1
|
Parkins MD, Somayaji R, Waters VJ. Epidemiology, Biology, and Impact of Clonal Pseudomonas aeruginosa Infections in Cystic Fibrosis. Clin Microbiol Rev 2018; 31:e00019-18. [PMID: 30158299 PMCID: PMC6148191 DOI: 10.1128/cmr.00019-18] [Citation(s) in RCA: 158] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Chronic lower airway infection with Pseudomonas aeruginosa is a major contributor to morbidity and mortality in individuals suffering from the genetic disease cystic fibrosis (CF). Whereas it was long presumed that each patient independently acquired unique strains of P. aeruginosa present in their living environment, multiple studies have since demonstrated that shared strains of P. aeruginosa exist among individuals with CF. Many of these shared strains, often referred to as clonal or epidemic strains, can be transmitted from one CF individual to another, potentially reaching epidemic status. Numerous epidemic P. aeruginosa strains have been described from different parts of the world and are often associated with an antibiotic-resistant phenotype. Importantly, infection with these strains often portends a worse prognosis than for infection with nonclonal strains, including an increased pulmonary exacerbation rate, exaggerated lung function decline, and progression to end-stage lung disease. This review describes the global epidemiology of clonal P. aeruginosa strains in CF and summarizes the current literature regarding the underlying biology and clinical impact of globally important CF clones. Mechanisms associated with patient-to-patient transmission are discussed, and best-evidence practices to prevent infections are highlighted. Preventing new infections with epidemic P. aeruginosa strains is of paramount importance in mitigating CF disease progression.
Collapse
Affiliation(s)
- Michael D Parkins
- Department of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Ranjani Somayaji
- Department of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Valerie J Waters
- Translational Medicine, Research Institute, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
- Department of Pediatrics, Division of Infectious Diseases, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
2
|
Tai AS, Sherrard LJ, Kidd TJ, Ramsay KA, Buckley C, Syrmis M, Grimwood K, Bell SC, Whiley DM. Antibiotic perturbation of mixed-strain Pseudomonas aeruginosa infection in patients with cystic fibrosis. BMC Pulm Med 2017; 17:138. [PMID: 29096618 PMCID: PMC5667482 DOI: 10.1186/s12890-017-0482-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 10/25/2017] [Indexed: 12/20/2022] Open
Abstract
Background Pulmonary exacerbations in cystic fibrosis (CF) remain poorly understood and treatment is usually targeted at Pseudomonas aeruginosa. Within Australia a predominant shared P. aeruginosa strain (AUST-02) is associated with greater treatment needs. This single centre study assessed temporal shared strain population dynamics during and after antibiotic treatment of exacerbations. Methods Sputum was collected from 12 adult patients with a history of chronic AUST-02 infection at four time-points during and after treatment of an exacerbation. Forty-eight P. aeruginosa isolates within each sample underwent AUST-02 allele-specific PCR and SNP-based strain genotyping. Results Various commonly shared Australian strains (AUST-01, 0.1%; AUST-02, 54.3%; AUST-06, 36.6%; AUST-07, 4.6%; AUST-11, 4.3%) and two unique strains (0.1%) were identified from 45 sputum samples (2160 isolates). Based on within-patient relative abundance of strains, a “single-strain infection” (n = 7) or “mixed-strain infection” (n = 5) was assigned to each patient. A significant temporal variation in the P. aeruginosa population composition was found for those with mixed-strain infection (P < 0.001). Patients with mixed-strain infections had more long-term treatment requirements than those with single-strain infection. Moreover, despite both groups having similar lung function at study entry, patients with single-strain infection had greater improvement in FEV1% predicted following their exacerbation treatment (P = 0.02). Conclusion Pulmonary exacerbations may reveal multiple, unrelated P. aeruginosa strains whose relative abundance with one another may change rapidly, in a sustained and unpredictable manner. Electronic supplementary material The online version of this article (10.1186/s12890-017-0482-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anna S Tai
- School of Medicine, The University of Queensland, Brisbane, QLD, Australia. .,Adult Cystic Fibrosis Centre, Department of Thoracic Medicine, The Prince Charles Hospital, Brisbane, QLD, Australia. .,Western Australia Adult Cystic Fibrosis Centre, Department of Respiratory Medicine, Sir Charles Gairdner Hospital, Hospital Avenue, Perth, WA, 6009, Australia.
