1
|
Tsai HC, Chen YH. Dexamethasone downregulates the expressions of MMP-9 and oxidative stress in mice with eosinophilic meningitis caused by Angiostrongylus cantonensis infection. Parasitology 2021; 148:187-197. [PMID: 33004090 PMCID: PMC11010167 DOI: 10.1017/s0031182020001870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Steroids have been shown to be beneficial in patients and mice with eosinophilic meningitis caused by Angiostrongylus cantonensis infection; however, the mechanism for this beneficial effect is unknown. We speculated that the effect of steroids in eosinophilic meningitis caused by A. cantonensis infection may be mediated by the downregulation of matrix metallopeptidase-9 (MMP-9) and oxidative stress pathways via glucocorticoid receptors (GRs). We found blood-brain barrier (BBB) dysfunction in mice with eosinophilic meningitis 2-3 weeks after infection as evidenced by increased extravasation of Evans blue and cerebrospinal fluid (CSF) albumin levels. The administration of dexamethasone significantly decreased the amount of Evans blue and CSF albumin. The effect of dexamethasone was mediated by GRs and heat shock protein 70, resulting in subsequent decreases in the expressions of nuclear factor kappa B (NF-κB), c-Jun N-terminal kinase (JNK), and extracellular signal-regulated kinase (ERK) in the CSF and brain parenchymal after 2 weeks of steroid administration. Steroid treatment also decreased CSF/brain homogenate MMP-9 concentrations, but had no effect on CSF MMP-2 levels, indicating that MMP-9 rather than MMP-2 played a major role in BBB dysfunction in mice with eosinophilic meningitis. The concentration of 8-hydroxy-2'-deoxyguanosine (8-OHdG) gradually increased after 1-3 weeks of infection, and the administration of dexamethasone significantly downregulated the concentration of oxidized derivative 8-OHdG in CSF. In conclusion, increased 8-OHdG and MMP-9 concentrations were found in mice with eosinophilic meningitis caused by A. cantonensis infection. The effect of dexamethasone was mediated by GRs and significantly decreased not only the levels of 8-OHdG and MMP-9 but also NF-κB, JNK and ERK.
Collapse
Affiliation(s)
- Hung-Chin Tsai
- Section of Infectious Diseases, Department of Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
- National Yang-Ming University, Taipei, Taiwan
- Department of Parasitology and Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Yu-Hsin Chen
- Section of Infectious Diseases, Department of Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
- National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
2
|
Principi N, Esposito S. Bacterial meningitis: new treatment options to reduce the risk of brain damage. Expert Opin Pharmacother 2019; 21:97-105. [PMID: 31675255 DOI: 10.1080/14656566.2019.1685497] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Introduction: Bacterial meningitis (BM) is a medical emergency and its etiology varies according to the age group and geographic area. Studies have shown that brain damage, sequelae and neuropsychological deficits depend not only on the direct deleterious action of the pathogens, but also on the host defenses themselves.Areas covered: Corticosteroids (CS) were the first drugs used with the intent to limit the exaggerated host response. However, as steroid addition to antibiotics is frequently unsatisfactory, other measures have been suggested. In this study, the most important adjuvant therapies that are potentially useful to limit the neuropsychological damage of BM are discussed.Expert opinion: The pathophysiological mechanisms leading to the development of brain damage are not completely defined. Moreover, the efficacy of adjuvant therapies can vary according to the aetiologic cause of BM, and differences in immune system function of the host can play a relevant role in the expression of inflammation and related problems. It is likely that none of the measures with demonstrated efficacy in animal models can be translated into clinical practice in the next few years, suggesting that to reduce the total burden of BM, the increased use of vaccines seems to be the best solution.
