1
|
Yamaguchi HL, Yamaguchi Y, Peeva E. Hair regrowth in alopecia areata and re-pigmentation in vitiligo in response to treatment: Commonalities and differences. J Eur Acad Dermatol Venereol 2024. [PMID: 39258892 DOI: 10.1111/jdv.20311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/02/2024] [Indexed: 09/12/2024]
Abstract
Both alopecia areata (AA) and vitiligo share common pathogenesis involving, interferon-γ (IFN-γ) and interleukin-15 (IL-15) signalling pathways that activate cytotoxic CD8+ T lymphocytes. These shared mechanisms may explain why both diseases respond to currently available treatments (e.g. topical/systemic corticosteroid) and emerging treatment modalities. As compared with the speed of re-pigmentation in vitiligo lesions, the regeneration of pigmented terminal hair follicles in AA lesions appears fast in response to treatments targeting the inhibition of the Janus kinases (JAKs) and other kinases. We summarize the commonalities and differences between AA and vitiligo focusing on the treatment modalities, followed by recent findings associated with hair follicle stem cells (HFSC) in hair bulge (HBg) and melanocyte stem cells (McSC) in HBg and hair germ (HGm). We then discuss how HFSC and HGm-McSC are involved in the initiation of anagen phase, followed by pigmented terminal hair regrowth in the recovering AA lesions in association with immunology. We also discuss how HBg-McSC contribute to the migration of fully dendritic mature melanocytes into interfollicular epidermis and the equal distribution of melanin in recovering vitiligo lesions. Finally, we present four hypotheses to elucidate the delayed distribution of melanin by mature melanocytes in depigmented vitiligo lesions from the aspects of stem cell biology, as compared with quick hair recovery in AA: (1) McSC are less abundant than HFSC. (2) McSC require a long travel, whereas HFSC reside close to hair regeneration trigger point. (3) Keratinocyte scaffold to accept melanin is not well preserved, whereas scaffold for hair regrowth is well preserved. (4) Inhibitors targeting JAKs and other kinases have less direct effects on melanocyte proliferation and differentiation in vitiligo than hair regrowth in AA. Our review provides an overview of treatment modalities and bridges the gap between scientific advancement and clinical practice in AA and vitiligo management.
Collapse
Affiliation(s)
- Hiroki L Yamaguchi
- Inflammation & Immunology Research Unit, Pfizer, Cambridge, Massachusetts, USA
| | - Yuji Yamaguchi
- Inflammation & Immunology Research Unit, Pfizer, Collegeville, Pennsylvania, USA
| | - Elena Peeva
- Inflammation & Immunology Research Unit, Pfizer, Cambridge, Massachusetts, USA
| |
Collapse
|
2
|
Li J, Liu Y, Zhang R, Yang Q, Xiong W, He Y, Ye Q. Insights into the role of mesenchymal stem cells in cutaneous medical aesthetics: from basics to clinics. Stem Cell Res Ther 2024; 15:169. [PMID: 38886773 PMCID: PMC11184751 DOI: 10.1186/s13287-024-03774-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/27/2024] [Indexed: 06/20/2024] Open
Abstract
With the development of the economy and the increasing prevalence of skin problems, cutaneous medical aesthetics are gaining more and more attention. Skin disorders like poor wound healing, aging, and pigmentation have an impact not only on appearance but also on patients with physical and psychological issues, and even impose a significant financial burden on families and society. However, due to the complexities of its occurrence, present treatment options cannot produce optimal outcomes, indicating a dire need for new and effective treatments. Mesenchymal stem cells (MSCs) and their secretomics treatment is a new regenerative medicine therapy that promotes and regulates endogenous stem cell populations and/or replenishes cell pools to achieve tissue homeostasis and regeneration. It has demonstrated remarkable advantages in several skin-related in vivo and in vitro investigations, aiding in the improvement of skin conditions and the promotion of skin aesthetics. As a result, this review gives a complete description of recent scientific breakthroughs in MSCs for skin aesthetics and the limitations of their clinical applications, aiming to provide new ideas for future research and clinical transformation.
Collapse
Affiliation(s)
- Junyi Li
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ye Liu
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Rui Zhang
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Qianyu Yang
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Wei Xiong
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Yan He
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, 430030, China.
| | - Qingsong Ye
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
3
|
Sevilla A, Grichnik J. Therapeutic modulation of KIT ligand in melanocytic disorders with implications for mast cell diseases. Exp Dermatol 2024; 33:e15091. [PMID: 38711220 DOI: 10.1111/exd.15091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 05/08/2024]
Abstract
KIT ligand and its associated receptor KIT serve as a master regulatory system for both melanocytes and mast cells controlling survival, migration, proliferation and activation. Blockade of this pathway results in cell depletion, while overactivation leads to mastocytosis or melanoma. Expression defects are associated with pigmentary and mast cell disorders. KIT ligand regulation is complex but efficient targeting of this system would be of significant benefit to those suffering from melanocytic or mast cell disorders. Herein, we review the known associations of this pathway with cutaneous diseases and the regulators of this system both in skin and in the more well-studied germ cell system. Exogenous agents modulating this pathway will also be presented. Ultimately, we will review potential therapeutic opportunities to help our patients with melanocytic and mast cell disease processes potentially including vitiligo, hair greying, melasma, urticaria, mastocytosis and melanoma.
