1
|
Jalaiei A, Asadi MR, Daneshmandpour Y, Rezazadeh M, Ghafouri-Fard S. Clinical, molecular, physiologic, and therapeutic feature of patients with CHRNA4 and CHRNB2 deficiency: A systematic review. J Neurochem 2025; 169:e16200. [PMID: 39193833 DOI: 10.1111/jnc.16200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/03/2024] [Accepted: 07/26/2024] [Indexed: 08/29/2024]
Abstract
The α4β2 nAChRs are crucial ion channels that control neurotransmitter release and play a role in various physiologic and pathologic processes. CHRNA4 encodes the α4-nAChRs, while CHRNB2 encodes the β2-nAChRs. Recent studies have found different variants of α4β2-nAChRs in individuals with conditions such as AD, ADHD, ALS, PD, and brain abnormalities. We conducted a scoping review following a six-stage methodology structure and adhering to PRISMA guidelines. We systematically reviewed articles using relevant keywords up to October 2, 2023. In this summary, we cover the clinical symptoms reported, the genes and protein structure of CHRNA4 and CHRNB2, mutations in these genes, inheritance patterns, the functional impact of mutations and polymorphisms in CHRNA4 and CHRNB2, and the epidemiology of these diseases. Recent research indicates that nAChRs may play a significant role in neurodegenerative disorders, possibly impacting neuronal function through yet undiscovered regulatory pathways. Studying how nAChRs interact with disease-related aggregates in neurodegenerative conditions may lead to new treatment options for these disorders.
Collapse
Affiliation(s)
- Abbas Jalaiei
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Reza Asadi
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yousef Daneshmandpour
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Rezazadeh
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Wan H, Wang X, Chen Y, Jiang B, Chen Y, Hu W, Zhang K, Shao X. Sleep-Related Hypermotor Epilepsy: Etiology, Electro-Clinical Features, and Therapeutic Strategies. Nat Sci Sleep 2021; 13:2065-2084. [PMID: 34803415 PMCID: PMC8598206 DOI: 10.2147/nss.s330986] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 10/21/2021] [Indexed: 12/31/2022] Open
Abstract
Sleep-related hypermotor epilepsy (SHE) is a group of clinical syndromes with heterogeneous etiologies. SHE is difficult to diagnose and treat in the early stages due to its diverse clinical manifestations and difficulties in differentiating from non-epileptic events, which seriously affect patients' quality of life and social behavior. The overall prognosis for SHE is unsatisfactory, but different etiologies affect patients' prognoses. Surgical treatment is an effective method for carefully selected patients with refractory SHE; nevertheless, preoperative assessment remains challenging because of the low sensitivity of noninvasive scalp electroencephalogram and imaging to detect abnormalities. However, through a careful analysis of semiology, the clinician can deduce the potential epileptogenic zone. This paper summarizes the research status of the background, etiology, electro-clinical features, diagnostic criteria, prognosis, and treatment of SHE to provide a more in-depth understanding of its pathophysiological mechanism, improve the accuracy in the diagnosis of this group of syndromes, and further explore more targeted therapy plans.
Collapse
Affiliation(s)
- Huijuan Wan
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China.,China National Clinical Research Center for Neurological Diseases (NCRC-ND), Beijing, People's Republic of China.,Department of Neurology, First Affiliated Hospital, Xiamen University, Xiamen, People's Republic of China
| | - Xing Wang
- Department of Neurology, Chongqing University Central Hospital, Chongqing Emergency Medical Centre, Chongqing, People's Republic of China
| | - Yiyi Chen
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China.,China National Clinical Research Center for Neurological Diseases (NCRC-ND), Beijing, People's Republic of China
| | - Bin Jiang
- Department of Neurology, First Affiliated Hospital, Xiamen University, Xiamen, People's Republic of China
| | - Yangmei Chen
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Wenhan Hu
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, People's Republic of China
| | - Kai Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Xiaoqiu Shao
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China.,China National Clinical Research Center for Neurological Diseases (NCRC-ND), Beijing, People's Republic of China
| |
Collapse
|
3
|
Chung BYT, Bailey CDC. Sex differences in the nicotinic excitation of principal neurons within the developing hippocampal formation. Dev Neurobiol 2018; 79:110-130. [PMID: 30354016 DOI: 10.1002/dneu.22646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 10/15/2018] [Accepted: 10/17/2018] [Indexed: 12/21/2022]
Abstract
The hippocampal formation (HF) plays an important role to facilitate higher order cognitive functions. Cholinergic activation of heteromeric nicotinic acetylcholine receptors (nAChRs) within the HF is critical for the normal development of principal neurons within this brain region. However, previous research investigating the expression and function of heteromeric nAChRs in principal neurons of the HF is limited to males or does not differentiate between the sexes. We used whole-cell electrophysiology to show that principal neurons in the CA1 region of the female mouse HF are excited by heteromeric nAChRs throughout postnatal development, with the greatest response occurring during the first two weeks of postnatal life. Excitability responses to heteromeric nAChR stimulation were also found in principal neurons in the CA3, dentate gyrus, subiculum, and entorhinal cortex layer VI (ECVI) of young postnatal female HF. A direct comparison between male and female mice found that principal neurons in ECVI display greater heteromeric nicotinic passive and active excitability responses in females. This sex difference is likely influenced by the generally more excitable nature of ECVI neurons from female mice, which display a higher resting membrane potential, greater input resistance, and smaller afterhyperpolarization potential of medium duration (mAHP). These findings demonstrate that heteromeric nicotinic excitation of ECVI neurons differs between male and female mice during a period of major circuitry development within the HF, which may have mechanistic implications for known sex differences in the development and function of this cognitive brain region.
