that is commonly caused by the m.3243A > G mutation in the MT-TL1 gene encoding for mitochondrial tRNA(Leu(UUR)). While clinical studies reported cerebral infarcts, atherosclerotic lesions, and altered vasculature and stroke-like episodes (SLE) in MELAS patients, it remains unclear how this mutation causes the onset and subsequent progression of the disease. Here, we report that in addition to endothelial dysfunction, diseased endothelial cells (ECs) were found to be pro-atherogenic and pro-inflammation due to high levels of ROS and Ox-LDLs, and high basal expressions of VCAM-1, in particular isoform b, respectively. Consistently, more monocytes were found to adhere to MELAS ECs as compared to the isogenic control, suggesting the presence of an atherosclerosis-like pathology in MELAS. Notably, these disease phenotypes in endothelial cells can be effectively reversed by anti-oxidant treatment suggesting that the lowering of ROS is critical for treating patients with MELAS syndrome.
Collapse
Affiliation(s)
- Nicole Min Qian Pek
- Disease Modeling and Therapeutics Laboratory, A*STAR Institute of Molecular and Cell Biology, 61 Biopolis Drive Proteos, Singapore, 138673, Singapore
| | - Qian Hua Phua
- Disease Modeling and Therapeutics Laboratory, A*STAR Institute of Molecular and Cell Biology, 61 Biopolis Drive Proteos, Singapore, 138673, Singapore
| | - Beatrice Xuan Ho
- Disease Modeling and Therapeutics Laboratory, A*STAR Institute of Molecular and Cell Biology, 61 Biopolis Drive Proteos, Singapore, 138673, Singapore.,Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore
| | - Jeremy Kah Sheng Pang
- Disease Modeling and Therapeutics Laboratory, A*STAR Institute of Molecular and Cell Biology, 61 Biopolis Drive Proteos, Singapore, 138673, Singapore.,Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore
| | - Jin-Hui Hor
- Disease Modeling and Therapeutics Laboratory, A*STAR Institute of Molecular and Cell Biology, 61 Biopolis Drive Proteos, Singapore, 138673, Singapore.,Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore.,Neurotherapeutics Laboratory, A*STAR Institute of Molecular and Cell Biology, 61 Biopolis Drive Proteos, Singapore, 138673, Singapore
| | - Omer An
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - Henry He Yang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - Yang Yu
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
| | - Yong Fan
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.
| | - Shi-Yan Ng
- Neurotherapeutics Laboratory, A*STAR Institute of Molecular and Cell Biology, 61 Biopolis Drive Proteos, Singapore, 138673, Singapore. .,Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China. .,National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore. .,Department of Physiology, National University of Singapore, 2 Medical Dr, Singapore, 117593, Singapore.
| | - Boon-Seng Soh
- Disease Modeling and Therapeutics Laboratory, A*STAR Institute of Molecular and Cell Biology, 61 Biopolis Drive Proteos, Singapore, 138673, Singapore. .,Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore. .,Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.
| |
Collapse
|
5
|
Newbigging AM, Zhang H, Le XC. Beacon-mediated exponential amplification reaction (BEAR) using a single enzyme and primer. Chem Commun (Camb) 2019; 55:10677-10680. [PMID: 31424057 DOI: 10.1039/c9cc04226a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Beacon-mediated Exponential Amplification Reaction (BEAR) enables isothermal, exponential signal amplification. BEAR uses only a single enzyme and a single primer. Detection of 0.2 amol of a mitochondrial DNA with a point mutation in less than an hour demonstrates an application of the BEAR technique for nucleic acid research.
Collapse
Affiliation(s)
- Ashley M Newbigging
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada.
| | - Hongquan Zhang
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada.
| | - X Chris Le
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
6
|
Theunissen TEJ, Nguyen M, Kamps R, Hendrickx AT, Sallevelt SCEH, Gottschalk RWH, Calis CM, Stassen APM, de Koning B, Mulder-Den Hartog ENM, Schoonderwoerd K, Fuchs SA, Hilhorst-Hofstee Y, de Visser M, Vanoevelen J, Szklarczyk R, Gerards M, de Coo IFM, Hellebrekers DMEI, Smeets HJM. Whole Exome Sequencing Is the Preferred Strategy to Identify the Genetic Defect in Patients With a Probable or Possible Mitochondrial Cause. Front Genet 2018; 9:400. [PMID: 30369941 PMCID: PMC6194163 DOI: 10.3389/fgene.2018.00400] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 09/03/2018] [Indexed: 01/03/2023] Open
Abstract
Mitochondrial disorders, characterized by clinical symptoms and/or OXPHOS deficiencies, are caused by pathogenic variants in mitochondrial genes. However, pathogenic variants in some of these genes can lead to clinical manifestations which overlap with other neuromuscular diseases, which can be caused by pathogenic variants in non-mitochondrial genes as well. Mitochondrial pathogenic variants can be found in the mitochondrial DNA (mtDNA) or in any of the 1,500 nuclear genes with a mitochondrial function. We have performed a two-step next-generation sequencing approach in a cohort of 117 patients, mostly children, in whom a mitochondrial disease-cause could likely or possibly explain the phenotype. A total of 86 patients had a mitochondrial disorder, according to established clinical and biochemical criteria. The other 31 patients had neuromuscular symptoms, where in a minority a mitochondrial genetic cause is present, but a non-mitochondrial genetic cause is more likely. All patients were screened for pathogenic variants in the mtDNA and, if excluded, analyzed by whole exome sequencing (WES). Variants were filtered for being pathogenic and compatible with an autosomal or X-linked recessive mode of inheritance in families with multiple affected siblings and/or consanguineous parents. Non-consanguineous families with a single patient were additionally screened for autosomal and X-linked dominant mutations in a predefined gene-set. We identified causative pathogenic variants in the mtDNA in 20% of the patient-cohort, and in nuclear genes in 49%, implying an overall yield of 68%. We identified pathogenic variants in mitochondrial and non-mitochondrial genes in both groups with, obviously, a higher number of mitochondrial genes affected in mitochondrial disease patients. Furthermore, we show that 31% of the disease-causing genes in the mitochondrial patient group were not included in the MitoCarta database, and therefore would have been missed with MitoCarta based gene-panels. We conclude that WES is preferable to panel-based approaches for both groups of patients, as the mitochondrial gene-list is not complete and mitochondrial symptoms can be secondary. Also, clinically and genetically heterogeneous disorders would require sequential use of multiple different gene panels. We conclude that WES is a comprehensive and unbiased approach to establish a genetic diagnosis in these patients, able to resolve multi-genic disease-causes.
Collapse
Affiliation(s)
- Tom E J Theunissen
- Department of Genetics and Cell Biology, Maastricht University Medical Centre, Maastricht, Netherlands.,Research Institute GROW, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Minh Nguyen
- Department of Genetics and Cell Biology, Maastricht University Medical Centre, Maastricht, Netherlands.,Research Institute GROW, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Rick Kamps
- Department of Genetics and Cell Biology, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Alexandra T Hendrickx
- Department of Genetics and Cell Biology, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Suzanne C E H Sallevelt
- Department of Genetics and Cell Biology, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Ralph W H Gottschalk
- Department of Genetics and Cell Biology, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Chantal M Calis
- Department of Genetics and Cell Biology, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Alphons P M Stassen
- Department of Genetics and Cell Biology, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Bart de Koning
- Department of Genetics and Cell Biology, Maastricht University Medical Centre, Maastricht, Netherlands
| | | | | | - Sabine A Fuchs
- Department of Metabolic Disorders, University Medical Centre Utrecht, Utrecht, Netherlands
| | | | - Marianne de Visser
- Department of Neurology, Academic Medical Centre Amsterdam, Amsterdam, Netherlands
| | - Jo Vanoevelen
- Department of Genetics and Cell Biology, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Radek Szklarczyk
- Department of Genetics and Cell Biology, Maastricht University Medical Centre, Maastricht, Netherlands.,Research Institute GROW, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Mike Gerards
- Department of Genetics and Cell Biology, Maastricht University Medical Centre, Maastricht, Netherlands.,Maastricht Center for Systems Biology (MaCSBio), Maastricht University Medical Centre, Maastricht, Netherlands
| | - Irenaeus F M de Coo
- Department of Genetics and Cell Biology, Maastricht University Medical Centre, Maastricht, Netherlands.,Department of Pediatric Neurology, Erasmus MC Sophia Children's Hospital, Rotterdam, Netherlands
| | - Debby M E I Hellebrekers
- Department of Genetics and Cell Biology, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Hubert J M Smeets
- Department of Genetics and Cell Biology, Maastricht University Medical Centre, Maastricht, Netherlands.,Research Institute GROW, Maastricht University Medical Centre, Maastricht, Netherlands
| |
Collapse
|
7
|
Lv ZY, Xu XM, Cao XF, Wang Q, Sun DF, Tian WJ, Yang Y, Wang YZ, Hao YL. Mitochondrial mutations in 12S rRNA and 16S rRNA presenting as chronic progressive external ophthalmoplegia (CPEO) plus: A case report. Medicine (Baltimore) 2017; 96:e8869. [PMID: 29310369 PMCID: PMC5728770 DOI: 10.1097/md.0000000000008869] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
RATIONALE Chronic progressive external ophthalmoplegia (CPEO) is a classical mitochondrial ocular disorder characterized by bilateral progressive ptosis and ophthalmoplegia. Kearns -Sayre syndrome (KSS) is a multisystem disorder with PEO, cardiac conduction block, and pigmentary retinopathy. A few individuals with CPEO have other manifestations of KSS, but do not meet all the clinical diagnosis criteria, and this is called "CPEO plus." PATIENT CONCERNS We report a 48-year-old woman exhibiting limb weakness, ptosis, ophthalmoparesis, and cerebellar dysfunctions. DIAGNOSES The patient was diagnosed as exhibiting CPEO plus syndrome. INTERVENTIONS The patient underwent clinical, genetic, histological, and histochemical analysis. She was treated orally with CoQ10, vitamin Bs, L-carnitine, and vitamin E. OUTCOMES The patient's serum creatine kinase levels, electrocardiography, and nerve conduction study results were normal; an electromyogram revealed myopathic findings. Magnetic resonance imaging showed global brain atrophy, particularly in the brainstem and cerebellum areas. A muscle biopsy showed the presence of abundant ragged red fibers. Sequencing of the mitochondrial DNA from the skeletal muscle biopsy revealed C960del mutation in 12S rRNA and homozygous mutation C2835T in 16S rRNA. She took medicines on schedule, the clinical features were similar as 2 years ago. LESSONS This is the first report of 2 rRNA mutations in a patient with MRI findings showing global brain atrophy, particularly in brainstem and cerebellum areas. Early recognition and appropriate treatment is crucial. This case highlights the cerebellar ataxia can occur in CPEO plus.
