1
|
Nestor KA, Jones JD, Butson CR, Morishita T, Jacobson CE, Peace DA, Chen D, Foote KD, Okun MS. Coordinate-based lead location does not predict Parkinson's disease deep brain stimulation outcome. PLoS One 2014; 9:e93524. [PMID: 24691109 PMCID: PMC3972103 DOI: 10.1371/journal.pone.0093524] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 03/06/2014] [Indexed: 12/02/2022] Open
Abstract
Background Effective target regions for deep brain stimulation (DBS) in Parkinson's disease (PD) have been well characterized. We sought to study whether the measured Cartesian coordinates of an implanted DBS lead are predictive of motor outcome(s). We tested the hypothesis that the position and trajectory of the DBS lead relative to the mid-commissural point (MCP) are significant predictors of clinical outcomes. We expected that due to neuroanatomical variation among individuals, a simple measure of the position of the DBS lead relative to MCP (commonly used in clinical practice) may not be a reliable predictor of clinical outcomes when utilized alone. Methods 55 PD subjects implanted with subthalamic nucleus (STN) DBS and 41 subjects implanted with globus pallidus internus (GPi) DBS were included. Lead locations in AC-PC space (x, y, z coordinates of the active contact and sagittal and coronal entry angles) measured on high-resolution CT-MRI fused images, and motor outcomes (Unified Parkinson's Disease Rating Scale) were analyzed to confirm or refute a correlation between coordinate-based lead locations and DBS motor outcomes. Results Coordinate-based lead locations were not a significant predictor of change in UPDRS III motor scores when comparing pre- versus post-operative values. The only potentially significant individual predictor of change in UPDRS motor scores was the antero-posterior coordinate of the GPi lead (more anterior lead locations resulted in a worse outcome), but this was only a statistical trend (p<.082). Conclusion The results of the study showed that a simple measure of the position of the DBS lead relative to the MCP is not significantly correlated with PD motor outcomes, presumably because this method fails to account for individual neuroanatomical variability. However, there is broad agreement that motor outcomes depend strongly on lead location. The results suggest the need for more detailed identification of stimulation location relative to anatomical targets.
Collapse
Affiliation(s)
- Kelsey A. Nestor
- Department of Neurology, University of Florida, Center for Movement Disorders and Neurorestoration, McKnight Brain Institute, Gainesville, Florida, United States of America
- Department of Neurosurgery, University of Florida, Center for Movement Disorders and Neurorestoration, McKnight Brain Institute, Gainesville, Florida, United States of America
| | - Jacob D. Jones
- Department of Clinical and Health Psychology, University of Florida, Gainesville, Florida, United States of America
| | - Christopher R. Butson
- Department of Neurology, Biotechnology and Bioengineering Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Takashi Morishita
- Department of Neurosurgery, University of Florida, Center for Movement Disorders and Neurorestoration, McKnight Brain Institute, Gainesville, Florida, United States of America
| | - Charles E. Jacobson
- Department of Neurology, University of Florida, Center for Movement Disorders and Neurorestoration, McKnight Brain Institute, Gainesville, Florida, United States of America
| | - David A. Peace
- Department of Neurosurgery, University of Florida, Center for Movement Disorders and Neurorestoration, McKnight Brain Institute, Gainesville, Florida, United States of America
| | - Dennis Chen
- Department of Neurology, University of Florida, Center for Movement Disorders and Neurorestoration, McKnight Brain Institute, Gainesville, Florida, United States of America
- Department of Neurosurgery, University of Florida, Center for Movement Disorders and Neurorestoration, McKnight Brain Institute, Gainesville, Florida, United States of America
| | - Kelly D. Foote
- Department of Neurosurgery, University of Florida, Center for Movement Disorders and Neurorestoration, McKnight Brain Institute, Gainesville, Florida, United States of America
| | - Michael S. Okun
- Department of Neurology, University of Florida, Center for Movement Disorders and Neurorestoration, McKnight Brain Institute, Gainesville, Florida, United States of America
- Department of Neurosurgery, University of Florida, Center for Movement Disorders and Neurorestoration, McKnight Brain Institute, Gainesville, Florida, United States of America
- * E-mail:
| |
Collapse
|
2
|
Paek SH, Yun JY, Song SW, Kim IK, Hwang JH, Kim JW, Kim HJ, Kim HJ, Kim YE, Lim YH, Kim MR, Huh JH, Lee KM, Park SK, Kim C, Kim DG, Jeon BS. The clinical impact of precise electrode positioning in STN DBS on three-year outcomes. J Neurol Sci 2013; 327:25-31. [DOI: 10.1016/j.jns.2013.01.037] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 01/25/2013] [Accepted: 01/29/2013] [Indexed: 11/16/2022]
|