Collapse
Affiliation(s)
- Nicola Principi
- Emeritus of Pediatrics, Università degli Studi di Milano, Milan, Italy
| | - Susanna Esposito
- Pietro Barilla Children's Hospital, Department of Medicine and Surgery, University of Parma, Parma, Italy
| |
Collapse
|
3
|
Rohlwink UK, Figaji A, Wilkinson KA, Horswell S, Sesay AK, Deffur A, Enslin N, Solomons R, Van Toorn R, Eley B, Levin M, Wilkinson RJ, Lai RPJ. Tuberculous meningitis in children is characterized by compartmentalized immune responses and neural excitotoxicity. Nat Commun 2019; 10:3767. [PMID: 31434901 PMCID: PMC6704154 DOI: 10.1038/s41467-019-11783-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 08/06/2019] [Indexed: 12/22/2022] Open
Abstract
Tuberculous meningitis (TBM) is the most severe form of TB with high rates of mortality and morbidity. Here we conduct RNA-sequencing on whole blood as well as on ventricular and lumbar cerebrospinal fluid (CSF) of pediatric patients treated for TBM. Differential transcript expression of TBM cases are compared with healthy controls in whole blood and with non-TB cerebral infection controls in CSF. Whole blood RNA-Seq analysis demonstrates a distinct immune response pattern in TBM, with significant increase in both canonical and non-canonical inflammasome activation and decrease in T-cell activation. In ventricular CSF, a significant enrichment associated with neuronal excitotoxicity and cerebral damage is detected in TBM. Finally, compartmental comparison in TBM indicates that the ventricular profile represents brain injury whereas the lumbar profile represents protein translation and cytokine signaling. Together, transcriptomic analysis shows that disease processes differ between the periphery and the central nervous system, and within brain compartments. Tuberculosis meningitis (TBM) is a severe form of TB with limited treatment options. Here, the authors perform RNA sequencing on whole blood and on ventricular and lumbar cerebrospinal fluid (CSF) samples from pediatric patients treated for TBM to characterize the immune response and tissue damage.
Collapse
Affiliation(s)
- Ursula K Rohlwink
- Neuroscience Institute, Division of Neurosurgery, University of Cape Town, Cape Town, South Africa.,Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Anthony Figaji
- Neuroscience Institute, Division of Neurosurgery, University of Cape Town, Cape Town, South Africa
| | - Katalin A Wilkinson
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa.,The Francis Crick Institute, London, NW1 1AT, UK
| | | | - Abdul K Sesay
- The Francis Crick Institute, London, NW1 1AT, UK.,Genomics Core, MRC Unit The Gambia at LSHTM, Serrekunda, The Gambia
| | - Armin Deffur
- Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Nico Enslin
- Neuroscience Institute, Division of Neurosurgery, University of Cape Town, Cape Town, South Africa
| | - Regan Solomons
- Department of Paediatrics and Child Health, Stellenbosch University, Stellenbosch, South Africa
| | - Ronald Van Toorn
- Department of Paediatrics and Child Health, Stellenbosch University, Stellenbosch, South Africa
| | - Brian Eley
- Paediatric Infectious Diseases Unit, Department of Paediatrics and Child Health, University of Cape Town, Cape Town, South Africa
| | - Michael Levin
- Department of Infectious Disease, Imperial College London, London, W2 1PG, UK
| | - Robert J Wilkinson
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa.,The Francis Crick Institute, London, NW1 1AT, UK.,Department of Medicine, University of Cape Town, Cape Town, South Africa.,Department of Infectious Disease, Imperial College London, London, W2 1PG, UK
| | - Rachel P J Lai
- The Francis Crick Institute, London, NW1 1AT, UK. .,Department of Infectious Disease, Imperial College London, London, W2 1PG, UK.
| |
Collapse
|
4
|
Muri L, Leppert D, Grandgirard D, Leib SL. MMPs and ADAMs in neurological infectious diseases and multiple sclerosis. Cell Mol Life Sci 2019; 76:3097-3116. [PMID: 31172218 PMCID: PMC7079810 DOI: 10.1007/s00018-019-03174-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 05/23/2019] [Accepted: 05/29/2019] [Indexed: 12/24/2022]
Abstract
Metalloproteinases-such as matrix metalloproteinases (MMPs) and a disintegrin and metalloproteinases (ADAMs)-are involved in various diseases of the nervous system but also contribute to nervous system development, synaptic plasticity and neuroregeneration upon injury. MMPs and ADAMs proteolytically cleave many substrates including extracellular matrix components but also signaling molecules and receptors. During neuroinfectious disease with associated neuroinflammation, MMPs and ADAMs regulate blood-brain barrier breakdown, bacterial invasion, neutrophil infiltration and cytokine signaling. Specific and broad-spectrum inhibitors for MMPs and ADAMs have experimentally been shown to decrease neuroinflammation and brain damage in diseases with excessive neuroinflammation as a common denominator, such as pneumococcal meningitis and multiple sclerosis, thereby improving the disease outcome. Timing of metalloproteinase inhibition appears to be critical to effectively target the cascade of pathophysiological processes leading to brain damage without inhibiting the neuroregenerative effects of metalloproteinases. As the critical role of metalloproteinases in neuronal repair mechanisms and regeneration was only lately recognized, the original idea of chronic MMP inhibition needs to be conceptually revised. Recently accumulated research urges for a second chance of metalloproteinase inhibitors, which-when correctly applied and dosed-harbor the potential to improve the outcome of different neuroinflammatory diseases.