Collapse
|
8
|
Finsterer J, Mancuso M, Pareyson D, Burgunder JM, Klopstock T. Mitochondrial disorders of the retinal ganglion cells and the optic nerve. Mitochondrion 2017; 42:1-10. [PMID: 29054473 DOI: 10.1016/j.mito.2017.10.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 10/02/2017] [Accepted: 10/06/2017] [Indexed: 12/13/2022]
Abstract
OBJECTIVES To summarise and discuss recent findings and future perspectives concerning mitochondrial disorders (MIDs) affecting the retinal ganglion cells and the optic nerve (mitochondrial optic neuropathy. MON). METHOD Literature review. RESULTS MON in MIDs is more frequent than usually anticipated. MON may occur in specific as well as non-specific MIDs. In specific and non-specific MIDs, MON may be a prominent or non-prominent phenotypic feature and due to mutations in genes located either in the mitochondrial DNA (mtDNA) or the nuclear DNA (nDNA). Clinically, MON manifests with painless, bilateral or unilateral, slowly or rapidly progressive visual impairment and visual field defects. In some cases, visual impairment may spontaneously recover. The most frequent MIDs with MON include LHON due to mutations in mtDNA-located genes and autosomal dominant optic atrophy (ADOA) or autosomal recessive optic atrophy (AROA) due to mutations in nuclear genes. Instrumental investigations for diagnosing MON include fundoscopy, measurement of visual acuity, visual fields, and color vision, visually-evoked potentials, optical coherence tomography, fluorescein angiography, electroretinography, and MRI of the orbita and cerebrum. In non-prominent MON, work-up of the muscle biopsy with transmission electron microscopy may indicate mitochondrial destruction. Treatment is mostly supportive but idebenone has been approved for LHON and experimental approaches are promising. CONCLUSIONS MON needs to be appreciated, requires extensive diagnostic work-up, and supportive treatment should be applied although loss of vision, as the most severe outcome, can often not be prevented.
Collapse
Affiliation(s)
| | - Michelangelo Mancuso
- Department of Clinical and Experimental Medicine, Neurological Clinic, University of Pisa, Italy
| | - Davide Pareyson
- Department of Clinical Neurosciences, C. Besta Neurological Institute, IRCCS Foundation, Milan, Italy.
| | - Jean-Marc Burgunder
- Department of Neurology, University of Bern, Switzerland; Department of Neurology, Sun Yat Sen University, Guangzhou, China; Department of Neurology, Sichuan University, Chendgu, China.
| | - Thomas Klopstock
- Department of Neurology, Friedrich-Baur Institute, Ludwig-Maximilians-Universität München, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
9
|
Lee SR, Han J. Mitochondrial Mutations in Cardiac Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 982:81-111. [PMID: 28551783 DOI: 10.1007/978-3-319-55330-6_5] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mitochondria individually encapsulate their own genome, unlike other cellular organelles. Mitochondrial DNA (mtDNA) is a circular, double-stranded, 16,569-base paired DNA containing 37 genes: 13 proteins of the mitochondrial respiratory chain, two ribosomal RNAs (rRNAs; 12S and 16S), and 22 transfer RNAs (tRNAs). The mtDNA is more vulnerable to oxidative modifications compared to nuclear DNA because of its proximity to ROS-producing sites, limited presence of DNA damage repair systems, and continuous replication in the cell. mtDNA mutations can be inherited or sporadic. Simple mtDNA mutations are point mutations, which are frequently found in mitochondrial tRNA loci, causing mischarging of mitochondrial tRNAs or deletion, duplication, or reduction in mtDNA content. Because mtDNA has multiple copies and a specific replication mechanism in cells or tissues, it can be heterogenous, resulting in characteristic phenotypic presentations such as heteroplasmy, genetic drift, and threshold effects. Recent studies have increased the understanding of basic mitochondrial genetics, providing an insight into the correlations between mitochondrial mutations and cardiac manifestations including hypertrophic or dilated cardiomyopathy, arrhythmia, autonomic nervous system dysfunction, heart failure, or sudden cardiac death with a syndromic or non-syndromic phenotype. Clinical manifestations of mitochondrial mutations, which result from structural defects, functional impairment, or both, are increasingly detected but are not clear because of the complex interplay between the mitochondrial and nuclear genomes, even in homoplasmic mitochondrial populations. Additionally, various factors such as individual susceptibility, nutritional state, and exposure to chemicals can influence phenotypic presentation, even for the same mtDNA mutation.In this chapter, we summarize our current understanding of mtDNA mutations and their role in cardiac involvement. In addition, epigenetic modifications of mtDNA are briefly discussed for future elucidation of their critical role in cardiac involvement. Finally, current strategies for dealing with mitochondrial mutations in cardiac disorders are briefly stated.
Collapse
Affiliation(s)
- Sung Ryul Lee
- Department of Integrated Biomedical Science, Cardiovascular and Metabolic Disease Center, College of Medicine, Inje University, Busan, 47392, South Korea
| | - Jin Han
- National Research Laboratory for Mitochondrial Signaling, Cardiovascular and Metabolic Disease Center, Department of Physiology, College of Medicine, Inje University, Busan, 47392, South Korea.
| |
Collapse
|
10
|
Eom S, Lee YM. Long-term Developmental Trends of Pediatric Mitochondrial Diseases: The Five Stages of Developmental Decline. Front Neurol 2017; 8:208. [PMID: 28567029 PMCID: PMC5434102 DOI: 10.3389/fneur.2017.00208] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 04/27/2017] [Indexed: 01/30/2023] Open
Abstract
Mitochondrial diseases (MDs) are a heterogeneous group of progressive multisystem disorders caused by impaired mitochondrial function. This study aimed to evaluate the clinical course and long-term development of 53 pediatric patients with MDs. Developmental function was evaluated at nine time points (two pre-diagnosis, one at diagnosis, and six post-diagnosis), with the developmental quotient (DQ) from the Korean infant and child development test (KICDT) assessing a child’s developmental age (rather than chronological age). Additionally, disease-related clinical variables were reviewed, and clinical progress was determined through observation. Subgroup analyses by epilepsy severity, syndromic diagnosis, diffuse brain atrophy, and clinical rating were performed. The pre- and post-diagnosis results were compared by the paired t-test and Bonferroni correction. The pre-diagnostic, diagnostic, and post-diagnostic evaluations were compared using repeated measures ANOVA. Patients with diffuse brain atrophy at the first pre-diagnostic and second post-diagnostic evaluations showed lower DQs. Compared with patients with a mildly or severely deteriorating clinical course, those with an improving or static clinical course presented higher DQs at the pre-diagnostic and diagnostic evaluations. The age at onset of the first symptom correlated positively with the DQ post-diagnosis. Follow-up revealed consistent patterns of significant developmental deterioration during the lead time to diagnosis, with no significant decline post-diagnosis. The DQ is a feasible predictor and a measure of long-term functional development in children with MD. Early initiation of treatment may minimize developmental regression.
Collapse
Affiliation(s)
- Soyong Eom
- Epilepsy Research Institute, Yonsei University College of Medicine, Seoul, Korea (Republic of)
| | - Young-Mock Lee
- Department of Pediatrics, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea (Republic of)
| |
Collapse
|
11
|
Abstract
INTRODUCTION This study aimed to assess the kind of haematological abnormalities that are present in patients with mitochondrial disorders (MIDs) and the frequency of their occurrence. METHODS The blood cell counts of a cohort of patients with syndromic and non-syndromic MIDs were retrospectively reviewed. MIDs were classified as 'definite', 'probable' or 'possible' according to clinical presentation, instrumental findings, immunohistological findings on muscle biopsy, biochemical abnormalities of the respiratory chain and/or the results of genetic studies. Patients who had medical conditions other than MID that account for the haematological abnormalities were excluded. RESULTS A total of 46 patients ('definite' = 5; 'probable' = 9; 'possible' = 32) had haematological abnormalities attributable to MIDs. The most frequent haematological abnormality in patients with MIDs was anaemia. 27 patients had anaemia as their sole haematological problem. Anaemia was associated with thrombopenia (n = 4), thrombocytosis (n = 2), leucopenia (n = 2), and eosinophilia (n = 1). Anaemia was hypochromic and normocytic in 27 patients, hypochromic and microcytic in six patients, hyperchromic and macrocytic in two patients, and normochromic and microcytic in one patient. Among the 46 patients with a mitochondrial haematological abnormality, 78.3% had anaemia, 13.0% had thrombopenia, 8.7% had leucopenia and 8.7% had eosinophilia, alone or in combination with other haematological abnormalities. CONCLUSION MID should be considered if a patient's abnormal blood cell counts (particularly those associated with anaemia, thrombopenia, leucopenia or eosinophilia) cannot be explained by established causes. Abnormal blood cell counts may be the sole manifestation of MID or a collateral feature of a multisystem problem.