Collapse
Affiliation(s)
- Alec Sevilla
- Department of Dermatology, New York Medical College, New York, New York, USA
- Department of Internal Medicine, Lakeland Regional Health, Lakeland, Florida, USA
| | - James Grichnik
- Department of Dermatology and Cutaneous Surgery, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
- Department of Cutaneous Oncology, Moffitt Cancer Center, Tampa, Florida, USA
| |
Collapse
|
4
|
Li T, Xiong Y, Xian L, Xiong L, Li L. YAP prevents senescence of dermal fibroblast and inhibits melanogenesis via paracrine effect of DKK1. Exp Dermatol 2024; 33:e15093. [PMID: 38742821 DOI: 10.1111/exd.15093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 04/21/2024] [Accepted: 04/24/2024] [Indexed: 05/16/2024]
Abstract
Senile skin hyperpigmentation displays remarkable histopathological features of dermal aging. The crosstalk between melanocytes and dermal fibroblasts plays crucial roles in aging-related pigmentation. While senescent fibroblasts can upregulate pro-melanogenic factors, the role of anti-melanogenic factors, such as dickkopf1 (DKK1), and the upstream regulatory mechanism during aging remain obscure. This study investigated the roles of yes-associated protein (YAP) and DKK1 in the regulation of dermal fibroblast senescence and melanogenesis. Our findings demonstrated decreased YAP activity and DKK1 levels in intrinsic and extrinsic senescent fibroblasts. YAP depletion induced fibroblast senescence and downregulated the expression and secretion of DKK1, whereas YAP overexpression partially reversed the effect. The transcriptional regulation of DKK1 by YAP was supported by dual-luciferase reporter and chromatin immunoprecipitation assays. Moreover, YAP depletion in fibroblasts upregulated Wnt/β-catenin in melanocytes and stimulated melanogenesis, which was partially rescued by the re-supplementation of DKK1. Conversely, overexpression of YAP in senescent fibroblasts decreased Wnt/β-catenin levels in melanocytes and inhibited melanogenesis. Additionally, reduced levels of YAP and DKK1 were verified in the dermis of solar lentigines. These findings suggest that, during skin aging, epidermal pigmentation may be influenced by YAP in the dermal microenvironment via the paracrine effect of DKK1.
Collapse
Affiliation(s)
- Tong Li
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, P.R. China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Yimei Xiong
- Department of Biochemistry and Molecular Biology, School of Preclinical and Forensic Medicine, West China Medical Center, Sichuan University, Chengdu, P.R. China
| | - Longjun Xian
- Department of Biochemistry and Molecular Biology, School of Preclinical and Forensic Medicine, West China Medical Center, Sichuan University, Chengdu, P.R. China
| | - Lidan Xiong
- Cosmetic Safety and Efficacy Evaluation Center of West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Li Li
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, P.R. China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, P.R. China
- Cosmetic Safety and Efficacy Evaluation Center of West China Hospital, Sichuan University, Chengdu, P.R. China
| |
Collapse
|
5
|
Bal G, Schneikert J, Li Z, Franke K, Tripathi SR, Zuberbier T, Babina M. CREB Is Indispensable to KIT Function in Human Skin Mast Cells-A Positive Feedback Loop between CREB and KIT Orchestrates Skin Mast Cell Fate. Cells 2023; 13:42. [PMID: 38201246 PMCID: PMC10778115 DOI: 10.3390/cells13010042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/18/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Skin mast cells (MCs) are critical effector cells in acute allergic reactions, and they contribute to chronic dermatoses like urticaria and atopic and contact dermatitis. KIT represents the cells' crucial receptor tyrosine kinase, which orchestrates proliferation, survival, and functional programs throughout the lifespan. cAMP response element binding protein (CREB), an evolutionarily well-conserved transcription factor (TF), regulates multiple cellular programs, but its function in MCs is poorly understood. We recently reported that CREB is an effector of the SCF (Stem Cell Factor)/KIT axis. Here, we ask whether CREB may also act upstream of KIT to orchestrate its functioning. Primary human MCs were isolated from skin and cultured in SCF+IL-4 (Interleukin-4). Pharmacological inhibition (666-15) and RNA interference served to manipulate CREB function. We studied KIT expression using flow cytometry and RT-qPCR, KIT-mediated signaling using immunoblotting, and cell survival using scatterplot and caspase-3 activity. The proliferation and cycle phases were quantified following BrdU incorporation. Transient CREB perturbation resulted in reduced KIT expression. Conversely, microphthalmia transcription factor (MITF) was unnecessary for KIT maintenance. KIT attenuation secondary to CREB was associated with heavily impaired KIT functional outputs, like anti-apoptosis and cell cycle progression. Likewise, KIT-elicited phosphorylation of ERK1/2 (Extracellular Signal-Regulated Kinase 1/2), AKT, and STAT5 (Signal Transducer and Activator of Transcription) was substantially diminished upon CREB inhibition. Surprisingly, the longer-term interference of CREB led to complete cell elimination, in a way surpassing KIT inhibition. Collectively, we reveal CREB as non-redundant in MCs, with its absence being incompatible with skin MCs' existence. Since SCF/KIT regulates CREB activity and, vice versa, CREB is required for KIT function, a positive feedforward loop between these elements dictates skin MCs' fate.
Collapse
Affiliation(s)
- Gürkan Bal
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, 12203 Berlin, Germany; (G.B.); (J.S.); (Z.L.); (K.F.); (S.R.T.); (T.Z.)
- Institute of Allergology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Jean Schneikert
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, 12203 Berlin, Germany; (G.B.); (J.S.); (Z.L.); (K.F.); (S.R.T.); (T.Z.)
- Institute of Allergology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Zhuoran Li
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, 12203 Berlin, Germany; (G.B.); (J.S.); (Z.L.); (K.F.); (S.R.T.); (T.Z.)
- Institute of Allergology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Kristin Franke
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, 12203 Berlin, Germany; (G.B.); (J.S.); (Z.L.); (K.F.); (S.R.T.); (T.Z.)
- Institute of Allergology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Shiva Raj Tripathi
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, 12203 Berlin, Germany; (G.B.); (J.S.); (Z.L.); (K.F.); (S.R.T.); (T.Z.)
- Institute of Allergology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Torsten Zuberbier
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, 12203 Berlin, Germany; (G.B.); (J.S.); (Z.L.); (K.F.); (S.R.T.); (T.Z.)
- Institute of Allergology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Magda Babina
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, 12203 Berlin, Germany; (G.B.); (J.S.); (Z.L.); (K.F.); (S.R.T.); (T.Z.)