Collapse
Affiliation(s)
- Lukas Muri
- Neuroinfection Laboratory, Institute for Infectious Diseases, University of Bern, Friedbühlstrasse 51, 3001, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences (GCB), University of Bern, Freiestrasse 1, 3012, Bern, Switzerland
| | - David Leppert
- Department of Neurology, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland
| | - Denis Grandgirard
- Neuroinfection Laboratory, Institute for Infectious Diseases, University of Bern, Friedbühlstrasse 51, 3001, Bern, Switzerland
| | - Stephen L Leib
- Neuroinfection Laboratory, Institute for Infectious Diseases, University of Bern, Friedbühlstrasse 51, 3001, Bern, Switzerland.
| |
Collapse
|
5
|
Ólafsson EB, Ross EC, Varas-Godoy M, Barragan A. TIMP-1 promotes hypermigration of Toxoplasma-infected primary dendritic cells via CD63-ITGB1-FAK signaling. J Cell Sci 2019; 132:jcs.225193. [PMID: 30635444 DOI: 10.1242/jcs.225193] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 12/27/2018] [Indexed: 01/11/2023] Open
Abstract
Tissue inhibitor of metalloproteinases-1 (TIMP-1) exerts pleiotropic effects on cells including conferring metastatic properties to cancer cells. As for metastatic cells, recent paradigms of leukocyte migration attribute important roles to the amoeboid migration mode of dendritic cells (DCs) for rapid locomotion in tissues. However, the role of TIMP-1 in immune cell migration and in the context of infection has not been addressed. We report that, upon challenge with the obligate intracellular parasite Toxoplasma gondii, primary DCs secrete TIMP-1 with implications for their migratory properties. Using a short hairpin RNA (shRNA) gene silencing approach, we demonstrate that secreted TIMP-1 and its ligand CD63 are required for the onset of hypermotility in DCs challenged with T. gondii Further, gene silencing and antibody blockade of the β1-integrin CD29 (ITGB1) inhibited DC hypermotility, indicating that signal transduction occurred via ITGB1. Finally, gene silencing of the ITGB1-associated focal adhesion kinase (FAK, also known as PTK2), as well as pharmacological antagonism of FAK and associated kinases SRC and PI3K, abrogated hypermotility. The present study identifies a TIMP-1-CD63-ITGB1-FAK signaling axis in primary DCs, which T. gondii hijacks to drive high-speed amoeboid migration of the vehicle cells that facilitate its systemic dissemination.