Collapse
Affiliation(s)
| | - Marlies Frank
- First Medical Department, Krankenanstalt Rudolfstiftung, Austria
| |
Collapse
|
12
|
Ji X, Zhao L, Ji K, Zhao Y, Li W, Zhang R, Hou Y, Lu J, Yan C. Growth Differentiation Factor 15 Is a Novel Diagnostic Biomarker of Mitochondrial Diseases. Mol Neurobiol 2016; 54:8110-8116. [DOI: 10.1007/s12035-016-0283-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Accepted: 10/31/2016] [Indexed: 12/29/2022]
|
13
|
Abstract
Mitochondrial DNA transfer has recently received attention from physicians. The transfer techniques place genetic material from the egg nucleus of a woman with a mitochondrial DNA mutation into a healthy donated egg from which the nuclear DNA was removed. This technology intends to reconstruct a mitochondria-competent egg to produce a baby. Three approaches: (1) pronuclear transfer; (2) metaphase II spindle transfer (ST); and (3) polar body (PB) transfer, have been proposed and applied in animal models with very low levels of heteroplasmy. Because there is no curative treatment for patients with mitochondrial dysfunction, the UK government has allowed the use of this pioneering technique to prevent the transmission of rare and devastating mitochondrial diseases. Despite general safety in the observation period, this technology involves germline modification, raising scientific and ethical questions in the public. In this review, we focus on this unprecedented technology and discuss its clinical application in the future.
Collapse
Affiliation(s)
- Liang Xu
- a Research Center for Translational Medicine , Shanghai East Hospital, Tongji University School of Medicine , Shanghai, China
| | - Rui Shi
- b Department of Obstetrics and Gynecology , Shanghai East Hospital, Tongji University School of Medicine , Shanghai, China
| |
Collapse
|
14
|
Neurogenetics in Argentina: diagnostic yield in a personalized research based clinic. Genet Res (Camb) 2016; 97:e10. [PMID: 25989649 DOI: 10.1017/s0016672315000087] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
As a whole neurogenetic diseases are a common group of neurological disorders. However, the recognitionand molecular diagnosis of these disorders is not always straightforward. Besides, there is a paucity of informationregarding the diagnostic yield that specialized neurogenetic clinics could obtain. We performed a prospective,observational, analytical study of the patients seen in a neurogenetic clinic at a tertiary medicalcentre to assess the diagnostic yield of a comprehensive diagnostic evaluation that included a personalizedclinical assessment along with traditional and next-generation sequencing diagnostic tests. We included a cohortof 387 patients from May 2008 to June 2014. For sub-group analysis we selected a sample of patientswhose main complaint was the presence of progressive ataxia, to whom we applied a systematic moleculardiagnostic algorithm. Overall, a diagnostic mutation was identified in 27·4% of our cohort. However, if weonly considered those patients where a molecular test could be performed, the success rate rises to 45%. Weobtained diagnostic yields of 23·5 and 57·5% in the global group of ataxic patients and in the subset of ataxicpatients with a positive family history, respectively. Thus, about a third of patients evaluated in a neurogeneticclinic could be successfully diagnosed.
Collapse
|
15
|
Nardi F, Frati F, Liò P. Animal inference on human mitochondrial diseases. Comput Biol Chem 2016; 62:17-28. [PMID: 27023046 DOI: 10.1016/j.compbiolchem.2016.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Accepted: 02/02/2016] [Indexed: 11/17/2022]
Abstract
Several pathological mutations in the human mitochondrial genome have been characterized based on medical, genetic and biochemical evidence. The observation that the structure and core functions of the mitochondrial genome are conserved from animals to man suggests that the analysis of animal variation may be informative to further characterize, and possibly predict, human pathological variants. We studied the distribution of sequence site-wise diversity and structural heterogeneity (based on several scales of hydrophobicity and supercomplex classification of mitochondrial genes) at different taxonomic levels in ∼15,000 human and animal genomes. We found that human pathological mutations tend to lay in regions of low diversity and that states that are pathological in humans appear to be extremely rare in animals, with two noticeable exceptions (T10663C and C14568T). Focusing on hydrophobicity, as possibly the most general site-wise functional parameter of a protein, we deploy the observed range of hydrophobicity in mammals as a proxy for the range of permissible states compatible with an efficient functioning of the mitochondrial machinery. We show that, while non pathological human variants tend to fall within the hypothesized range, pathological mutations generally fall outside this range. We further analyzed this distribution quantitatively to show that the estimated probability of observed states can indeed be used to predict the pathogenicity of a mutation in humans. This study provides a proof of principle that animal data can indeed be informative to predict the pathogenicity of a human mutation alongside, or in the absence of, additional evidence.
Collapse
Affiliation(s)
| | | | - Pietro Liò
- Computer Laboratory, University of Cambridge, Cambridge, UK.
| |
Collapse
|
16
|
Shen L, Diroma MA, Gonzalez M, Navarro-Gomez D, Leipzig J, Lott MT, van Oven M, Wallace DC, Muraresku CC, Zolkipli-Cunningham Z, Chinnery PF, Attimonelli M, Zuchner S, Falk MJ, Gai X. MSeqDR: A Centralized Knowledge Repository and Bioinformatics Web Resource to Facilitate Genomic Investigations in Mitochondrial Disease. Hum Mutat 2016; 37:540-548. [PMID: 26919060 DOI: 10.1002/humu.22974] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 02/03/2016] [Indexed: 11/11/2022]
Abstract
MSeqDR is the Mitochondrial Disease Sequence Data Resource, a centralized and comprehensive genome and phenome bioinformatics resource built by the mitochondrial disease community to facilitate clinical diagnosis and research investigations of individual patient phenotypes, genomes, genes, and variants. A central Web portal (https://mseqdr.org) integrates community knowledge from expert-curated databases with genomic and phenotype data shared by clinicians and researchers. MSeqDR also functions as a centralized application server for Web-based tools to analyze data across both mitochondrial and nuclear DNA, including investigator-driven whole exome or genome dataset analyses through MSeqDR-Genesis. MSeqDR-GBrowse genome browser supports interactive genomic data exploration and visualization with custom tracks relevant to mtDNA variation and mitochondrial disease. MSeqDR-LSDB is a locus-specific database that currently manages 178 mitochondrial diseases, 1,363 genes associated with mitochondrial biology or disease, and 3,711 pathogenic variants in those genes. MSeqDR Disease Portal allows hierarchical tree-style disease exploration to evaluate their unique descriptions, phenotypes, and causative variants. Automated genomic data submission tools are provided that capture ClinVar compliant variant annotations. PhenoTips will be used for phenotypic data submission on deidentified patients using human phenotype ontology terminology. The development of a dynamic informed patient consent process to guide data access is underway to realize the full potential of these resources.