- Institute of Allergology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
| |
Collapse
|
6
|
Liu H, Ming S. Causal Relationship Between Blood Triglyceride Levels and Age Spots: A Mendelian Randomization Analysis. Clin Cosmet Investig Dermatol 2023; 16:3121-3128. [PMID: 37927386 PMCID: PMC10625373 DOI: 10.2147/ccid.s431276] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/17/2023] [Indexed: 11/07/2023]
Abstract
Objective This study examined the association between blood triglyceride (TG) levels (TLIB) and age spots (AS). Methods We acquired data from the Mendelian randomization (MR) Base database and evaluated the causal association between TLIB and AS. Results From genome-wide association studies, we selected 33 single nucleotide polymorphisms (SNPs) that were significantly associated with TLIB and AS. The inverse variance-weighted (IVW) and weighted median estimation methods showed that TLIB had a protective effect on AS (IVW: β=-0.214, P=0.019, odds ratio [OR]=0.807, 95% confidence interval [CI]=0.674-0.966; weighted median: β=-0.277, P=0.032, OR=0.758, 95% CI=0.589-0.977). However, the MR-Egger analysis suggested no causal association (β=-0.234, P=0.085, OR=0.792, 95% CI=0.612-1.024). The greater precision of the weighted median estimation and IVW suggests that our results support a potential causal association between TLIB and AS. Conclusion The MR analysis proved that TLIB has a protective effect against AS and that triglycerides have potential preventive and therapeutic effects against AS. However, the specific dose-effect relationship requires further study.
Collapse
Affiliation(s)
- Hongtao Liu
- Clinical Medical School, Guangxi Health Science College, Nanning, 530011, People’s Republic of China
| | - Shaopeng Ming
- Anesthesiology Department, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, People’s Republic of China
| |
Collapse
|
7
|
Skin-Aging Pigmentation: Who Is the Real Enemy? Cells 2022; 11:cells11162541. [PMID: 36010618 PMCID: PMC9406699 DOI: 10.3390/cells11162541] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 12/21/2022] Open
Abstract
Skin aging is induced and sustained by chronological aging and photoaging. Aging skin pigmentation such as mottled pigmentation (senile lentigo) and melasma are typical signs of photoaging. The skin, like other human organs, undergoes cellular senescence, and senescent cells in the skin increase with age. The crosstalk between melanocytes as pigmentary cells and other adjacent types of aged skin cells such as senescent fibroblasts play a role in skin-aging pigmentation. In this review, we provide an overview of cellular senescence during the skin-aging process. The discussion also includes cellular senescence related to skin-aging pigmentation and the therapeutic potential of regulating the senescence process.
Collapse
|
8
|
Abstract
Melasma is a multifactorial dyschromia that results from exposure to external factors (such as solar radiation) and hormonal factors (such as sex hormones and pregnancy), as well as skin inflammation (such as contact dermatitis and esthetic procedures), in genetically predisposed individuals. Beyond hyperfunctional melanocytes, skin with melasma exhibits a series of structural and functional alterations in the epidermis, basement membrane, and upper dermis that interact to elicit and sustain a focal hypermelanogenic phenotype. Evolution in the knowledge of the genetic basis of melasma and the cutaneous response to solar radiation, as well as the roles of endocrine factors, antioxidant system, endothelium proliferation, fibroblast senescence, mast cell degranulation, autophagy deficits of the melanocyte, and the paracrine regulation of melanogenesis, will lead to the development of new treatments and preventive strategies. This review presents current knowledge on these aspects of the pathogenesis of melasma and discusses the effects of specific treatments and future research on these issues.
Collapse
|
9
|
Papaccio F, D′Arino A, Caputo S, Bellei B. Focus on the Contribution of Oxidative Stress in Skin Aging. Antioxidants (Basel) 2022; 11:1121. [PMID: 35740018 PMCID: PMC9220264 DOI: 10.3390/antiox11061121] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/31/2022] [Accepted: 06/03/2022] [Indexed: 02/04/2023] Open
Abstract
Skin aging is one of the most evident signs of human aging. Modification of the skin during the life span is characterized by fine lines and wrinkling, loss of elasticity and volume, laxity, rough-textured appearance, and pallor. In contrast, photoaged skin is associated with uneven pigmentation (age spot) and is markedly wrinkled. At the cellular and molecular level, it consists of multiple interconnected processes based on biochemical reactions, genetic programs, and occurrence of external stimulation. The principal cellular perturbation in the skin driving senescence is the alteration of oxidative balance. In chronological aging, reactive oxygen species (ROS) are produced mainly through cellular oxidative metabolism during adenosine triphosphate (ATP) generation from glucose and mitochondrial dysfunction, whereas in extrinsic aging, loss of redox equilibrium is caused by environmental factors, such as ultraviolet radiation, pollution, cigarette smoking, and inadequate nutrition. During the aging process, oxidative stress is attributed to both augmented ROS production and reduced levels of enzymatic and non-enzymatic protectors. Apart from the evident appearance of structural change, throughout aging, the skin gradually loses its natural functional characteristics and regenerative potential. With aging, the skin immune system also undergoes functional senescence manifested as a reduced ability to counteract infections and augmented frequency of autoimmune and neoplastic diseases. This review proposes an update on the role of oxidative stress in the appearance of the clinical manifestation of skin aging, as well as of the molecular mechanisms that underline this natural phenomenon sometimes accelerated by external factors.