| | - Laura J Sherrard
- Lung Bacteria Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Timothy J Kidd
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia.,Centre for Experimental Medicine, Queen's University Belfast, Belfast, UK.,Child Health Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - Kay A Ramsay
- School of Medicine, The University of Queensland, Brisbane, QLD, Australia.,Lung Bacteria Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Cameron Buckley
- UQ Centre for Clinical Research, The University of Queensland, Brisbane, QLD, Australia
| | - Melanie Syrmis
- UQ Centre for Clinical Research, The University of Queensland, Brisbane, QLD, Australia.,Pathology Queensland, Microbiology Department, Brisbane, QLD, Australia
| | - Keith Grimwood
- Child Health Research Centre, The University of Queensland, Brisbane, QLD, Australia.,Menzies Health Institute Queensland, Griffith University and Gold Coast Health, Gold Coast, QLD, Australia
| | - Scott C Bell
- Adult Cystic Fibrosis Centre, Department of Thoracic Medicine, The Prince Charles Hospital, Brisbane, QLD, Australia.,Lung Bacteria Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - David M Whiley
- UQ Centre for Clinical Research, The University of Queensland, Brisbane, QLD, Australia.,Pathology Queensland, Microbiology Department, Brisbane, QLD, Australia
| |
Collapse
|
3
|
Tang Y, Ali Z, Zou J, Jin G, Zhu J, Yang J, Dai J. Detection methods for Pseudomonas aeruginosa: history and future perspective. RSC Adv 2017. [DOI: 10.1039/c7ra09064a] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The current review summarized and analyzed the development of detection techniques forPseudomonas aeruginosaover the past 50 years.
Collapse
Affiliation(s)
- Yongjun Tang
- School of Applied Chemistry and Biotechnology
- Shenzhen Polytechnic
- Shenzhen 518055
- China
| | - Zeeshan Ali
- School of Applied Chemistry and Biotechnology
- Shenzhen Polytechnic
- Shenzhen 518055
- China
| | - Jun Zou
- School of Chemistry and Chemical Engineering
- Hunan Institute of Engineering
- Xiangtan 411104
- China
| | - Gang Jin
- School of Applied Chemistry and Biotechnology
- Shenzhen Polytechnic
- Shenzhen 518055
- China
| | - Junchen Zhu
- School of Applied Chemistry and Biotechnology
- Shenzhen Polytechnic
- Shenzhen 518055
- China
| | - Jian Yang
- School of Applied Chemistry and Biotechnology
- Shenzhen Polytechnic
- Shenzhen 518055
- China
| | - Jianguo Dai
- School of Applied Chemistry and Biotechnology
- Shenzhen Polytechnic
- Shenzhen 518055
- China
| |
Collapse
|
4
|
Molecular surveillance for carbapenemase genes in carbapenem-resistant Pseudomonas aeruginosa in Australian patients with cystic fibrosis. Pathology 2015; 47:156-60. [PMID: 25551306 DOI: 10.1097/pat.0000000000000216] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The aim of this study was to assess the prevalence of acquired carbapenemase genes amongst carbapenem non-susceptible Pseudomonas aeruginosa isolates in Australian patients with cystic fibrosis (CF). Cross-sectional molecular surveillance for acquired carbapenemase genes was performed on CF P. aeruginosa isolates from two isolate banks comprising: (i) 662 carbapenem resistant P. aeruginosa isolates from 227 patients attending 10 geographically diverse Australian CF centres (2007-2009), and (ii) 519 P. aeruginosa isolates from a cohort of 173 adult patients attending one Queensland CF clinic in 2011. All 1189 P. aeruginosa isolates were tested by polymerase chain reaction (PCR) protocols targeting ten common carbapenemase genes, as well the Class 1 integron intI1 gene and the aadB aminoglycoside resistance gene. No carbapenemase genes were identified among all isolates tested. The intI1 and aadB genes were frequently detected and were significantly associated with the AUST-02 strain (OR 24.6, 95% CI 9.3-65.6; p < 0.0001) predominantly from Queensland patients. Despite the high prevalence of carbapenem resistance in P. aeruginosa in Australian patients with CF, no acquired carbapenemase genes were detected in the study, suggesting chromosomal mutations remain the key resistance mechanism in CF isolates. Systematic surveillance for carbapenemase-producing P. aeruginosa in CF by molecular surveillance is ongoing.