Collapse
Affiliation(s)
- Lishuang Shen
- Center for Personalized Medicine, Children's Hospital Los Angeles, Los Angeles, California, USA.,Massachusetts Eye and Ear Infirmary, Harvard Medical School, 243 Charles St, Boston, Massachusetts, USA
| | - Maria Angela Diroma
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy.,CEINGE-Biotecnologie Avanzate, Napoli, Italy
| | - Michael Gonzalez
- Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, Florida, USA.,The Genesis Project, Miami, Florida, USA
| | - Daniel Navarro-Gomez
- Massachusetts Eye and Ear Infirmary, Harvard Medical School, 243 Charles St, Boston, Massachusetts, USA
| | - Jeremy Leipzig
- Center for Biomedical Informatics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Marie T Lott
- Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Mannis van Oven
- Department of Forensic Molecular Biology, Erasmus MC - University Medical Center Rotterdam, The Netherlands
| | - Douglas C Wallace
- Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Department of Pathology, The Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Colleen Clarke Muraresku
- Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia USA
| | | | - Patrick F Chinnery
- Department of Clinical Neurosciences, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Marcella Attimonelli
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Stephan Zuchner
- Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, Florida, USA.,The Genesis Project, Miami, Florida, USA
| | - Marni J Falk
- Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia USA.,Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, USA
| | - Xiaowu Gai
- Center for Personalized Medicine, Children's Hospital Los Angeles, Los Angeles, California, USA.,Massachusetts Eye and Ear Infirmary, Harvard Medical School, 243 Charles St, Boston, Massachusetts, USA
| |
Collapse
|
17
|
Cassis L, Cortès-Saladelafont E, Molero-Luis M, Yubero D, González MJ, Herrero AO, Fons C, Jou C, Sierra C, Castejon Ponce E, Ramos F, Armstrong J, O’Callaghan MM, Casado M, Montero R, Olivas SMM, Artuch R, Barić I, Bartoloni F, Bellettato CM, Bonifazi F, Ceci A, Cvitanović-Šojat L, Dali CI, D’Avanzo F, Fumic K, Giannuzzi V, Lampe C, Scarpa M, Cazorla ÁG. Review and evaluation of the methodological quality of the existing guidelines and recommendations for inherited neurometabolic disorders. Orphanet J Rare Dis 2015; 10:164. [PMID: 26714856 PMCID: PMC4696316 DOI: 10.1186/s13023-015-0376-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 12/10/2015] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Inherited neurometabolic disorders (iNMDs) represent a group of almost seven hundred rare diseases whose common manifestations are clinical neurologic or cognitive symptoms that can appear at any time, in the first months/years of age or even later in adulthood. Early diagnosis and timely treatments are often pivotal for the favorable course of the disease. Thus, the elaboration of new evidence-based recommendations for iNMD diagnosis and management is increasingly requested by health care professionals and patients, even though the methodological quality of existing guidelines is largely unclear. InNerMeD-I-Network is the first European network on iNMDs that was created with the aim of sharing and increasing validated information about diagnosis and management of neurometabolic disorders. One of the goals of the project was to determine the number and the methodological quality of existing guidelines and recommendations for iNMDs. METHODS We performed a systematic search on PubMed, the National Guideline Clearinghouse (NGC), the Guidelines International Network (G-I-N), the Scottish Intercollegiate Guideline Network (SIGN) and the National Institute for Health and Care Excellence (NICE) to identify all the published guidelines and recommendations for iNMDs from January 2000 to June 2015. The methodological quality of the selected documents was determined using the AGREE II instrument, an appraisal tool composed of 6 domains covering 23 key items. RESULTS A total of 55 records met the inclusion criteria, 11 % were about groups of disorders, whereas the majority encompassed only one disorder. Lysosomal disorders, and in particular Fabry, Gaucher disease and mucopolysaccharidoses where the most studied. The overall methodological quality of the recommendation was acceptable and increased over time, with 25 % of the identified guidelines strongly recommended by the appraisers, 64 % recommended, and 11 % not recommended. However, heterogeneity in the obtained scores for each domain was observed among documents covering different groups of disorders and some domains like 'stakeholder involvement' and 'applicability' were generally scarcely addressed. CONCLUSIONS Greater efforts should be devoted to improve the methodological quality of guidelines and recommendations for iNMDs and AGREE II instrument seems advisable for new guideline development. The elaboration of new guidelines encompassing still uncovered disorders is badly needed.
Collapse
Affiliation(s)
- Linda Cassis
- />Neurology, gastroenterology pathology and clinical biochemistry Departments, IRP-HSJD and CIBERER, Barcelona, Spain
| | - Elisenda Cortès-Saladelafont
- />Neurology, gastroenterology pathology and clinical biochemistry Departments, IRP-HSJD and CIBERER, Barcelona, Spain
| | - Marta Molero-Luis
- />Neurology, gastroenterology pathology and clinical biochemistry Departments, IRP-HSJD and CIBERER, Barcelona, Spain
| | - Delia Yubero
- />Neurology, gastroenterology pathology and clinical biochemistry Departments, IRP-HSJD and CIBERER, Barcelona, Spain
| | - Maria Julieta González
- />Neurology, gastroenterology pathology and clinical biochemistry Departments, IRP-HSJD and CIBERER, Barcelona, Spain
| | - Aida Ormazabal Herrero
- />Neurology, gastroenterology pathology and clinical biochemistry Departments, IRP-HSJD and CIBERER, Barcelona, Spain
| | - Carme Fons
- />Neurology, gastroenterology pathology and clinical biochemistry Departments, IRP-HSJD and CIBERER, Barcelona, Spain
| | - Cristina Jou
- />Neurology, gastroenterology pathology and clinical biochemistry Departments, IRP-HSJD and CIBERER, Barcelona, Spain
| | - Cristina Sierra
- />Neurology, gastroenterology pathology and clinical biochemistry Departments, IRP-HSJD and CIBERER, Barcelona, Spain
| | - Esperanza Castejon Ponce
- />Neurology, gastroenterology pathology and clinical biochemistry Departments, IRP-HSJD and CIBERER, Barcelona, Spain
| | - Federico Ramos
- />Neurology, gastroenterology pathology and clinical biochemistry Departments, IRP-HSJD and CIBERER, Barcelona, Spain
| | - Judith Armstrong
- />Neurology, gastroenterology pathology and clinical biochemistry Departments, IRP-HSJD and CIBERER, Barcelona, Spain
| | - M. Mar O’Callaghan
- />Neurology, gastroenterology pathology and clinical biochemistry Departments, IRP-HSJD and CIBERER, Barcelona, Spain
| | - Mercedes Casado
- />Neurology, gastroenterology pathology and clinical biochemistry Departments, IRP-HSJD and CIBERER, Barcelona, Spain
| | - Raquel Montero
- />Neurology, gastroenterology pathology and clinical biochemistry Departments, IRP-HSJD and CIBERER, Barcelona, Spain
| | - Silvia Maria Meavilla Olivas
- />Neurology, gastroenterology pathology and clinical biochemistry Departments, IRP-HSJD and CIBERER, Barcelona, Spain
| | - Rafael Artuch
- />Neurology, gastroenterology pathology and clinical biochemistry Departments, IRP-HSJD and CIBERER, Barcelona, Spain
| | - Ivo Barić
- />Department of Pediatrics, University Hospital Center Zagreb, Zagreb & University of Zagreb, School of Medicine, Zagreb, Croatia
| | - Franco Bartoloni
- />Gianni Benzi Pharmacological Research Foundation, Valenzano, BA Italy
| | | | - Fedele Bonifazi
- />Gianni Benzi Pharmacological Research Foundation, Valenzano, BA Italy
| | - Adriana Ceci
- />Gianni Benzi Pharmacological Research Foundation, Valenzano, BA Italy
| | - Ljerka Cvitanović-Šojat
- />Department of Pediatrics, University Hospital Center Zagreb, Zagreb & University of Zagreb, School of Medicine, Zagreb, Croatia
| | - Christine I Dali
- />Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Francesca D’Avanzo
- />Department of Women and Children Health, Brains for Brain Foundation, Padova, Italy
| | - Ksenija Fumic
- />Department of Pediatrics, University Hospital Center Zagreb, Zagreb & University of Zagreb, School of Medicine, Zagreb, Croatia
| | - Viviana Giannuzzi
- />Gianni Benzi Pharmacological Research Foundation, Valenzano, BA Italy
| | - Christina Lampe
- />Department of Women and Children Health, Brains for Brain Foundation, Padova, Italy
- />Department of Pediatric and Adolescent Medicine, Centre for Rare Diseases, Horst Schmidt Klinik Wiesbaden, Wiesbaden, Germany
| | - Maurizio Scarpa
- />Department of Women and Children Health, Brains for Brain Foundation, Padova, Italy
- />Department of Pediatric and Adolescent Medicine, Centre for Rare Diseases, Horst Schmidt Klinik Wiesbaden, Wiesbaden, Germany
- />Department of Women’s and Children’s Health, University of Padova, Padova, Italy
| | - Ángels Garcia- Cazorla
- />Neurology, gastroenterology pathology and clinical biochemistry Departments, IRP-HSJD and CIBERER, Barcelona, Spain
| |
Collapse
|
18
|
Martínez-Zamora A, Meseguer S, Esteve JM, Villarroya M, Aguado C, Enríquez JA, Knecht E, Armengod ME. Defective Expression of the Mitochondrial-tRNA Modifying Enzyme GTPBP3 Triggers AMPK-Mediated Adaptive Responses Involving Complex I Assembly Factors, Uncoupling Protein 2, and the Mitochondrial Pyruvate Carrier. PLoS One 2015; 10:e0144273. [PMID: 26642043 PMCID: PMC4671719 DOI: 10.1371/journal.pone.0144273] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 11/16/2015] [Indexed: 12/22/2022] Open
Abstract
GTPBP3 is an evolutionary conserved protein presumably involved in mitochondrial tRNA (mt-tRNA) modification. In humans, GTPBP3 mutations cause hypertrophic cardiomyopathy with lactic acidosis, and have been associated with a defect in mitochondrial translation, yet the pathomechanism remains unclear. Here we use a GTPBP3 stable-silencing model (shGTPBP3 cells) for a further characterization of the phenotype conferred by the GTPBP3 defect. We experimentally show for the first time that GTPBP3 depletion is associated with an mt-tRNA hypomodification status, as mt-tRNAs from shGTPBP3 cells were more sensitive to digestion by angiogenin than tRNAs from control cells. Despite the effect of stable silencing of GTPBP3 on global mitochondrial translation being rather mild, the steady-state levels and activity of Complex I, and cellular ATP levels were 50% of those found in the controls. Notably, the ATPase activity of Complex V increased by about 40% in GTPBP3 depleted cells suggesting that mitochondria consume ATP to maintain the membrane potential. Moreover, shGTPBP3 cells exhibited enhanced antioxidant capacity and a nearly 2-fold increase in the uncoupling protein UCP2 levels. Our data indicate that stable silencing of GTPBP3 triggers an AMPK-dependent retrograde signaling pathway that down-regulates the expression of the NDUFAF3 and NDUFAF4 Complex I assembly factors and the mitochondrial pyruvate carrier (MPC), while up-regulating the expression of UCP2. We also found that genes involved in glycolysis and oxidation of fatty acids are up-regulated. These data are compatible with a model in which high UCP2 levels, together with a reduction in pyruvate transport due to the down-regulation of MPC, promote a shift from pyruvate to fatty acid oxidation, and to an uncoupling of glycolysis and oxidative phosphorylation. These metabolic alterations, and the low ATP levels, may negatively affect heart function.