Collapse
Affiliation(s)
| | | | | | - Barbara Bellei
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy; (F.P.); (S.C.)
| |
Collapse
|
10
|
Hong JK, Shin SH, Park SJ, Seo SJ, Park KY. A prospective, split-face study comparing 1,064-nm picosecond Nd:YAG laser toning with 1,064-nm Q-switched Nd:YAG laser toning in the treatment of melasma. J DERMATOL TREAT 2022; 33:2547-2553. [DOI: 10.1080/09546634.2022.2033674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Jun Ki Hong
- Department of Dermatology, Chung-Ang University College of Medicine, Seoul, Korea
| | - Sun Hye Shin
- Department of Dermatology, Chung-Ang University College of Medicine, Seoul, Korea
| | - Su Jung Park
- Department of Dermatology, Chung-Ang University College of Medicine, Seoul, Korea
| | - Seong Jun Seo
- Department of Dermatology, Chung-Ang University College of Medicine, Seoul, Korea
| | - Kui Young Park
- Department of Dermatology, Chung-Ang University College of Medicine, Seoul, Korea
| |
Collapse
|
11
|
Phansuk K, Vachiramon V, Jurairattanaporn N, Chanprapaph K, Rattananukrom T. Dermal Pathology in Melasma: An Update Review. Clin Cosmet Investig Dermatol 2022; 15:11-19. [PMID: 35023942 PMCID: PMC8747646 DOI: 10.2147/ccid.s343332] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 11/29/2021] [Indexed: 11/23/2022]
Abstract
BACKGROUND Melasma is a complex and multipathophysiological condition that is challenging to treat. The roles of each element in the dermis were highlighted in this recent year due to targeting it with emerging therapies. Although some studies have demonstrated abnormal findings in the dermis of melasma lesions, there are no integrated data regarding these findings. PURPOSE This article aims to discuss each finding in the dermis of melasma lesions and to provide some ideas about treatment options. METHODS An Internet search was completed using the MEDLINE, Embase, Scopus, and Google Scholar databases for relevant literature through June 2021 and reference lists of respective articles. Only the articles published in English language were included. RESULTS Several studies have focused on the dermal changes in melasma. Common findings included basement membrane disruption, pendulous melanocytes, marked solar elastosis, increased melanophages, increased mast cells, and neovascularization. In addition, each of them had the specified mechanism that may relate with the others. CONCLUSION Several changes in the dermis of melasma lesion may be connected with pathological changes in the epidermis. This may serve as a potential target treatment for melasma, which requires a multimodal approach.
Collapse
Affiliation(s)
- Kachanat Phansuk
- Division of Dermatology, Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Vasanop Vachiramon
- Division of Dermatology, Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Natthachat Jurairattanaporn
- Division of Dermatology, Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Kumutnart Chanprapaph
- Division of Dermatology, Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Teerapong Rattananukrom
- Division of Dermatology, Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
12
|
Kwon SH, Na JI, Huh CH, Park KC. A Clinical and Biochemical Evaluation of a Temperature-Controlled Continuous Non-Invasive Radiofrequency Device for the Treatment of Melasma. Ann Dermatol 2021; 33:522-530. [PMID: 34858003 PMCID: PMC8577901 DOI: 10.5021/ad.2021.33.6.522] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/01/2021] [Accepted: 04/02/2021] [Indexed: 01/09/2023] Open
Abstract
Background Melasma shows characteristic histological features of photoaged skin. Objective We evaluated the effect of dermal rejuvenation using a temperature-controlled continuous non-invasive radiofrequency (RF) device on melasma. Methods Continuous skin heating at the temperature of 43°C for 20 minutes was performed in ten subjects with melasma who underwent 3 tri-weekly RF sessions. Pigmentation was evaluated with Mexameter® and investigator’s global assessment (IGA). Immunohistochemical staining and image analysis was performed to evaluate biopsies from melasma skin before and after the treatment. Results The lesional melanin index was decreased by 13.7% at week 9. IGA score was improved from 3.50 at baseline to 2.95 at week 9. No significant adverse event was reported. Histologic analysis revealed reduced melanin and increased collagen density and thickness. The expression of procollagen-1 and type IV collagen was increased after the treatment. The number of p16INK4A-positive senescent fibroblasts was reduced after the treatment, while the expression of heat shock protein 70 and 90 was increased. Stromal derived factor-1, a senescence-associated anti-melanogenic factor secreted from the fibroblasts, was up-regulated after the treatment, while the level of c-kit was not changed. Conclusion Thermal skin stimulation by the temperature-controlled continuous RF device improved melasma through dermal rejuvenation.
Collapse
Affiliation(s)
- Soon-Hyo Kwon
- Department of Dermatology, Kyung Hee University Hospital at Gangdong, Kyung Hee University School of Medicine, Seoul, Korea
| | - Jung-Im Na
- Department of Dermatology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Chang-Hun Huh
- Department of Dermatology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Kyoung-Chan Park
- Department of Dermatology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| |
Collapse
|
13
|
Kang HY, Lee JW, Papaccio F, Bellei B, Picardo M. Alterations of the pigmentation system in the aging process. Pigment Cell Melanoma Res 2021; 34:800-813. [PMID: 34048137 DOI: 10.1111/pcmr.12994] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 01/10/2023]
Abstract
Human skin aging is a natural phenomenon that results from continuous exposure to intrinsic (time, genetic factors, hormones) as well as extrinsic factors (UV exposure, pollution, tobacco). In areas that are frequently exposed to the sun, photoaging blends with the process of intrinsic aging, resulting in an increased senescent cells number and consequently accelerating the aging process. The severity of photodamage depends on constitutional factors, including skin phototype (skin color, tanning capacity), intensity, and duration of sunlight/UV exposure. Aging affects nearly every aspect of cutaneous biology, including pigmentation. Clinically, the phenotype of age pigmented skin has a mottled, uneven color, primarily due to age spots, with or without hypopigmentation. Uneven pigmentation might be attributed to the hyperactivation of melanocytes, altered distribution of pigment, and turnover. In addition to direct damage to pigment-producing cells, photodamage alters the physiological crosstalk between keratinocytes, fibroblasts, endothelial cells, and melanocytes responsible for natural pigmentation homeostasis. Interestingly, age-independent diffuse expression of senescence-associated markers in the dermal and epidermal compartment is also associated with vitiligo, suggesting that premature senescence plays an important role in the pathology.