Collapse
|
5
|
Rashno Taee S, Khansarinejad B, Abtahi H, Najafimosleh M, Ghaznavi-Rad E. Detection of algD, oprL and exoA Genes by New Specific Primers as an Efficient, Rapid and Accurate Procedure for Direct Diagnosis of Pseudomonas aeruginosa Strains in Clinical Samples. Jundishapur J Microbiol 2014; 7:e13583. [PMID: 25632330 PMCID: PMC4295320 DOI: 10.5812/jjm.13583] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2013] [Revised: 09/22/2013] [Accepted: 01/22/2014] [Indexed: 11/25/2022] Open
Abstract
Background: Pseudomonas aeruginosa is an opportunistic pathogen that infects patients with cystic fibrosis, burning wounds, ophthalmic traumas and immunodeficiency. Objectives: The aim of the present study was to compare the efficiency of newly designed primer sets with some previously published primers for PCR detection of exoA, oprL and algD genes from P. aeruginosa. Materials and Methods: A total of 150 clinical specimens were inoculated into the routine and selective culture media for P. aeruginosa isolation. Specific primers were designed by bioinformatics analysis for detection of the virulence genes determinants, exoA, oprL and algD. The sequences of these three genes were obtained from NCBI and multiple alignments were performed to find the conserved sequences of each gene to design the primers. Multiple alignment and primer design steps were carried out by the AlleleID software, version 7.0. Results: Microbiological culture methods resulted 70 P. aeruginosa strains isolated from 70 of the 150 clinical specimens. The results of the PCR assay using the newly designed exoA, oprL and algD primer sets were positive in 68, 70 and 69 clinical samples which represent 97.2%, 100% and 98% sensitivity for each primer set, respectively. The PCR results using previously published exoA, oprL and algD primer sets were positive only in 57, 49 and 28 specimens that correspond to 81.5%, 70% and 40% sensitivity, respectively. Conclusions: The results of the present study showed that in comparison with previously published primer sets, P. aeruginosa infection can be diagnosed with higher sensitivity and specificity by the conventional PCR assay using the newly designed primers. It was also shown that the results of the PCR assay on clinical samples of severe infections became positive much earlier than the results of conventional culture method.