Collapse
Affiliation(s)
- Beryl Y T Chung
- Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada, N1G 2W1
| | - Craig D C Bailey
- Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada, N1G 2W1
| |
Collapse
|
4
|
Chung BYT, Bailey CDC. Similar nicotinic excitability responses across the developing hippocampal formation are regulated by small-conductance calcium-activated potassium channels. J Neurophysiol 2018; 119:1707-1722. [PMID: 29384449 DOI: 10.1152/jn.00426.2017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The hippocampal formation forms a cognitive circuit that is critical for learning and memory. Cholinergic input to nicotinic acetylcholine receptors plays an important role in the normal development of principal neurons within the hippocampal formation. However, the ability of nicotinic receptors to stimulate principal neurons across all regions of the developing hippocampal formation has not been determined. We show in this study that heteromeric nicotinic receptors mediate direct inward current and depolarization responses in principal neurons across the hippocampal formation of the young postnatal mouse. These responses were found in principal neurons of the CA1, CA3, dentate gyrus, subiculum, and entorhinal cortex layer VI, and they varied in magnitude across regions with the greatest responses occurring in the subiculum and entorhinal cortex. Despite this regional variation in the magnitude of passive responses, heteromeric nicotinic receptor stimulation increased the excitability of active principal neurons by a similar amount in all regions. Pharmacological experiments found this similar excitability response to be regulated by small-conductance calcium-activated potassium (SK) channels, which exhibited regional differences in their influence on neuron activity that offset the observed regional differences in passive nicotinic responses. These findings demonstrate that SK channels play a role to coordinate the magnitude of heteromeric nicotinic excitability responses across the hippocampal formation at a time when nicotinic signaling drives the development of this cognitive brain region. This coordinated input may contribute to the normal development, synchrony, and maturation of the hippocampal formation learning and memory network. NEW & NOTEWORTHY This study demonstrates that small-conductance calcium-activated potassium channels regulate similar-magnitude excitability responses to heteromeric nicotinic acetylcholine receptor stimulation in active principal neurons across multiple regions of the developing mouse hippocampal formation. Given the importance of nicotinic neurotransmission for the development of principal neurons within the hippocampal formation, this coordinated excitability response is positioned to influence the normal development, synchrony, and maturation of the hippocampal formation learning and memory network.
Collapse
Affiliation(s)
- Beryl Y T Chung
- Department of Biomedical Sciences, University of Guelph , Guelph, Ontario , Canada
| | - Craig D C Bailey
- Department of Biomedical Sciences, University of Guelph , Guelph, Ontario , Canada
| |
Collapse
|
5
|
Ghasemi M, Hadipour-Niktarash A. Pathologic role of neuronal nicotinic acetylcholine receptors in epileptic disorders: implication for pharmacological interventions. Rev Neurosci 2016; 26:199-223. [PMID: 25565544 DOI: 10.1515/revneuro-2014-0044] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Accepted: 10/16/2014] [Indexed: 12/30/2022]
Abstract
Accumulating evidence suggests that neuronal nicotinic acetylcholine receptors (nAChRs) may play a key role in the pathophysiology of some neurological diseases such as epilepsy. Based on genetic studies in patients with epileptic disorders worldwide and animal models of seizure, it has been demonstrated that nAChR activity is altered in some specific types of epilepsy, including autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE) and juvenile myoclonic epilepsy (JME). Neuronal nAChR antagonists also have antiepileptic effects in pre-clinical studies. There is some evidence that conventional antiepileptic drugs may affect neuronal nAChR function. In this review, we re-examine the evidence for the involvement of nAChRs in the pathophysiology of some epileptic disorders, especially ADNFLE and JME, and provide an overview of nAChR antagonists that have been evaluated in animal models of seizure.