Collapse
Affiliation(s)
- Hee Young Kang
- Department of Dermatology, Ajou University School of Medicine, Suwon, Korea
| | - Jin Wook Lee
- Department of Medical Sciences, Ajou University Graduate School of Medicine, Suwon, Korea.,Department of Dermatology, College of Medicine, Chungbuk National University, Cheongju, Korea
| | - Federica Papaccio
- Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Barbara Bellei
- Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Mauro Picardo
- Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| |
Collapse
|
14
|
Upadhyay PR, Ho T, Abdel-Malek ZA. Participation of keratinocyte- and fibroblast-derived factors in melanocyte homeostasis, the response to UV, and pigmentary disorders. Pigment Cell Melanoma Res 2021; 34:762-776. [PMID: 33973367 DOI: 10.1111/pcmr.12985] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/19/2021] [Accepted: 05/04/2021] [Indexed: 12/12/2022]
Abstract
Human epidermal melanocytes play a central role in sensing the environment and protecting the skin from the drastic effects of solar ultraviolet radiation and other environmental toxins or inflammatory agents. Melanocytes survive in the epidermis for decades, which subjects them to chronic environmental insults. Melanocytes have a poor self-renewal capacity; therefore, it is critical to ensure their survival with genomic stability. The function and survival of melanocytes is regulated by an elaborate network of paracrine factors synthesized mainly by epidermal keratinocytes and dermal fibroblasts. A symbiotic relationship exists between epidermal melanocytes and keratinocytes on the one hand, and between melanocytes and dermal fibroblasts on the other hand. Melanocytes protect epidermal keratinocytes and dermal fibroblasts from the damaging effects of solar radiation, and the latter cells synthesize biochemical mediators that maintain the homeostasis, and regulate the stress response of melanocytes. Disruption of the paracrine network results in pigmentary disorders, due to abnormal regulation of melanin synthesis, and compromise of melanocyte survival or genomic stability. This review provides an update of the current knowledge of keratinocyte- and fibroblast-derived paracrine factors and their contribution to melanocyte physiology, and how their abnormal production is involved in the pathogenesis of common pigmentary disorders.
Collapse
Affiliation(s)
- Parth R Upadhyay
- Department of Dermatology, University of Cincinnati College of Medicine, Cincinnati, OH, USA.,Division of Pharmaceutical Sciences, College of Pharmacy, University of Cincinnati, Cincinnati, OH, USA
| | - Tina Ho
- Department of Dermatology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Zalfa A Abdel-Malek
- Department of Dermatology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
15
|
Senescence under appraisal: hopes and challenges revisited. Cell Mol Life Sci 2021; 78:3333-3354. [PMID: 33439271 PMCID: PMC8038995 DOI: 10.1007/s00018-020-03746-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 11/20/2020] [Accepted: 12/17/2020] [Indexed: 02/06/2023]
Abstract
In recent years, cellular senescence has become the focus of attention in multiple areas of biomedical research. Typically defined as an irreversible cell cycle arrest accompanied by increased cellular growth, metabolic activity and by a characteristic messaging secretome, cellular senescence can impact on multiple physiological and pathological processes such as wound healing, fibrosis, cancer and ageing. These unjustly called 'zombie cells' are indeed a rich source of opportunities for innovative therapeutic development. In this review, we collate the current understanding of the process of cellular senescence and its two-faced nature, i.e. beneficial/detrimental, and reason this duality is linked to contextual aspects. We propose the senescence programme as an endogenous pro-resolving mechanism that may lead to sustained inflammation and damage when dysregulated or when senescent cells are not cleared efficiently. This pro-resolving model reconciles the paradoxical two faces of senescence by emphasising that it is the unsuccessful completion of the programme, and not senescence itself, what leads to pathology. Thus, pro-senescence therapies under the right context, may favour inflammation resolution. We also review the evidence for the multiple therapeutic approaches under development based on senescence, including its induction, prevention, clearance and the use of senolytic and senomorphic drugs. In particular, we highlight the importance of the immune system in the favourable outcome of senescence and the implications of an inefficient immune surveillance in completion of the senescent cycle. Finally, we identify and discuss a number of challenges and existing gaps to encourage and stimulate further research in this exciting and unravelled field, with the hope of promoting and accelerating the clinical success of senescence-based therapies.
Collapse
|
16
|
Kapoor R, Dhatwalia S, Kumar R, Rani S, Parsad D. Emerging role of dermal compartment in skin pigmentation: comprehensive review. J Eur Acad Dermatol Venereol 2020; 34:2757-2765. [DOI: 10.1111/jdv.16404] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 03/03/2020] [Indexed: 12/16/2022]
Affiliation(s)
- R. Kapoor
- Department of Zoology Panjab University Chandigarh Chandigarh India
| | - S.K. Dhatwalia
- Department of Zoology Panjab University Chandigarh Chandigarh India
| | - R. Kumar
- Department of Zoology Panjab University Chandigarh Chandigarh India
| | - S. Rani
- Department of Zoology Panjab University Chandigarh Chandigarh India
| | - D. Parsad
- Department of Dermatology PGIMER Chandigarh India
| |
Collapse
|
17
|
Atef A, El-Rashidy MA, Azeem AA, Kabel AM. The Role of Stem Cell Factor in Hyperpigmented Skin Lesions. Asian Pac J Cancer Prev 2019; 20:3723-3728. [PMID: 31870114 PMCID: PMC7173358 DOI: 10.31557/apjcp.2019.20.12.3723] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 11/18/2019] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Skin hyperpigmentation usually results from an increased number, or activity, of melanocytes. The degree of pigmentation of skin depends on the amount and type of melanin, degree of skin vascularity, presence of carotene, and thickness of the stratum corneum. Common causes of hyperpigmentation include post-inflammatory hyperpigmentation, melasma, solar lentigines, ephelides (freckles), and café-au-lait macules. Some skin tumors can be hyperpigmented as basal cell carcinoma (BCC), squamous cell carcinoma (SCC) and malignant melanoma (MM). Stem cell factor (SCF) is a growth factor and its interaction with its receptor, c-kit, is well known to be critical to the survival of melanocytes. METHODS This study was carried out on 60 patients complaining of hyperpigmented skin lesions (20 melasma, 20 solar lentigines, and 20 freckles) and 36 patients with skin tumors (14 BCC, 12 SCC, and 10 MM). Punch skin biopsies were taken from the previous lesions. Immunohistochemical staining of these samples was done using the stem cell factor (SCF). RESULTS There was positive expression of SCF in all cases of melasma, solar lentigines and freckles with significant increase in the intensity of expression in the lesional areas than the non-lesional ones (P=0.004). There was also a statistically significant increase in the expression of SCF in BCC and melanoma tumor cells. CONCLUSION SCF has a great role in skin hyperpigmented disorders and this can be used as a target for the developing of new antipigmentary lines of treatment by inhibiting SCF. SCF can also be involved in the emergence of some skin tumors.