Collapse
Affiliation(s)
- Sedighe Rashno Taee
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Arak University of Medical Sciences, Arak, IR Iran
| | - Behzad Khansarinejad
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Arak University of Medical Sciences, Arak, IR Iran
| | - Hamid Abtahi
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Arak University of Medical Sciences, Arak, IR Iran
| | - Mohammad Najafimosleh
- Department of Microbiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, IR Iran
| | - Ehsanollah Ghaznavi-Rad
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Arak University of Medical Sciences, Arak, IR Iran
- Molecular Research Center, Faculty of Medicine, Arak University of Medical Sciences, Arak, IR Iran
- Corresponding author: Ehsanollah Ghaznavi-Rad, Department of Medical Microbiology, Faculty of Medicine, Arak University of Medical Sciences, Arak, IR Iran. Tel: +98-8634173526, Fax: +98-8634173526, E-mail:
| |
Collapse
|
6
|
Syrmis MW, Kidd TJ, Moser RJ, Ramsay KA, Gibson KM, Anuj S, Bell SC, Wainwright CE, Grimwood K, Nissen M, Sloots TP, Whiley DM. A comparison of two informative SNP-based strategies for typing Pseudomonas aeruginosa isolates from patients with cystic fibrosis. BMC Infect Dis 2014; 14:307. [PMID: 24902856 PMCID: PMC4053291 DOI: 10.1186/1471-2334-14-307] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 05/28/2014] [Indexed: 12/26/2022] Open
Abstract
Background Molecular typing is integral for identifying Pseudomonas aeruginosa strains that may be shared between patients with cystic fibrosis (CF). We conducted a side-by-side comparison of two P. aeruginosa genotyping methods utilising informative-single nucleotide polymorphism (SNP) methods; one targeting 10 P. aeruginosa SNPs and using real-time polymerase chain reaction technology (HRM10SNP) and the other targeting 20 SNPs and based on the Sequenom MassARRAY platform (iPLEX20SNP). Methods An in-silico analysis of the 20 SNPs used for the iPLEX20SNP method was initially conducted using sequence type (ST) data on the P. aeruginosa PubMLST website. A total of 506 clinical isolates collected from patients attending 11 CF centres throughout Australia were then tested by both the HRM10SNP and iPLEX20SNP assays. Type-ability and discriminatory power of the methods, as well as their ability to identify commonly shared P. aeruginosa strains, were compared. Results The in-silico analyses showed that the 1401 STs available on the PubMLST website could be divided into 927 different 20-SNP profiles (D-value = 0.999), and that most STs of national or international importance in CF could be distinguished either individually or as belonging to closely related single- or double-locus variant groups. When applied to the 506 clinical isolates, the iPLEX20SNP provided better discrimination over the HRM10SNP method with 147 different 20-SNP and 92 different 10-SNP profiles observed, respectively. For detecting the three most commonly shared Australian P. aeruginosa strains AUST-01, AUST-02 and AUST-06, the two methods were in agreement for 80/81 (98.8%), 48/49 (97.8%) and 11/12 (91.7%) isolates, respectively. Conclusions The iPLEX20SNP is a superior new method for broader SNP-based MLST-style investigations of P. aeruginosa. However, because of convenience and availability, the HRM10SNP method remains better suited for clinical microbiology laboratories that only utilise real-time PCR technology and where the main interest is detection of the most highly-prevalent P. aeruginosa CF strains within Australian clinics.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - David M Whiley
- Queensland Children's Medical Research Institute, The University of Queensland, Brisbane, Queensland 4029, Australia.
| |
Collapse
|
7
|
SNaPaer: a practical single nucleotide polymorphism multiplex assay for genotyping of Pseudomonas aeruginosa. PLoS One 2013; 8:e66083. [PMID: 23776608 PMCID: PMC3680407 DOI: 10.1371/journal.pone.0066083] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 05/07/2013] [Indexed: 12/21/2022] Open
Abstract
Multilocus sequence typing (MLST) represents the gold standard genotyping method in studies concerning microbial population structure, being particularly helpful in the detection of clonal relatedness. However, its applicability on large-scale genotyping is limited due to the high cost and time spent on the task. The selection of the most informative nucleotide positions simplifies genomic characterization of bacteria. A simple and informative multiplex, SNaPaer assay, was developed and genotyping of Pseudomonas aeruginosa was obtained after a single reaction of multiplex PCR amplification and mini-sequencing. This cost-effective technique allowed the analysis of a Portuguese set of isolates (n = 111) collected from three distinct hospitals and the genotyping data could be obtained in less than six hours. Point mutations were shown to be the most frequent event responsible for diversification of the Portuguese population sample. The Portuguese isolates corroborated the epidemic hypothesis for P. aeruginosa population. SNaPaer genotyping assay provided a discriminatory power of 0.9993 for P. aeruginosa, by testing in silico several hundreds of MLST profiles available online. The newly proposed assay targets less than 0.01% of the total MLST length and guarantees reproducibility, unambiguous analysis and the possibility of comparing and transferring data between different laboratories. The plasticity of the method still supports the addition of extra molecular markers targeting specific purposes/populations. SNaPaer can be of great value to clinical laboratories by facilitating routine genotyping of P. aeruginosa.