Collapse
Affiliation(s)
- Ana Martínez-Zamora
- Laboratory of RNA Modification and Mitochondrial Diseases, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Salvador Meseguer
- Laboratory of RNA Modification and Mitochondrial Diseases, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Juan M. Esteve
- Laboratory of Intracellular Protein Degradation and Rare Diseases, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Magda Villarroya
- Laboratory of RNA Modification and Mitochondrial Diseases, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Carmen Aguado
- Laboratory of Intracellular Protein Degradation and Rare Diseases, Centro de Investigación Príncipe Felipe, Valencia, Spain
- Centro de Investigación Biomédica En Red de Enfermedades Raras (CIBERER), node U721, Valencia, Spain
| | - J. Antonio Enríquez
- Departamento de Desarrollo y Reparación Cardiovascular, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain
| | - Erwin Knecht
- Laboratory of Intracellular Protein Degradation and Rare Diseases, Centro de Investigación Príncipe Felipe, Valencia, Spain
- Centro de Investigación Biomédica En Red de Enfermedades Raras (CIBERER), node U721, Valencia, Spain
| | - M.-Eugenia Armengod
- Laboratory of RNA Modification and Mitochondrial Diseases, Centro de Investigación Príncipe Felipe, Valencia, Spain
- Centro de Investigación Biomédica En Red de Enfermedades Raras (CIBERER), node U721, Valencia, Spain
- * E-mail:
| |
Collapse
|
19
|
Electron Transport Disturbances and Neurodegeneration: From Albert Szent-Györgyi's Concept (Szeged) till Novel Approaches to Boost Mitochondrial Bioenergetics. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:498401. [PMID: 26301042 PMCID: PMC4537740 DOI: 10.1155/2015/498401] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 04/15/2015] [Indexed: 12/21/2022]
Abstract
Impaired function of certain mitochondrial respiratory complexes has long been linked to the pathogenesis of chronic neurodegenerative disorders such as Parkinson's and Huntington's diseases. Furthermore, genetic alterations of mitochondrial genome or nuclear genes encoding proteins playing essential roles in maintaining proper mitochondrial function can lead to the development of severe systemic diseases associated with neurodegeneration and vacuolar myelinopathy. At present, all of these diseases lack effective disease modifying therapy. Following a brief commemoration of Professor Albert Szent-Györgyi, a Nobel Prize laureate who pioneered in the field of cellular respiration, antioxidant processes, and the roles of free radicals in health and disease, the present paper overviews the current knowledge on the involvement of mitochondrial dysfunction in central nervous system diseases associated with neurodegeneration including Parkinson's and Huntington's disease as well as mitochondrial encephalopathies. The review puts special focus on the involvement and the potential therapeutic relevance of peroxisome proliferator-activated receptor-gamma coactivator 1-alpha (PGC-1α), a nuclear-encoded master regulator of mitochondrial biogenesis and antioxidant responses in these disorders, the transcriptional activation of which may hold novel therapeutic value as a more system-based approach aiming to restore mitochondrial functions in neurodegenerative processes.
Collapse
|
20
|
[Cardiac manifestations of mitochondrial diseases]. Presse Med 2015; 44:492-7. [PMID: 25890847 DOI: 10.1016/j.lpm.2015.01.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 11/06/2014] [Accepted: 01/02/2015] [Indexed: 02/02/2023] Open
Abstract
Mitochondrial diseases are multi-system disorders in relation with mitochondrial DNA and/or nuclear DNA abnormalities. Clinical pictures are heterogeneous, involving endocrine, cardiac, neurologic or sensory systems. Cardiac involvements are morphological and electrical disturbances. Prognosis is worsened in case of cardiac impairment. Treatments are related to the type of cardiac dysfunction including medication or pacemaker implantation.
Collapse
|
21
|
Diagnostic approach in infants and children with mitochondrial diseases. Pediatr Neonatol 2015; 56:7-18. [PMID: 25151629 DOI: 10.1016/j.pedneo.2014.03.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 03/27/2014] [Indexed: 01/06/2023] Open
Abstract
Mitochondrial diseases are a heterogeneous group of disorders affecting energy production in the human body. The diagnosis of mitochondrial diseases represents a challenge to clinicians, especially for pediatric cases, which show enormous variation in clinical presentations, as well as biochemical and genetic complexity. Different consensus diagnostic criteria for mitochondrial diseases in infants and children are available. The lack of standardized diagnostic criteria poses difficulties in evaluating diagnostic methodologies. Even though there are many diagnostic tools, none of them are sensitive enough to make a confirmative diagnosis without being used in combination with other tools. The current approach to diagnosing and classifying mitochondrial diseases incorporates clinical, biochemical, neuroradiological findings, and histological criteria, as well as DNA-based molecular diagnostic testing. The confirmation or exclusion of mitochondrial diseases remains a challenge in clinical practice, especially in cases with nonspecific clinical phenotypes. Therefore, follow-up evolution of clinical symptoms/signs and biochemical data is crucial. The purpose of this study is to review the molecular classification scheme and associated phenotypes in infants and children with mitochondrial diseases, in addition to providing an overview of the basic biochemical reactions and genetic characteristics in the mitochondrion, clinical manifestations, and diagnostic methods. A diagnostic algorithm for identifying mitochondrial disorders in pediatric neurology patients is proposed.
Collapse
|
22
|
Mitochondrial encephalomyopathy: towards diagnosis. A case report. Neurol Neurochir Pol 2014; 48:76-80. [PMID: 24636775 DOI: 10.1016/j.pjnns.2013.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2013] [Accepted: 09/02/2013] [Indexed: 11/22/2022]
Abstract
Mitochondrial diseases may cause a wide range of central and peripheral nervous system disorders, as well as muscle disorders. The diagnostic workup routinely includes electrophysiological, morphological, neuroimaging and genetic studies. In some cases, the diagnosis may be ascertained only when mitochondrial DNA (mtDNA) examination in the muscle is performed. We report on a case of a 24-year-old woman, with a 7-year history of slowly progressive cerebellar syndrome and bilateral ptosis. Mitochondrial encephalomyopathy was suspected, based on the clinical picture and results of examinations, but the typical red ragged fibers were not found in the muscle biopsy. The results of molecular analysis of mtDNA showed a mtDNA deletion in the muscle and, on a level detectable only with polymerase chain reaction method, in blood leukocytes. This case emphasizes the important role of mtDNA studies in muscle in nonspecific multisystem mitochondrial disorders, even without clinical muscle involvement.
Collapse
|
23
|
van de Warrenburg BPC, van Gaalen J, Boesch S, Burgunder JM, Dürr A, Giunti P, Klockgether T, Mariotti C, Pandolfo M, Riess O. EFNS/ENS Consensus on the diagnosis and management of chronic ataxias in adulthood. Eur J Neurol 2014; 21:552-62. [PMID: 24418350 DOI: 10.1111/ene.12341] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 11/18/2013] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND OBJECTIVES The ataxias are a challenging group of neurological diseases due the aetiological heterogeneity and the complexity of the genetic subtypes. This guideline focuses on the heredodegenerative ataxias. The aim is to provide a peer-reviewed evidence-based guideline for clinical neurologists and other specialist physicians responsible for the care of patients with ataxia. METHODS This guideline is based on systematic evaluations of the relevant literature and on three consensus meetings of the task force. DIAGNOSIS If acquired causes are ruled out, and if the disease course is rather slowly progressive, a (heredo)degenerative disease is likely. A positive family history gives much guidance. In the case of a dominant family history, first line genetic screening is recommended for spinocerebellar ataxia (SCA) 1, 2, 3, 6, 7 and 17 (level B), and in Asian patients also for dentatorubral-pallidoluysian atrophy (DRPLA). In the case of recessive disease, a stepwise diagnostic work-up is recommended, including both biochemical markers and targeted genetic testing, particularly aimed at Friedreich's ataxia, ataxia telangiectasia, ataxia due to vitamin E deficiency, polymerase gamma gene (POLG gene, various mutations), autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) and ataxia with oculomotor apraxia (AOA) types 1 and 2. If family history is negative, we still advise to screen for the more common dominant and recessive ataxias. In addition, if onset is below 45 years we recommend the full work-up for recessive ataxias; if onset is above 45 years we recommend to screen for fragile X mental retardation 1 FMR1 premutations (good practice points). In sporadic cases with an onset after 30 years, a diagnosis of multiple system atrophy should be considered (good practice point). In particular the genetic work-up will change over the upcoming years due to the diagnostic utility of new techniques such as gene panel diagnostics based on next generation sequencing for routine work-up, or even whole exome and genome sequencing for selected cases. TREATMENT Some of the rare recessive ataxias are treatable, but for most of the heredodegenerative ataxias treatment is purely symptomatic. Idebenone is not effective in Friedreich's ataxia (level A). Riluzole (level B) and amantadine (level C) might provide symptomatic relief, irrespective of exact etiology. Also, varenicline for SCA3 patients (level B) can be considered. There is level Class II evidence to recommend physiotherapy, and Class III data to support occupational therapy.