Collapse
Affiliation(s)
| | | | | | - Ahmed M Kabel
- Department of Pharmacology, Faculty of Medicine, Tanta University, Tanta, Egypt,
- Department of Clinical Pharmacy, College of Pharmacy, Taif University, Taif, Saudi Arabia.
| |
Collapse
|
18
|
Kim M, Kim SM, Kwon S, Park TJ, Kang HY. Senescent fibroblasts in melasma pathophysiology. Exp Dermatol 2018; 28:719-722. [DOI: 10.1111/exd.13814] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 10/25/2018] [Indexed: 11/28/2022]
Affiliation(s)
- Misun Kim
- Department of DermatologyAjou University School of Medicine Suwon Korea
| | - So Min Kim
- Department of DermatologyAjou University School of Medicine Suwon Korea
| | - Soohyun Kwon
- Department of DermatologyAjou University School of Medicine Suwon Korea
| | - Tae Jun Park
- Department of Biochemistry and Molecular BiologyAjou University School of Medicine Suwon Korea
- Chronic Inflammatory Disease Research CenterAjou University School of Medicine Suwon Korea
- Department of Biomedical ScienceThe Graduate SchoolAjou University Suwon Korea
| | - Hee Young Kang
- Department of DermatologyAjou University School of Medicine Suwon Korea
- Department of Biomedical ScienceThe Graduate SchoolAjou University Suwon Korea
| |
Collapse
|
19
|
Nahhas AF, Abdel-Malek ZA, Kohli I, Braunberger TL, Lim HW, Hamzavi IH. The potential role of antioxidants in mitigating skin hyperpigmentation resulting from ultraviolet and visible light-induced oxidative stress. PHOTODERMATOLOGY PHOTOIMMUNOLOGY & PHOTOMEDICINE 2018; 35:420-428. [PMID: 30198587 DOI: 10.1111/phpp.12423] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 08/10/2018] [Accepted: 09/02/2018] [Indexed: 01/03/2023]
Abstract
Oxidative stress is an integral element that influences a variety of biochemical reactions throughout the body and is known to play a notable role in melanogenesis. Exogenous triggers of oxidative stress, such as ultraviolet radiation (UVR) and visible light (VL), lead to pigment formation through somewhat different pathways, but both share a common endpoint-the potential to generate cosmetically undesirable hyperpigmentation. Though organic and inorganic sunscreens are available to protect against the UVR portion of the electromagnetic spectrum, coverage is lacking to protect against the VL spectrum. In this manuscript, we review the phases of tanning, pathways of melanogenesis triggered by UVR and VL, and the associated impact of oxidative stress. We also discuss the known intrinsic mechanisms and paracrine regulation of melanocytes that influence their response to UVR. Understanding these mechanisms and their role in UVR-induced hyperpigmentation should potentially lead to identification of useful targets that can be coupled with antioxidant therapy to alleviate this effect.
Collapse
Affiliation(s)
- Amanda F Nahhas
- Department of Dermatology, Beaumont-Farmington Hills, Farmington Hills, Michigan.,Department of Dermatology, Henry Ford Hospital, Detroit, Michigan
| | | | - Indermeet Kohli
- Department of Dermatology, Henry Ford Hospital, Detroit, Michigan
| | | | - Henry W Lim
- Department of Dermatology, Henry Ford Hospital, Detroit, Michigan
| | | |
Collapse
|
20
|
Kim M, Shibata T, Kwon S, Park TJ, Kang HY. Ultraviolet-irradiated endothelial cells secrete stem cell factor and induce epidermal pigmentation. Sci Rep 2018. [PMID: 29523807 PMCID: PMC5844989 DOI: 10.1038/s41598-018-22608-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Ultraviolet (UV)-associated hyperpigmented skins are characterized with increased vasculature underlying pigmentation, suggestive of the possible biological role of endothelial cells in the regulation of skin pigmentation during UV irradiation. In this study, we showed that UV-irradiated endothelial cells significantly increased the pigmentation of melanocytes through epithelial-mesenchymal crosstalk. The stimulatory effect of endothelial cells was further demonstrated using ex vivo human skin. RNA sequence analysis and enzyme-linked immunosorbent assay showed that endothelial cells secrete more stem cell factor (SCF) upon UV irradiation than non-irradiated cells. The increased pigmentation elicited by endothelial cells was abrogated following inhibition of SCF/c-KIT signaling. Together these results suggest that endothelial cells are activated upon UV exposure to release melanogenic factors such as SCF, which contributes to the development of skin hyperpigmentation during chronic sun exposure.
