1
|
Chen PK, Liu CY, Kuo HY, Lee YT, Liu YH, Zhang YZ, Kao CY. Emergence of extensively-drug-resistant hypervirulent Acinetobacter baumannii isolated from patients with bacteraemia: bacterial phenotype and virulence analysis. Int J Antimicrob Agents 2024; 64:107358. [PMID: 39414173 DOI: 10.1016/j.ijantimicag.2024.107358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 08/15/2024] [Accepted: 10/03/2024] [Indexed: 10/18/2024]
Abstract
OBJECTIVES Individuals infected with extensively-drug-resistant (XDR) Acinetobacter baumannii are difficult to cure and have a high mortality rate. This study compared the genomic and phenotypic differences between XDR and non-multi-drug-resistant (MDR) A. baumannii, and further characterized hypervirulent XDR A. baumannii. METHODS In total, 1403 acinetobacter isolates were collected from patients with bacteraemia between 1997 and 2015. Antimicrobial susceptibility tests were performed to categorize isolates into non-MDR, MDR and XDR groups. The presence of selected virulence-associated genes was determined by polymerase chain reaction. Bacterial phenotypes, including iron acquisition, biofilm formation, capsule production, and virulence to larvae and mice, were determined. RESULTS Multi-locus sequence typing revealed a high prevalence of sequence type (ST) 2 (81.6%) and ST129 (18.4%) among 49 XDR isolates, and the STs of 18 non-MDR isolates were more diverse. Virulence-associated phenotypic assays showed that XDR isolates had higher iron acquisition ability, greater capsule production, and virulence to Galleria mellonella larvae. However, their ability to form biofilm was lower compared with that of non-MDR isolates. XDR isolates were more likely to have virulence genes (tonB, hemO, abaI and ptk), while non-MDR isolates were more likely to have pld and ompA genes. Twenty-one XDR isolates that had a <20% larvae survival rate after 7 days post-infection were defined as hypervirulent XDR isolates. Among them, isolates 1677 (ST129) and 929-1 (ST2) caused the death of all infected mice within 2 days. CONCLUSION Some subpopulations of highly-drug-resistant ST2 isolates exhibit high virulence. As such, it is of utmost importance to continue monitoring the spread of hypervirulent XDR A. baumannii isolates.
Collapse
Affiliation(s)
- Pek Kee Chen
- Institute of Microbiology and Immunology, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chia-Ying Liu
- Department of Internal Medicine, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Han-Yueh Kuo
- National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu, Taiwan; National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yi-Tzu Lee
- Department of Emergency Medicine, Taipei Veteran General Hospital, Taipei, Taiwan; School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yu-Han Liu
- Department of Emergency Medicine, Taipei Veteran General Hospital, Taipei, Taiwan
| | - Yen-Zhen Zhang
- Institute of Microbiology and Immunology, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Cheng-Yen Kao
- Institute of Microbiology and Immunology, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan; Health Innovation Centre, National Yang Ming Chiao Tung University, Taipei, Taiwan; Microbiota Research Centre, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
2
|
Mauri C, Consonni A, Briozzo E, Giubbi C, Meroni E, Tonolo S, Luzzaro F. The Molecular Mouse System: A New Useful Tool for Guiding Antimicrobial Therapy in Critically Ill Septic Patients. Antibiotics (Basel) 2024; 13:517. [PMID: 38927183 PMCID: PMC11200723 DOI: 10.3390/antibiotics13060517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
Bloodstream infections (BSI) caused by multidrug-resistant (MDR) bacteria, pose a major threat for patients, especially for those who are immunosuppressed. Rapid pathogen detection and characterization from positive blood cultures are crucial in the management of patients with BSI to enable an adequate and timely antimicrobial therapy. This study aimed to investigate the potential role of the Molecular Mouse system, a new CE IVD molecular test designed to rapidly detect the causative agents of bacteremia and their resistance determinants, in the management of the therapy in critically ill patients. Agreement between the results of the Molecular Mouse and the conventional routine method was also considered. Overall, 100 positive blood cultures were collected from septic critically ill patients from May 2023 to January 2024 and analyzed with Molecular Mouse and routine protocols. The new instrument consistently agreed with the routine protocols in the case of monomicrobial blood cultures, while some discrepancies were obtained in the polymicrobial samples. Antimicrobial resistance genes were detected in 35 samples, with vanA and CTX-M-1/9 groups being the most frequently detected targets. Therapy was adjusted in 42 critically ill patients confirming the importance of new rapid molecular tests in the management of positive blood cultures, to adjust empirical therapy and use new antibiotics accurately.