Collapse
Affiliation(s)
- B P C van de Warrenburg
- Department of Neurology, Radboud University Nijmegen Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Liang C, Ahmad K, Sue CM. The broadening spectrum of mitochondrial disease: shifts in the diagnostic paradigm. Biochim Biophys Acta Gen Subj 2013; 1840:1360-7. [PMID: 24239706 DOI: 10.1016/j.bbagen.2013.10.040] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 10/21/2013] [Accepted: 10/26/2013] [Indexed: 01/08/2023]
Abstract
BACKGROUND The diagnosis of mitochondrial disease requires a complex synthesis of clinical, biochemical, histological, and genetic investigations. An expanding number of mitochondrial diseases are being recognized, despite their phenotypic diversity, largely due to improvements in methods to detect mutations in affected individuals and the discovery of genes contributing to mitochondrial function. Improved understanding of the investigational pitfalls and the development of new laboratory methodologies that lead to a molecular diagnosis have necessitated the field to rapidly adopt changes to its diagnostic approach. SCOPE OF REVIEW We review the clinical, investigational and genetic challenges that have resulted in shifts to the way we define and diagnose mitochondrial disease. Incorporation of changes, including the use of fibroblast growth factor 21 (FGF-21) and next generation sequencing techniques, may allow affected patients access to earlier molecular diagnosis and management. MAJOR CONCLUSIONS There have been important shifts in the diagnostic paradigm for mitochondrial disease. Diagnosis of mitochondrial disease is no longer reliant on muscle biopsy alone, but should include clinical assessment accompanied by the use of serological biomarkers and genetic analysis. Because affected patients will be defined on a molecular basis, oligosymptomatic mutation carriers should be included in the spectrum of mitochondrial disease. Use of new techniques such as the measurement of serum FGF-21 levels and next-generation-sequencing protocols should simplify the diagnosis of mitochondrial disease. GENERAL SIGNIFICANCE Improvements in the diagnostic pathway for mitochondrial disease will result in earlier, cheaper and more accurate methods to identify patients with mitochondrial disease. This article is part of a Special Issue entitled Frontiers of Mitochondrial Research.
Collapse
Affiliation(s)
- Christina Liang
- Department of Neurology, Royal North Shore Hospital, St. Leonards, New South Wales 2065, Australia
| | - Kate Ahmad
- Department of Neurology, Royal North Shore Hospital, St. Leonards, New South Wales 2065, Australia
| | - Carolyn M Sue
- Department of Neurology, Royal North Shore Hospital, St. Leonards, New South Wales 2065, Australia; Department of Neurogenetics, Kolling Institute of Medical Research, Royal North Shore Hospital and the University of Sydney, St. Leonards, New South Wales 2065, Australia.
| |
Collapse
|
25
|
Finsterer J, Zarrouk Mahjoub S. Mitochondrial epilepsy in pediatric and adult patients. Acta Neurol Scand 2013; 128:141-52. [PMID: 23480231 DOI: 10.1111/ane.12122] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2013] [Indexed: 01/04/2023]
Abstract
Few data are available about the difference between epilepsy in pediatric mitochondrial disorders (MIDs) and adult MIDs. This review focuses on the differences between pediatric and adult mitochondrial epilepsy with regard to seizure type, seizure frequency, and underlying MID. A literature search via Pubmed using the keywords 'mitochondrial', 'epilepsy', 'seizures', 'adult', 'pediatric', and all MID acronyms, was carried out. Frequency of mitochondrial epilepsy strongly depends on the type of MID included and is higher in pediatric compared to adult patients. In pediatric patients, mitochondrial epilepsy is more frequent due to mutations in nDNA-located than mtDNA-located genes and vice versa in adults. In pediatric patients, mitochondrial epilepsy is associated with a syndromic phenotype in half of the patients and in adults more frequently with a non-syndromic phenotype. In pediatric patients, focal seizures are more frequent than generalized seizures and vice versa in adults. Electro-clinical syndromes are more frequent in pediatric MIDs compared to adult MIDs. Differences between pediatric and adult mitochondrial epilepsy concern the onset of epilepsy, frequency of epilepsy, seizure type, type of electro-clinical syndrome, frequency of syndromic versus non-syndromic MIDs, and the outcome. To optimize management of mitochondrial epilepsy, it is essential to differentiate between early and late-onset forms.
Collapse
Affiliation(s)
| | - S. Zarrouk Mahjoub
- Laboratory of Biochemistry; UR ‘Human Nutrition and Metabolic Disorders’ Faculty of Medicine Monastir; Tunisia
| |
Collapse
|
26
|
Tang S, Wang J, Zhang VW, Li FY, Landsverk M, Cui H, Truong CK, Wang G, Chen LC, Graham B, Scaglia F, Schmitt ES, Craigen WJ, Wong LJC. Transition to next generation analysis of the whole mitochondrial genome: a summary of molecular defects. Hum Mutat 2013; 34:882-93. [PMID: 23463613 DOI: 10.1002/humu.22307] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 02/15/2013] [Indexed: 01/06/2023]
Abstract
The diagnosis of mitochondrial disorders is challenging because of the clinical variability and genetic heterogeneity. Conventional analysis of the mitochondrial genome often starts with a screening panel for common mitochondrial DNA (mtDNA) point mutations and large deletions (mtScreen). If negative, it has been traditionally followed by Sanger sequencing of the entire mitochondrial genome (mtWGS). The recently developed "Next-Generation Sequencing" (NGS) technology offers a robust high-throughput platform for comprehensive mtDNA analysis. Here, we summarize the results of the past 6 years of clinical practice using the mtScreen and mtWGS tests on 9,261 and 2,851 unrelated patients, respectively. A total of 344 patients (3.7%) had mutations identified by mtScreen and 99 (3.5%) had mtDNA mutations identified by mtWGS. The combinatorial analyses of mtDNA and POLG revealed a diagnostic yield of 6.7% in patients with suspected mitochondrial disorders but no recognizable syndromes. From the initial mtWGS-NGS cohort of 391 patients, 21 mutation-positive cases (5.4%) have been identified. The mtWGS-NGS provides a one-step approach to detect common and uncommon point mutations, as well as deletions. Additionally, NGS provides accurate, sensitive heteroplasmy measurement, and the ability to map deletion breakpoints. A new era of more efficient molecular diagnosis of mtDNA mutations has arrived.
Collapse
Affiliation(s)
- Sha Tang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Cardiomyopathy in neurological disorders. Cardiovasc Pathol 2013; 22:389-400. [PMID: 23433859 DOI: 10.1016/j.carpath.2012.12.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2012] [Revised: 12/26/2012] [Accepted: 12/30/2012] [Indexed: 12/13/2022] Open
Abstract
According to the American Heart Association, cardiomyopathies are classified as primary (solely or predominantly confined to heart muscle), secondary (those showing pathological myocardial involvement as part of a neuromuscular disorder) and those in which cardiomyopathy is the first/predominant manifestation of a neuromuscular disorder. Cardiomyopathies may be further classified as hypertrophic cardiomyopathy, dilated cardiomyopathy, restrictive cardiomyopathy, arrhythmogenic right ventricular cardiomyopathy, or unclassified cardiomyopathy (noncompaction, Takotsubo-cardiomyopathy). This review focuses on secondary cardiomyopathies and those in which cardiomyopathy is the predominant manifestation of a myopathy. Any of them may cause neurological disease, and any of them may be a manifestation of a neurological disorder. Neurological disease most frequently caused by cardiomyopathies is ischemic stroke, followed by transitory ischemic attack, syncope, or vertigo. Neurological disease, which most frequently manifests with cardiomyopathies are the neuromuscular disorders. Most commonly associated with cardiomyopathies are muscular dystrophies, myofibrillar myopathies, congenital myopathies and metabolic myopathies. Management of neurological disease caused by cardiomyopathies is not at variance from the same neurological disorders due to other causes. Management of secondary cardiomyopathies is not different from that of cardiomyopathies due to other causes either. Patients with neuromuscular disorders require early cardiologic investigations and close follow-ups, patients with cardiomyopathies require neurological investigation and avoidance of muscle toxic medication if a neuromuscular disorder is diagnosed. Which patients with cardiomyopathy profit most from primary stroke prevention is unsolved and requires further investigations.
Collapse
|
28
|
Szalardy L, Zadori D, Plangar I, Vecsei L, Weydt P, Ludolph AC, Klivenyi P, Kovacs GG. Neuropathology of partial PGC-1α deficiency recapitulates features of mitochondrial encephalopathies but not of neurodegenerative diseases. NEURODEGENER DIS 2013; 12:177-88. [PMID: 23406886 DOI: 10.1159/000346267] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 11/29/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Deficient peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) function is one component of mitochondrial dysfunction in neurodegenerative diseases. Current molecular classification of such diseases is based on the predominant protein accumulating as intra- or extracellular aggregates. Experimental evidence suggests that mitochondrial dysfunction and impaired protein processing are closely interrelated. In vitro findings further indicate that PGC-1α dysfunction may contribute to protein misfolding in neurodegeneration. OBJECTIVE To systematically evaluate the neuropathological alterations of mice lacking the expression of the full-length PGC-1α protein (FL-PGC-1α) but expressing an N-truncated fragment. METHODS To assess the pattern of neurodegeneration-related proteins, we performed immunostaining for Tau, pTau, α-synuclein, amyloid-β, amyloid precursor protein, prion protein, FUS, TDP-43 and ubiquitin. Using hematoxylin and eosin, Klüver-Barrera and Bielschowsky silver stainings and anti-GFAP immunohistochemistry, we performed an anatomical mapping to provide a lesion profile. RESULTS The immunohistochemical pattern of neurodegeneration-related proteins did not differ between FL-PGC-1α knockout and wild-type animals, and there was a complete lack of protein deposits or ubiquitin-positive inclusions. The analysis of neuropathological alterations revealed widespread vacuolation predominating in the cerebral white matter, caudate-putamen, thalamus and brainstem, and reactive astrogliosis in the brainstem and cerebellar nuclei. This morphological phenotype was thus reminiscent of human mitochondrial encephalopathies, especially the Kearns-Sayre syndrome. CONCLUSION We conclude that the lack of FL-PGC-1α per se is insufficient to recapitulate major features of neurodegenerative diseases, but evokes a pathology seen in mitochondrial encephalopathies, which makes PGC-1α-deficient mice a valuable model for this yet incurable group of diseases.