Collapse
Affiliation(s)
- Einar B Ólafsson
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 09 Stockholm, Sweden
| | - Emily C Ross
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 09 Stockholm, Sweden
| | - Manuel Varas-Godoy
- Centro de Investigación Biomédica, Faculty of Medicine, Universidad de los Andes, 7620001 Santiago, Chile
| | - Antonio Barragan
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 09 Stockholm, Sweden
| |
Collapse
|
6
|
Shukla V, Shakya AK, Shukla M, Kumari N, Krishnani N, Dhole TN, Misra UK. Circulating levels of matrix metalloproteinases and tissue inhibitors of matrix metalloproteinases during Japanese encephalitis virus infection. Virusdisease 2016; 27:63-76. [PMID: 26925446 DOI: 10.1007/s13337-015-0301-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 12/31/2015] [Indexed: 11/29/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are widely implicated in modulating blood brain barrier (BBB) integrity and affect the entry of peripheral immune cells into the central nervous system (CNS). The expression of MMPs is tightly regulated at the level of gene transcription, conversion of pro-enzyme to active MMPs and by the action of tissue inhibitors of metalloproteinases (TIMP). The crucial role of MMPs in inflammation indicates that perturbation of the MMP/TIMP balance decisively plays an important role in pathogenesis during viral encephalitis. The study was performed to evaluate the production of MMP-2, MMP-7, MMP-9, TIMP-1 and TIMP-3 in the sera of JEV i.e. GP 78668A (GP-78) infected BALB/c mouse model of encephalitis and gel zymography was performed for MMP-2 and MMP-9 activities. The estimation of MMP-2, MMP-7, MMP-9, TIMP-1, and TIMP-3 in JEV-infected mouse serum was analyzed by ELISA along with brain histopathology and immunohistochemistry. Evan's blue dye exclusion test was done to check the BBB integrity. Gelatin gel zymography was performed for MMP-2 and MMP-9 activities. We noticed an upregulated expression of MMPs in the sera of virus infected groups compared to controls at different days post inoculation (dpi). Post hoc analysis between days also reveals significant increase (p < 0.05) in virus infected groups with disease progression. In contrast, TIMPs expressions were significantly (p < 0.005) down regulated in the virus infected group. We provide preliminary evidence for a pattern of TIMP response in JEV infection distinct from that seen in acute inflammatory CNS conditions in JE, shown in our previous findings. Increased MMP-2 and MMP-9 activities were also found in a virus infected group with disease progression and are consistent with our previous finding of MMP-2 and MMP-9 activities in the CNS which clearly demonstrate worsen role of these immune mediators in JEV infection. This study will help to identify new targets for the therapeutic treatment of inflammatory mediated CNS disorders in JEV infection and may lead to the development of potential pharmacological targets in future.
Collapse
Affiliation(s)
- Vibha Shukla
- Department of Microbiology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Raebareli Road, Lucknow, 226 014 India
| | - Akhalesh Kumar Shakya
- Department of Microbiology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Raebareli Road, Lucknow, 226 014 India
| | - Mukti Shukla
- Department of Microbiology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Raebareli Road, Lucknow, 226 014 India
| | - Niraj Kumari
- Department of Pathology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Narendra Krishnani
- Department of Pathology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - T N Dhole
- Department of Microbiology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Raebareli Road, Lucknow, 226 014 India
| | - Usha Kant Misra
- Department of Neurology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| |
Collapse
|
7
|
Jakobsson J, Bjerke M, Sahebi S, Isgren A, Ekman CJ, Sellgren C, Olsson B, Zetterberg H, Blennow K, Pålsson E, Landén M. Monocyte and microglial activation in patients with mood-stabilized bipolar disorder. J Psychiatry Neurosci 2015; 40:250-8. [PMID: 25768030 PMCID: PMC4478058 DOI: 10.1503/jpn.140183] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Bipolar disorder is associated with medical comorbidities that have been linked to systemic inflammatory mechanisms. There is, however, limited evidence supporting a role of neuroinflammation in bipolar disorder. Here we tested whether microglial activation and associated tissue remodelling processes are related to bipolar disorder by analyzing markers in cerebrospinal fluid (CSF) and serum from patients and healthy controls. METHODS Serum was sampled from euthymic patients with bipolar disorder and healthy controls, and CSF was sampled from a large subset of these individuals. The levels of monocyte chemoattractant protein-1 (MCP-1), YKL-40, soluble cluster of differentiation 14 (sCD14), tissue inhibitor of metalloproteinases-1 (TIMP-1) and tissue inhibitor of metalloproteinases-2 (TIMP-2), were measured, and we adjusted comparisons between patients and controls for confounding factors. RESULTS We obtained serum samples from 221 patients and 112 controls and CSF samples from 125 patients and 87 controls. We found increased CSF levels of MCP-1 and YKL-40 and increased serum levels of sCD14 and YKL-40 in patients compared with controls; these differences remained after controlling for confounding factors, such as age, sex, smoking, blood-CSF barrier function, acute-phase proteins and body mass index. The CSF levels of MCP-1 and YKL-40 correlated with the serum levels, whereas the differences between patients and controls in CSF levels of MCP-1 and YKL-40 were independent of serum levels. LIMITATIONS The cross-sectional study design precludes conclusions about causality. CONCLUSION Our results suggest that both neuroinflammatory and systemic inflammatory processes are involved in the pathophysiology of bipolar disorder. Importantly, markers of immunological processes in the brain were independent of peripheral immunological activity.