Collapse
Affiliation(s)
- Misun Kim
- Department of Dermatology, Ajou University School of Medicine, Suwon, Korea
| | | | - Soohyun Kwon
- Department of Dermatology, Ajou University School of Medicine, Suwon, Korea
| | - Tae Jun Park
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, Korea. .,Chronic Inflammatory Disease Research Center, Ajou University School of Medicine, Suwon, Korea. .,Department of Biomedical Science, The Graduate School, Ajou University, Suwon, Korea.
| | - Hee Young Kang
- Department of Dermatology, Ajou University School of Medicine, Suwon, Korea. .,Department of Biomedical Science, The Graduate School, Ajou University, Suwon, Korea.
| |
Collapse
|
21
|
Kwon SH, Choi HR, Kang YA, Park KC. Depigmenting Effect of Resveratrol Is Dependent on FOXO3a Activation without SIRT1 Activation. Int J Mol Sci 2017; 18:ijms18061213. [PMID: 28590410 PMCID: PMC5486036 DOI: 10.3390/ijms18061213] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/27/2017] [Accepted: 05/30/2017] [Indexed: 12/14/2022] Open
Abstract
Resveratrol exhibits not only anti-melanogenic property by inhibiting microphthalmia-associated transcription factor (MITF), but also anti-aging property by activating sirtuin-1 (SIRT1). In this study, the relationship between depigmenting effect of resveratrol and SIRT1/forkhead box O (FOXO) 3a activation and was investigated. Resveratrol suppressed melanogenesis by the downregulation of MITF and tyrosinase via ERK pathway. Results showed that the expression of both SIRT1 and FOXO3a were increased. It is reported that SIRT1 is critical regulator of FOXO-mediated transcription in response to oxidative stress. However in our study, FOXO3a activation appeared earlier than that of SIRT1. Furthermore, the effect of resveratrol on the levels of MITF and tyrosinase was suppressed when melanocytes were pre-treated with SP600125 (JNK inhibitor). However, pre-treatment with SIRT1 inhibitor (EX527, or sirtinol) did not affect the levels of MITF and tyrosinase. Therefore, resveratrol inhibits melanogenesis through the activation of FOXO3a but not by the activation of SIRT1. Although SIRT1 activation by resveratrol is a well-known mechanism of resveratrol-induced antiaging effects, our study showed that not SIRT1 but FOXO3a activation is involved in depigmenting effects of resveratrol.
Collapse
Affiliation(s)
- Soon-Hyo Kwon
- College of Medicine, Seoul National University, Seoul National University Bundang Hospital, Gyeonggi 13620, Korea.
| | - Hye-Ryung Choi
- College of Medicine, Seoul National University, Seoul National University Bundang Hospital, Gyeonggi 13620, Korea.
| | - Youn-A Kang
- College of Medicine, Seoul National University, Seoul National University Bundang Hospital, Gyeonggi 13620, Korea.
| | - Kyoung-Chan Park
- College of Medicine, Seoul National University, Seoul National University Bundang Hospital, Gyeonggi 13620, Korea.
| |
Collapse
|
22
|
Ghosh K, Capell BC. The Senescence-Associated Secretory Phenotype: Critical Effector in Skin Cancer and Aging. J Invest Dermatol 2016; 136:2133-2139. [PMID: 27543988 DOI: 10.1016/j.jid.2016.06.621] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 06/01/2016] [Accepted: 06/20/2016] [Indexed: 12/11/2022]
Abstract
Cellular senescence, a state of stable cell cycle arrest in response to cellular stress, is an indispensable mechanism to counter tumorigenesis by halting the proliferation of damaged cells. However, through the secretion of an array of diverse cytokines, chemokines, growth factors, and proteases known as the senescence-associated secretory phenotype (SASP), senescent cells can paradoxically promote carcinogenesis. Consistent with this, removal of senescent cells delays the onset of cancer and prolongs lifespan in vivo, potentially in part through SASP reduction. In this review, we consider the evidence for the SASP and "SASP-like" inflammation in driving skin carcinogenesis, emphasizing how further understanding of both the roles and mechanisms of SASP expression may offer new targets for skin cancer prevention and therapy.
Collapse
Affiliation(s)
- Kanad Ghosh
- Epigenetics Program, Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Brian C Capell
- Epigenetics Program, Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA; Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
23
|
Velarde MC, Demaria M. Targeting Senescent Cells: Possible Implications for Delaying Skin Aging: A Mini-Review. Gerontology 2016; 62:513-8. [PMID: 27031122 DOI: 10.1159/000444877] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 02/22/2016] [Indexed: 11/19/2022] Open
Abstract
Senescent cells are induced by a wide variety of stimuli. They accumulate in several tissues during aging, including the skin. Senescent cells secrete proinflammatory cytokines, chemokines, growth factors, and proteases, a phenomenon called senescence-associated secretory phenotype (SASP), which are thought to contribute to the functional decline of the skin as a consequence of aging. Due to the potential negative effects of the SASP in aged organisms, drugs that selectively target senescent cells represent an intriguing therapeutic strategy to delay aging and age-related diseases. Here, we review studies on the role of senescent cells in the skin, with particular emphasis on the age-related mechanisms and phenotypes associated with excessive accumulation of cellular senescence. We discuss the aberrant behavior of senescent cells in aging and how the different signaling pathways associated with survival and secretion of senescent cells can be engaged for the development of targeted therapies.
Collapse
|
24
|
Cell Autonomous and Non-Autonomous Effects of Senescent Cells in the Skin. J Invest Dermatol 2015; 135:1722-1726. [PMID: 25855157 PMCID: PMC4466004 DOI: 10.1038/jid.2015.108] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 02/26/2015] [Accepted: 03/07/2015] [Indexed: 01/08/2023]
Abstract
Human and mouse skin accumulate senescent cells in both the epidermis and dermis during aging. When chronically present, senescent cells are thought to enhance the age-dependent deterioration of the skin during extrinsic and intrinsic aging. However, when transiently present, senescent cells promote optimal wound healing. Here, we review recent studies on how senescent cells and the senescence-associated secretory phenotype (SASP) contribute to different physiological and pathophysiological conditions in the skin with a focus on some of the cell autonomous and non-autonomous functions of senescent cells in the context of skin aging and wound healing.