Collapse
|
29
|
Reiner G, Panyard-Davis J. Mitochondrial diseases: Problems in the power plant. Nursing 2012; 42:51-56. [PMID: 22627823 DOI: 10.1097/01.nurse.0000413616.59485.cf] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Affiliation(s)
- Gail Reiner
- Mitochondrial and Metabolic Disease Center, University of California-San Diego, San Diego, USA
| | | |
Collapse
|
30
|
Abstract
Mitochondria have a crucial role in cellular bioenergetics and apoptosis, and thus are important to support cell function and in determination of cell death pathways. Inherited mitochondrial diseases can be caused by mutations of mitochondrial DNA or of nuclear genes that encode mitochondrial proteins. Although many mitochondrial disorders are multisystemic, some are tissue specific--eg, optic neuropathy, sensorineural deafness, and type 2 diabetes mellitus. In the past few years, several disorders have been associated with mutations of nuclear genes responsible for mitochondrial DNA maintenance and function, and the potential contribution of mitochondrial abnormalities to progressive neurodegenerative diseases such as Parkinson's disease and Alzheimer's disease has been recognised. The process of mitochondrial fission-fusion has become a focus of attention in human disease. Importantly, the mitochondrion is now a target for therapeutic interventions that encompass small molecules, transcriptional regulation, and genetic manipulation, offering opportunities to treat a diverse range of diseases.
Collapse
Affiliation(s)
- Anthony H V Schapira
- Department of Clinical Neurosciences, Institute of Neurology, University College London, London, UK.
| |
Collapse
|
31
|
Finsterer J. Inherited Mitochondrial Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 942:187-213. [DOI: 10.1007/978-94-007-2869-1_8] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
32
|
Limongelli G, Masarone D, D’Alessandro R, Elliott PM. Mitochondrial diseases and the heart: an overview of molecular basis, diagnosis, treatment and clinical course. Future Cardiol 2012; 8:71-88. [DOI: 10.2217/fca.11.79] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The mitochondrion is the main site of production of ATP that represents the source of energy for a large number of cellular processes. Mitochondrial diseases that result in a deficit in ATP production can affect almost every organ system with a large spectrum of clinical phenotypes. Cardiomyocytes are particularly vulnerable to limited ATP supply because of their large energy requirement. Abnormalities in the mitochondrial function are increasingly recognized in association with dilated and hypertrophic cardiomyopathy, cardiac conduction defects, endothelial dysfunction and coronary artery disease. Cardiologists should, therefore, be alerted to symptoms and signs suggestive of mitochondrial diseases and become familiar with the general issues related to multisystem disease management, genetic counseling and testing.
Collapse
Affiliation(s)
- Giuseppe Limongelli
- Monaldi Hospital Second University of Naples (SUN), Naples, Italy
- The Heart Hospital, University College of London (UCL), London, UK
| | - Daniele Masarone
- Monaldi Hospital Second University of Naples (SUN), Naples, Italy
| | | | - Perry M Elliott
- The Heart Hospital, University College of London (UCL), London, UK
| |
Collapse
|
33
|
Karri B, Sebastian RT, Kyle G, Hart IK, Mountford RC. Ptosis as the Only Presenting Feature of a Mitochondrial Cytopathy. Neuroophthalmology 2011. [DOI: 10.3109/01658107.2011.615453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
34
|
van Beynum I, Morava E, Taher M, Rodenburg RJ, Karteszi J, Toth K, Szabados E. Cardiac arrest in kearns-sayre syndrome. JIMD Rep 2011; 2:7-10. [PMID: 23430846 DOI: 10.1007/8904_2011_32] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Revised: 05/11/2011] [Accepted: 05/17/2011] [Indexed: 12/14/2022] Open
Abstract
The prognosis of progressive ophthalmoplegia in patients with large-scale mitochondrial DNA deletions is highly variable and almost unpredictable. The risk to develop cardiac involvement and sudden cardiac death is strikingly high, especially in patients with Kearns-Sayre syndrome (KSS). The most typical cardiac complications of the disease are conduction defects, which usually begin with left anterior fascicular block with or without right bundle branch block (RBBB), progressing sometimes rapidly to complete atrioventricular block. Other cardiac manifestations reported are first or second degree of AV block, QT prolongation, torsades de pointes ventricular tachycardia, and rarely dilated cardiomyopathy. Most frequently syncope, sometimes even sudden cardiac death, is the first clinical sign of the cardiac disease in KSS. Due to these life-threatening cardiac conditions, patients should be carefully monitored for cardiac signs and symptoms and pacemaker implantation should be suggested early to avoid sudden cardiac arrest in KSS.Here, we present two cases of KSS with life-threatening syncope due to complete atrioventricular block. To emphasize the importance of an early pacemaker implantation, we review the literature on cardiac complications in KSS in the last 20 years. In almost all of the reviewed cases, ophthalmoplegia or ptosis was present before the cardiac manifestations. In most of the cases, syncope was the first symptom of the cardiac involvement. There was no correlation between the age of the onset of the disease and the onset of cardiac manifestations.With our current report, we increase awareness for life-threatening cardiac complications in patients with KSS.
Collapse
Affiliation(s)
- Ingrid van Beynum
- Department of Pediatrics, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
35
|
Suomalainen A, Elo JM, Pietiläinen KH, Hakonen AH, Sevastianova K, Korpela M, Isohanni P, Marjavaara SK, Tyni T, Kiuru-Enari S, Pihko H, Darin N, Õunap K, Kluijtmans LAJ, Paetau A, Buzkova J, Bindoff LA, Annunen-Rasila J, Uusimaa J, Rissanen A, Yki-Järvinen H, Hirano M, Tulinius M, Smeitink J, Tyynismaa H. FGF-21 as a biomarker for muscle-manifesting mitochondrial respiratory chain deficiencies: a diagnostic study. Lancet Neurol 2011; 10:806-18. [PMID: 21820356 PMCID: PMC7568343 DOI: 10.1016/s1474-4422(11)70155-7] [Citation(s) in RCA: 298] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Muscle biopsy is the gold standard for diagnosis of mitochondrial disorders because of the lack of sensitive biomarkers in serum. Fibroblast growth factor 21 (FGF-21) is a growth factor with regulatory roles in lipid metabolism and the starvation response, and concentrations are raised in skeletal muscle and serum in mice with mitochondrial respiratory chain deficiencies. We investigated in a retrospective diagnostic study whether FGF-21 could be a biomarker for human mitochondrial disorders. METHODS We assessed samples from adults and children with mitochondrial disorders or non-mitochondrial neurological disorders (disease controls) from seven study centres in Europe and the USA, and recruited healthy volunteers (healthy controls), matched for age where possible, from the same centres. We used ELISA to measure FGF-21 concentrations in serum or plasma samples (abnormal values were defined as >200 pg/mL). We compared these concentrations with values for lactate, pyruvate, lactate-to-pyruvate ratio, and creatine kinase in serum or plasma and calculated sensitivity, specificity, and positive and negative predictive values for all biomarkers. FINDINGS We analysed serum or plasma from 67 patients (41 adults and 26 children) with mitochondrial disorders, 34 disease controls (22 adults and 12 children), and 74 healthy controls. Mean FGF-21 concentrations in serum were 820 (SD 1151) pg/mL in adult and 1983 (1550) pg/mL in child patients with respiratory chain deficiencies and 76 (58) pg/mL in healthy controls. FGF-21 concentrations were high in patients with mitochondrial disorders affecting skeletal muscle but not in disease controls, including those with dystrophies. In patients with abnormal FGF-21 concentrations in serum, the odds ratio of having a muscle-manifesting mitochondrial disease was 132·0 (95% CI 38·7-450·3). For the identification of muscle-manifesting mitochondrial disease, the sensitivity was 92·3% (95% CI 81·5-97·9%) and specificity was 91·7% (84·8-96·1%). The positive and negative predictive values for FGF-21 were 84·2% (95% CI 72·1-92·5%) and 96·1 (90·4-98·9%). The accuracy of FGF-21 to correctly identify muscle-manifesting respiratory chain disorders was better than that for all conventional biomarkers. The area under the receiver-operating-characteristic curve for FGF-21 was 0·95; by comparison, the values for other biomarkers were 0·83 lactate (p=0·037, 0·83 for pyruvate (p=0·015), 0·72 for the lactate-to-pyruvate ratio (p=0·0002), and 0·77 for creatine kinase (p=0·013). INTERPRETATION Measurement of FGF-21 concentrations in serum identified primary muscle-manifesting respiratory chain deficiencies in adults and children and might be feasible as a first-line diagnostic test for these disorders to reduce the need for muscle biopsy. FUNDING Sigrid Jusélius Foundation, Jane and Aatos Erkko Foundation, Molecular Medicine Institute of Finland, University of Helsinki, Helsinki University Central Hospital, Academy of Finland, Novo Nordisk, Arvo and Lea Ylppö Foundation.