Collapse
|
6
|
Fjaer R, Brodtkorb E, Øye AM, Sheng Y, Vigeland MD, Kvistad KA, Backe PH, Selmer KK. Generalized epilepsy in a family with basal ganglia calcifications and mutations in SLC20A2 and CHRNB2. Eur J Med Genet 2015; 58:624-8. [PMID: 26475232 DOI: 10.1016/j.ejmg.2015.10.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 07/15/2015] [Accepted: 10/05/2015] [Indexed: 12/18/2022]
Abstract
BACKGROUND The genetic understanding of primary familial brain calcification (PFBC) has increased considerably in recent years due to the finding of causal genes like SLC20A2, PDGFRB and PDGFB. The phenotype of PFBC is complex and has as of yet been poorly delineated. The most common clinical presentations include movement disorders, cognitive symptoms and psychiatric conditions. We report a family including two sisters with brain calcifications due to a variant in SLC20A2 and generalized tonic-clonic seizures as the principal phenotypic trait. METHODS The affected siblings underwent whole exome sequencing and candidate variants and cosegregation in the family were validated by Sanger sequencing. RESULTS Both siblings and their asymptomatic father were heterozygous for a variant in SLC20A2. The siblings also had a variant in CHRNB2, a known epilepsy gene associated with autosomal dominant frontal lobe epilepsy, which they had inherited from the mother. CONCLUSIONS To our knowledge, the reported siblings represent the third and fourth subjects with confirmed SLC20A2 variants exhibiting epilepsy as a phenotypic trait. Our findings support seizures as part of the phenotypic spectrum of SLC20A2-related PFBC. However, the present phenotype may also result from additional genetic influence, such as the identified missense variant in CHRNB2.
Collapse
Affiliation(s)
- Roar Fjaer
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Kirkeveien 166, Bygg 25, Avdeling for Medisinsk Genetikk, Postboks 4956 Nydalen 0424 Oslo, Norway.
| | - Eylert Brodtkorb
- Department of Neurology and Clinical Neurophysiology, St. Olav's University Hospital, Trondheim, Norway; Department of Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway
| | - Ane-Marte Øye
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Kirkeveien 166, Bygg 25, Avdeling for Medisinsk Genetikk, Postboks 4956 Nydalen 0424 Oslo, Norway
| | - Ying Sheng
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Kirkeveien 166, Bygg 25, Avdeling for Medisinsk Genetikk, Postboks 4956 Nydalen 0424 Oslo, Norway
| | - Magnus Dehli Vigeland
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Kirkeveien 166, Bygg 25, Avdeling for Medisinsk Genetikk, Postboks 4956 Nydalen 0424 Oslo, Norway
| | - Kjell Arne Kvistad
- Department of Medical Imaging, St. Olav's University Hospital, Trondheim, Norway
| | - Paul Hoff Backe
- Department of Microbiology, Oslo University Hospital, 0424 Oslo, Norway; Department of Medical Biochemistry, Oslo University Hospital, 0424 Oslo, Norway; Institute of Clinical Medicine, University of Oslo, 0318 Oslo, Norway
| | - Kaja Kristine Selmer
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Kirkeveien 166, Bygg 25, Avdeling for Medisinsk Genetikk, Postboks 4956 Nydalen 0424 Oslo, Norway
| |
Collapse
|
7
|
Chen ZH, Wang C, Wang LG, Zhuo MQ, Tang ZH, Zhai QX, Chen Q, Guo YX, Zhang YX. Analysis of the CHRNA7 gene mutation and polymorphism in Southern Han Chinese patients with nocturnal frontal epilepsy. ASIAN PAC J TROP MED 2015; 8:330-3. [DOI: 10.1016/s1995-7645(14)60340-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
8
|
Affiliation(s)
- A H V Schapira
- Department of Clinical Neurosciences, UCL Institute of Neurology, London, UK.
| |
Collapse
|