Collapse
|
8
|
Syrmis MW, Moser RJ, Kidd TJ, Hunt P, Ramsay KA, Bell SC, Wainwright CE, Grimwood K, Nissen MD, Sloots TP, Whiley DM. High-throughput single-nucleotide polymorphism-based typing of shared Pseudomonas aeruginosa strains in cystic fibrosis patients using the Sequenom iPLEX platform. J Med Microbiol 2013; 62:734-740. [PMID: 23412772 DOI: 10.1099/jmm.0.055905-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Shared strains of Pseudomonas aeruginosa are now well recognized in people with cystic fibrosis (CF), and suitable P. aeruginosa laboratory typing tools are pivotal to understanding their clinical significance and guiding infection control policies in CF clinics. We therefore compared a single-nucleotide polymorphism (SNP)-based typing method using Sequenom iPLEX matrix-assisted laser desorption ionization with time-of-flight mass spectrometry (MALDI-TOF MS) with typing methods used routinely by our laboratory. We analysed 617 P. aeruginosa isolates that included 561 isolates from CF patients collected between 2001 and 2009 in two Brisbane CF clinics and typed previously by enterobacterial repetitive intergenic consensus (ERIC)-PCR, as well as 56 isolates from non-CF patients analysed previously by multilocus sequence typing (MLST). The isolates were tested using a P. aeruginosa Sequenom iPLEX MALDI-TOF (PA iPLEX) method comprising two multiplex reactions, a 13-plex and an 8-plex, to characterize 20 SNPs from the P. aeruginosa housekeeping genes acsA, aroE, guaA, mutL, nuoD, ppsA and trpE. These 20 SNPs were employed previously in a real-time format involving 20 separate assays in our laboratory. The SNP analysis revealed 121 different SNP profiles for the 561 CF isolates. Overall, there was at least 96% agreement between the ERIC-PCR and SNP analyses for all predominant shared strains among patients attending our CF clinics: AUST-01, AUST-02 and AUST-06. For the less frequently encountered shared strain AUST-07, 6/25 (24%) ERIC-PCR profiles were misidentified initially as AUST-02 or as unique, illustrating the difficulty of gel-based analyses. SNP results for the 56 non-CF isolates were consistent with previous MLST data. Thus, the PA iPLEX format provides an attractive high-throughput alternative to ERIC-PCR for large-scale investigations of shared P. aeruginosa strains.