Collapse
Affiliation(s)
- Joel Jakobsson
- Correspondence to: Joel Jakobsson, Sahlgrenska University hospital, Blå Stråket 15, floor 3, SE-413 45 Gothenburg, Sweden;
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Predictive value of cerebrospinal fluid matrix metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 concentrations in childhood bacterial meningitis. Pediatr Infect Dis J 2014; 33:675-9. [PMID: 24445831 DOI: 10.1097/inf.0000000000000249] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Increased concentrations of matrix metalloproteinases (MMP) in cerebrospinal fluid are part of the host response in bacterial meningitis (BM). We investigated whether the concentrations of MMP-9 and the tissue inhibitor of metalloproteinase (TIMP)-1 predict the outcome in childhood BM. METHODS Cerebrospinal fluid MMP-9 and tissue inhibitor of metalloproteinase-1 (TIMP-1) were quantified by an enzyme-linked immunosorbent assay from 264 and 335 patients, respectively; 43 children without BM served as controls. The results were compared with previously known independent predictors of death and sequelae. RESULTS Higher MMP-9 and TIMP-1 values distinguished the controls from the BM patients (P < 0.0001). A MMP-9 concentration >940 ng/mL proved an independent predictor of death [adjusted odds ratio: 4.03; 95% confidence interval (CI): 2.09-7.77; P < 0.0001]. If the patient additionally presented with a Glasgow Coma Score below 9, the odds increased to 13.21 (95% CI: 5.44-32.08; P < 0.0001). TIMP-1 levels correlated with the severity of sequelae (ρ: 0.30; P < 0.0001), but not with death. Its concentration above 390 ng/mL increased the likelihood of sequelae 3.43-fold (95% CI: 1·73-6·79; P = 0.0004), and up to 31.18-fold (95% CI: 4.05-239.8; P = 0.0009) if the patient also presented a Glasgow Coma Score < 12. CONCLUSIONS Elevated cerebrospinal fluid MMP-9 and TIMP-1 values predict 2 important outcomes in childhood BM. Combined with a clinical evaluation, quantification of these indices augments the chances to identify the patients in greatest need of better treatment modalities.
Collapse
|
9
|
Shukla V, Shakya AK, Dhole TN, Misra UK. Matrix metalloproteinases and their tissue inhibitors in serum and cerebrospinal fluid of children with Japanese encephalitis virus infection. Arch Virol 2013; 158:2561-75. [PMID: 23836397 DOI: 10.1007/s00705-013-1783-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 05/31/2013] [Indexed: 12/13/2022]
Abstract
The expression of matrix metalloproteinases (MMPs) is tightly regulated at the level of gene transcription, conversion of pro-enzyme to active MMPs, and the action of tissue inhibitors of metalloproteinases (TIMPs). The present study aimed to investigate the expression of some specific MMPs (2, 7, 9) and TIMPs (1, 2, 3) in serum and cerebrospinal fluid (CSF) of children with Japanese encephalitis virus (JEV) infection. Serum and CSF levels of MMPs and TIMPs in children with JEV infection and disease control (DC) were compared. The CSF and serum concentrations of MMP-2, TIMP-2 and TIMP-3 were significantly higher in children with JEV infection compared to DC. The concentration of MMP-9 in serum was significantly higher in children with JEV infection than in the DC and healthy control (HC), while in the CSF, no significant difference was observed compared to DC. The MMP-7 serum concentration was significantly higher in children with JEV infection compared to HC, but no significant difference was observed compared to DC. MMP-7 concentration was undetectable in CSF in both groups. The TIMP-1 CSF concentration was significantly higher, while the serum concentration was significantly lower, in children with JEV infection compared to DC. No correlation was found between the levels of each biomolecule measured in CSF and serum, suggesting that the levels in CSF represent local production within the CNS rather than production in the periphery. We also observed leucocytosis, mononuclear pleocytosis and elevated protein concentrations in the CSF of children with JEV infection compared to DC.
Collapse
Affiliation(s)
- Vibha Shukla
- Department of Microbiology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Raebareli Road, Lucknow, 226 014, India
| | | | | | | |
Collapse
|