Collapse
|
25
|
Duval C, Cohen C, Chagnoleau C, Flouret V, Bourreau E, Bernerd F. Key regulatory role of dermal fibroblasts in pigmentation as demonstrated using a reconstructed skin model: impact of photo-aging. PLoS One 2014; 9:e114182. [PMID: 25490395 PMCID: PMC4260844 DOI: 10.1371/journal.pone.0114182] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 10/17/2014] [Indexed: 12/30/2022] Open
Abstract
To study cutaneous pigmentation in a physiological context, we have previously developed a functional pigmented reconstructed skin model composed of a melanocyte-containing epidermis grown on a dermal equivalent comprising living fibroblasts. The present studies, using the same model, aimed to demonstrate that dermal fibroblasts influence skin pigmentation up to the macroscopic level. The proof of principle was performed with pigmented skins differing only in the fibroblast component. First, the in vitro system was reconstructed with or without fibroblasts in order to test the global influence of the presence of this cell type. We then assessed the impact of the origin of the fibroblast strain on the degree of pigmentation using fetal versus adult fibroblasts. In both experiments, impressive variation in skin pigmentation at the macroscopic level was observed and confirmed by quantitative parameters related to skin color, melanin content and melanocyte numbers. These data confirmed the responsiveness of the model and demonstrated that dermal fibroblasts do indeed impact the degree of skin pigmentation. We then hypothesized that a physiological state associated with pigmentary alterations such as photo-aging could be linked to dermal fibroblasts modifications that accumulate over time. Pigmentation of skin reconstructed using young unexposed fibroblasts (n = 3) was compared to that of tissues containing natural photo-aged fibroblasts (n = 3) which express a senescent phenotype. A stimulation of pigmentation in the presence of the natural photo-aged fibroblasts was revealed by a significant increase in the skin color (decrease in Luminance) and an increase in both epidermal melanin content and melanogenic gene expression, thus confirming our hypothesis. Altogether, these data demonstrate that the level of pigmentation of the skin model is influenced by dermal fibroblasts and that natural photo-aged fibroblasts can contribute to the hyperpigmentation that is associated with photo-aging.
Collapse
|
26
|
Cestari TF, Dantas LP, Boza JC. Acquired hyperpigmentations. An Bras Dermatol 2014; 89:11-25. [PMID: 24626644 PMCID: PMC3938350 DOI: 10.1590/abd1806-4841.20142353] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2012] [Accepted: 03/25/2013] [Indexed: 01/15/2023] Open
Abstract
Cutaneous hyperpigmentations are frequent complaints, motivating around 8.5% of all
dermatological consultations in our country. They can be congenital, with different
patterns of inheritance, or acquired in consequence of skin problems, systemic
diseases or secondary to environmental factors. The vast majority of them are linked
to alterations on the pigment melanin, induced by different mechanisms. This review
will focus on the major acquired hyperpigmentations associated with increased
melanin, reviewing their mechanisms of action and possible preventive measures.
Particularly prominent aspects of diagnosis and therapy will be emphasized, with
focus on melasma, post-inflammatory hyperpigmentation, periorbital pigmentation,
dermatosis papulosa nigra, phytophotodermatoses, flagellate dermatosis, erythema
dyschromicum perstans, cervical poikiloderma (Poikiloderma of Civatte), acanthosis
nigricans, cutaneous amyloidosis and reticulated confluent dermatitis
Collapse
Affiliation(s)
- Tania Ferreira Cestari
- Rio Grande do Sul Federal University, Internal Medicine Department, Porto Alegre(RS), Brazil, PhD - Associate Professor at the Internal Medicine Department, at Rio Grande do Sul Federal University (UFRGS). Teaching Professor at the Child and Adolescent Health Sciences and the Surgical Post-Graduation Programs at Rio Grande do Sul Federal University (UFRGS). Chief of the Dermatology Department at Porto Alegre Clinics Hospital - Rio Grande do Sul Federal University (HCPA-UFRGS) - Porto Alegre (RS), Brazil
| | - Lia Pinheiro Dantas
- Rio Grande do Sul Federal University, Medical Sciences Post Graduation program, Porto AlegreRS, Brazil, MD, Dermatologist, MSc (in course) at the Medical Sciences Post Graduation program at Rio Grande do Sul Federal University (UFRGS) - Porto Alegre (RS), Brazil
| | - Juliana Catucci Boza
- Rio Grande do Sul Federal University, Child and Adolescent Health Sciences Post Graduation Program, Porto AlegreRS, Brazil, MD, Dermatologist, PhD (in course) at the Child and Adolescent Health Sciences Post Graduation Program at Rio Grande do Sul Federal University (UFRGS) - Porto Alegre (RS), Brazil
| |
Collapse
|
27
|
Lei J, Gu X, Ye Z, Shi J, Zheng X. Antiaging effects of simvastatin on vascular endothelial cells. Clin Appl Thromb Hemost 2012; 20:212-8. [PMID: 22964779 DOI: 10.1177/1076029612458967] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The anti-inflammatory, antioxidative, and antiarteriosclerosis activities of simvastatin along with its protective effects on the endothelium suggest that it may also have antiaging effects. The aim of this study was to investigate the antiaging effects of simvastatin as well as its effects on sirtuin 1 (SIRT1) expression in endothelial cells. Aged rats and human umbilical vein endothelial cells were treated with simvastatin in the presence and absence of oxidized low-density lipoprotein (OX-LDL). Aortic β-galactosidase staining was undertaken to determine senescence, and SIRT1 protein expression was evaluated using Western blot analysis. After simvastatin therapy, arterial endothelial cell aging was significantly reduced, and SIRT1 expression was significantly increased. The OX-LDL significantly accelerated the senescence of umbilical vein endothelial cells and decreased SIRT1 expression. The OX-LDL-induced downregulation of SIRT1 was blocked by simvastatin. Simvastatin treatment also reduced umbilical vein endothelial cell aging and increased SIRT1 expression.
Collapse
Affiliation(s)
- Junping Lei
- 1Department of Cardiovascular Diseases, Changhai Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | | | | | | | | |
Collapse
|