Collapse
Affiliation(s)
- Melanie W Syrmis
- Queensland Children's Medical Research Institute, Royal Children's Hospital, The University of Queensland, Brisbane, Queensland, Australia.,Queensland Paediatric Infectious Diseases Laboratory, Royal Children's Hospital, Brisbane, Queensland, Australia
| | - Ralf J Moser
- Sequenom Inc., Sequenom Asia Pacific, Herston, Queensland, Australia
| | - Timothy J Kidd
- Queensland Children's Medical Research Institute, Royal Children's Hospital, The University of Queensland, Brisbane, Queensland, Australia.,Queensland Paediatric Infectious Diseases Laboratory, Royal Children's Hospital, Brisbane, Queensland, Australia
| | - Priscilla Hunt
- Sequenom Inc., Sequenom Asia Pacific, Herston, Queensland, Australia
| | - Kay A Ramsay
- Queensland Children's Medical Research Institute, Royal Children's Hospital, The University of Queensland, Brisbane, Queensland, Australia.,Queensland Paediatric Infectious Diseases Laboratory, Royal Children's Hospital, Brisbane, Queensland, Australia
| | - Scott C Bell
- Department of Thoracic Medicine, The Prince Charles Hospital, Brisbane, Queensland, Australia.,Queensland Children's Medical Research Institute, Royal Children's Hospital, The University of Queensland, Brisbane, Queensland, Australia
| | - Claire E Wainwright
- Queensland Children's Respiratory Centre, Royal Children's Hospital, Brisbane, Australia.,Queensland Children's Medical Research Institute, Royal Children's Hospital, The University of Queensland, Brisbane, Queensland, Australia
| | - Keith Grimwood
- Queensland Children's Medical Research Institute, Royal Children's Hospital, The University of Queensland, Brisbane, Queensland, Australia.,Queensland Paediatric Infectious Diseases Laboratory, Royal Children's Hospital, Brisbane, Queensland, Australia
| | - Michael D Nissen
- Microbiology Division, Pathology Queensland Central Laboratory, Herston, Queensland, Australia.,Queensland Children's Medical Research Institute, Royal Children's Hospital, The University of Queensland, Brisbane, Queensland, Australia.,Queensland Paediatric Infectious Diseases Laboratory, Royal Children's Hospital, Brisbane, Queensland, Australia
| | - Theo P Sloots
- Microbiology Division, Pathology Queensland Central Laboratory, Herston, Queensland, Australia.,Queensland Children's Medical Research Institute, Royal Children's Hospital, The University of Queensland, Brisbane, Queensland, Australia.,Queensland Paediatric Infectious Diseases Laboratory, Royal Children's Hospital, Brisbane, Queensland, Australia
| | - David M Whiley
- Queensland Children's Medical Research Institute, Royal Children's Hospital, The University of Queensland, Brisbane, Queensland, Australia.,Queensland Paediatric Infectious Diseases Laboratory, Royal Children's Hospital, Brisbane, Queensland, Australia
| |
Collapse
|
9
|
Ruskova L, Raclavsky V. The potential of high resolution melting analysis (hrma) to streamline, facilitate and enrich routine diagnostics in medical microbiology. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2012; 155:239-52. [PMID: 22286809 DOI: 10.5507/bp.2011.045] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Routine medical microbiology diagnostics relies on conventional cultivation followed by phenotypic techniques for identification of pathogenic bacteria and fungi. This is not only due to tradition and economy but also because it provides pure culture needed for antibiotic susceptibility testing. This review focuses on the potential of High Resolution Melting Analysis (HRMA) of double-stranded DNA for future routine medical microbiology. METHODS AND RESULTS Search of MEDLINE database for publications showing the advantages of HRMA in routine medical microbiology for identification, strain typing and further characterization of pathogenic bacteria and fungi in particular. The results show increasing numbers of newly-developed and more tailor-made assays in this field. For microbiologists unfamiliar with technical aspects of HRMA, we also provide insight into the technique from the perspective of microbial characterization. CONCLUSIONS We can anticipate that the routine availability of HRMA in medical microbiology laboratories will provide a strong stimulus to this field. This is already envisioned by the growing number of medical microbiology applications published recently. The speed, power, convenience and cost effectiveness of this technology virtually predestine that it will advance genetic characterization of microbes and streamline, facilitate and enrich diagnostics in routine medical microbiology without interfering with the proven advantages of conventional cultivation.
Collapse
Affiliation(s)
- Lenka Ruskova
- Department of Microbiology, Palacky University Olomouc, Czech Republic
| | | |
Collapse
|
10
|
Deschaght P, Van daele S, De Baets F, Vaneechoutte M. PCR and the detection of Pseudomonas aeruginosa in respiratory samples of CF patients. A literature review. J Cyst Fibros 2011; 10:293-7. [DOI: 10.1016/j.jcf.2011.05.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 05/23/2011] [Accepted: 05/25/2011] [Indexed: 10/18/2022]
|