Collapse
Affiliation(s)
- Anu Suomalainen
- Research Programmes Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Rodenburg RJT. Biochemical diagnosis of mitochondrial disorders. J Inherit Metab Dis 2011; 34:283-92. [PMID: 20440652 PMCID: PMC3063578 DOI: 10.1007/s10545-010-9081-y] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Revised: 03/16/2010] [Accepted: 03/17/2010] [Indexed: 11/04/2022]
Abstract
Establishing a diagnosis in patients with a suspected mitochondrial disorder is often a challenge. Both knowledge of the clinical spectrum of mitochondrial disorders and the number of identified disease-causing molecular genetic defects are continuously expanding. The diagnostic examination of patients requires a multi-disciplinary clinical and laboratory evaluation in which the biochemical examination of the mitochondrial functional state often plays a central role. In most cases, a muscle biopsy provides the best opportunity to examine mitochondrial function. In addition to activity measurements of individual oxidative phosphorylation enzymes, analysis of mitochondrial respiration, substrate oxidation, and ATP production rates is performed to obtain a detailed picture of the mitochondrial energy-generating system. On the basis of the compilation of clinical, biochemical, and other laboratory test results, candidate genes are selected for molecular genetic testing. In patients in whom an unknown genetic variant is identified, a compatible biochemical phenotype is often required to firmly establish the diagnosis. In addition to the current role of the biochemical analysis in the diagnostic examination of patients with a suspected mitochondria disorder, this report gives a future perspective on the biochemical diagnosis in view of both the expanding genotypes of mitochondrial disorders and the possibilities for high throughput molecular genetic diagnosis.
Collapse
Affiliation(s)
- Richard J T Rodenburg
- Nijmegen Center for Mitochondrial Disorders (NCMD), 656 Department of Pediatrics, Department of Laboratory Medicine, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
37
|
Finsterer J. Inherited mitochondrial neuropathies. J Neurol Sci 2011; 304:9-16. [PMID: 21402391 DOI: 10.1016/j.jns.2011.02.012] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2010] [Revised: 01/17/2011] [Accepted: 02/09/2011] [Indexed: 12/14/2022]
Abstract
Mitochondrial disorders (MIDs) occasionally manifest as polyneuropathy either as the dominant feature or as one of many other manifestations (inherited mitochondrial neuropathy). MIDs in which polyneuropathy is the dominant feature, include NARP syndrome due to the transition m.8993T>, CMT2A due to MFN2 mutations, CMT2K and CMT4A due to GDAP1 mutations, and axonal/demyelinating neuropathy with external ophthalmoplegia due to POLG1 mutations. MIDs in which polyneuropathy is an inconstant feature among others is the MELAS syndrome, MERRF syndrome, LHON, Mendelian PEO, KSS, Leigh syndrome, MNGIE, SANDO; MIRAS, MEMSA, AHS, MDS (hepato-cerebral form), IOSCA, and ADOA syndrome. In the majority of the cases polyneuropathy presents in a multiplex neuropathy distribution. Nerve conduction studies may reveal either axonal or demyelinated or mixed types of neuropathies. If a hereditary neuropathy is due to mitochondrial dysfunction, the management of these patients is at variance from non-mitochondrial hereditary neuropathies. Patients with mitochondrial hereditary neuropathy need to be carefully investigated for clinical or subclinical involvement of other organs or systems. Supportive treatment with co-factors, antioxidants, alternative energy sources, or lactate lowering agents can be tried. Involvement of other organs may require specific treatment. Mitochondrial neuropathies should be included in the differential diagnosis of hereditary neuropathies.
Collapse
|
38
|
Mutations in the mitochondrial seryl-tRNA synthetase cause hyperuricemia, pulmonary hypertension, renal failure in infancy and alkalosis, HUPRA syndrome. Am J Hum Genet 2011; 88:193-200. [PMID: 21255763 DOI: 10.1016/j.ajhg.2010.12.010] [Citation(s) in RCA: 134] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Revised: 12/15/2010] [Accepted: 12/19/2010] [Indexed: 12/25/2022] Open
Abstract
An uncharacterized multisystemic mitochondrial cytopathy was diagnosed in two infants from consanguineous Palestinian kindred living in a single village. The most significant clinical findings were tubulopathy (hyperuricemia, metabolic alkalosis), pulmonary hypertension, and progressive renal failure in infancy (HUPRA syndrome). Analysis of the consanguineous pedigree suggested that the causative mutation is in the nuclear DNA. By using genome-wide SNP homozygosity analysis, we identified a homozygous identity-by-descent region on chromosome 19 and detected the pathogenic mutation c.1169A>G (p.Asp390Gly) in SARS2, encoding the mitochondrial seryl-tRNA synthetase. The same homozygous mutation was later identified in a third infant with HUPRA syndrome. The carrier rate of this mutation among inhabitants of this Palestinian isolate was found to be 1:15. The mature enzyme catalyzes the ligation of serine to two mitochondrial tRNA isoacceptors: tRNA(Ser)(AGY) and tRNA(Ser)(UCN). Analysis of amino acylation of the two target tRNAs, extracted from immortalized peripheral lymphocytes derived from two patients, revealed that the p.Asp390Gly mutation significantly impacts on the acylation of tRNA(Ser)(AGY) but probably not that of tRNA(Ser)(UCN). Marked decrease in the expression of the nonacylated transcript and the complete absence of the acylated tRNA(Ser)(AGY) suggest that this mutation leads to significant loss of function and that the uncharged transcripts undergo degradation.
Collapse
|
39
|
Finsterer J. Treatment of central nervous system manifestations in mitochondrial disorders. Eur J Neurol 2010; 18:28-38. [DOI: 10.1111/j.1468-1331.2010.03086.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
40
|
Finsterer J, Stöllberger C. Cardiac manifestations of mitochondrial disorders. Eur J Heart Fail 2010; 12:637; author reply 637-8. [DOI: 10.1093/eurjhf/hfq046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Josef Finsterer
- Krankenanstalt Rudolfstiftung; Postfach 20 1180 Vienna Austria
| | | |
Collapse
|
41
|
Abstract
Treatment of mitochondrial disorders (MIDs) is a challenge since there is only symptomatic therapy available and since only few randomized and controlled studies have been carried out, which demonstrate an effect of some of the symptomatic or supportive measures available. Symptomatic treatment of MIDs is based on mainstay drugs, blood transfusions, hemodialysis, invasive measures, surgery, dietary measures, and physiotherapy. Drug treatment may be classified as specific (treatment of epilepsy, headache, dementia, dystonia, extrapyramidal symptoms, Parkinson syndrome, stroke-like episodes, or non-neurological manifestations), non-specific (antioxidants, electron donors/acceptors, alternative energy sources, cofactors), or restrictive (avoidance of drugs known to be toxic for mitochondrial functions). Drugs which more frequently than in the general population cause side effects in MID patients include steroids, propofol, statins, fibrates, neuroleptics, and anti-retroviral agents. Invasive measures include implantation of a pacemaker, biventricular pacemaker, or implantable cardioverter defibrillator, or stent therapy. Dietary measures can be offered for diabetes, hyperlipidemia, or epilepsy (ketogenic diet, anaplerotic diet). Treatment should be individualized because of the peculiarities of mitochondrial genetics. Despite limited possibilities, symptomatic treatment should be offered to MID patients, since it can have a significant impact on the course and outcome.
Collapse
|
42
|
Gasser T, Finsterer J, Baets J, Van Broeckhoven C, Di Donato S, Fontaine B, De Jonghe P, Lossos A, Lynch T, Mariotti C, Schöls L, Spinazzola A, Szolnoki Z, Tabrizi SJ, Tallaksen CME, Zeviani M, Burgunder JM, Harbo HF. EFNS guidelines on the molecular diagnosis of ataxias and spastic paraplegias. Eur J Neurol 2009; 17:179-88. [PMID: 20050888 DOI: 10.1111/j.1468-1331.2009.02873.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND AND PURPOSE These EFNS guidelines on the molecular diagnosis of neurogenetic disorders are designed to provide practical help for the general neurologist to make appropriate use of molecular genetics in diagnosing neurogenetic disorders. METHODS Literature searches were performed before expert members of the task force wrote proposals, which were discussed in detail until final consensus had been reached among all task force members. RESULTS AND CONCLUSION This paper provides updated guidelines for molecular diagnosis of two particularly complex groups of disorders, the ataxias and spastic paraplegias. Possibilities and limitations of molecular genetic diagnosis of these disorders are evaluated and recommendations are provided.
Collapse
Affiliation(s)
- T Gasser
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
Mitochondrial disorders (MIDs) are an increasingly recognized condition. The second most frequently affected organ in MIDs is the central nervous system. One of the most prevalent clinical CNS manifestations of MIDs is ataxia. Ataxia may be even the dominant manifestation of a MID. This is why certain MIDs should be included in the classification of heredoataxias or at least considered as differentials of classical heredoataxias. MIDs due to mutations of the mitochondrial DNA, which develop ataxia include the MERRF, NARP, MILS, or KSS syndrome. More rarely, ataxia may be a feature of MELAS, LHON, PS, MIDD, or MSL. MIDs due to mutations of the nuclear DNA, which develop ataxia include LS, SANDO, SCAE, AHS, XSLA/A, IOSCA, MIRAS, MEMSA, or LBSL syndrome. More rarely ataxia can be found in AD-CPEO, AR-CPEO, MNGIE, DIDMOAD, CoQ-deficiency, ADOAD, DCMA, or PDC-deficiency. MIDs most frequently associated with ataxia are the non-syndromic MIDs. Syndromic and non-syndromic MIDs with ataxia should be delineated from classical heredoataxias to initiate appropriate symptomatic or supportive treatment.
Collapse
|