Collapse
|
3
|
Muteeb G. Network meta-analysis of antibiotic resistance patterns in gram-negative bacterial infections: a comparative study of carbapenems, fluoroquinolones, and aminoglycosides. Front Microbiol 2023; 14:1304011. [PMID: 38098660 PMCID: PMC10720636 DOI: 10.3389/fmicb.2023.1304011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 11/02/2023] [Indexed: 12/17/2023] Open
Abstract
Introduction Antimicrobial resistance poses a grave global threat, particularly with the emergence of multidrug-resistant gram-negative bacterial infections, which severely limit treatment options. The increasing global threat of antimicrobial resistance demands rigorous investigation, particularly concerning multidrug-resistant gram-negative bacterial infections that present limited therapeutic options. This study employed a network meta-analysis, a powerful tool for comparative effectiveness assessment of diverse antibiotics. The primary aim of this study was to comprehensively evaluate and compare resistance patterns among widely used antibiotic classes, namely carbapenems, fluoroquinolones, and aminoglycosides, for combating gram-negative pathogens. Methods We searched PubMed, Web of Sciences, Scopus, Scholarly, Medline, Embase, and Cochrane databases up to August 27, 2023. Studies showing antibiotic resistance in clinical isolates of Enterobacteriaceae, Pseudomonas aeruginosa, and Acinetobacter baumannii exposed to carbapenems, fluoroquinolones, and aminoglycosides were included. This study determined treatment-specific resistance percentages and ranked these treatments based on resistance using a random-effects network meta-analysis technique. To investigate the impact of the study and pathogen features, subgroup and meta-regression analyses were performed. Risk ratios and 95% confidence intervals (CIs) were calculated using a network meta-analysis (NMA) incorporating both direct and indirect evidence. Clinical improvement, cure, microbiological eradication, and death from any cause were the primary outcomes. Nephrotoxicity was a secondary result. Results The analysis included 202 publications and 365,782 gram-negative isolates. The NMA included data from 20 studies and 4,835 patients. Carbapenems had the lowest resistance rates throughout the pathogen spectrum, with resistance percentages of 17.1, 22.4, and 33.5% for Enterobacteriaceae, P. aeruginosa, and A. baumannii, respectively. For the same infections, aminoglycosides showed resistance rates of 28.2, 39.1, and 50.2%, respectively. Fluoroquinolones had the highest resistance rates at 43.1, 57.3, and 65.7%, respectively. Unexpectedly, resistance to all three antibiotic classes has increased over time, with multidrug resistance being the most prevalent. Conclusion This extensive network meta-analysis provides an overview of the patterns of resistance throughout the world and how they are changing. The most effective choice is still carbapenems, but the increasing resistance highlights the critical need for multimodal therapies to protect antibiotic effectiveness against these powerful gram-negative infections.
Collapse
Affiliation(s)
- Ghazala Muteeb
- Department of Nursing, College of Applied Medical Science, King Faisal University, Al-Ahsa, Saudi Arabia
| |
Collapse
|
4
|
Gupta N, Angadi K, Jadhav S. Molecular Characterization of Carbapenem-Resistant Acinetobacter baumannii with Special Reference to Carbapenemases: A Systematic Review. Infect Drug Resist 2022; 15:7631-7650. [PMID: 36579124 PMCID: PMC9791997 DOI: 10.2147/idr.s386641] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022] Open
Abstract
Carbapenemases are β-lactamase enzymes that hydrolyze a variety of β-lactams including carbapenem and belong to different Ambler classes (A, B, D). These enzymes can be encoded by plasmid or chromosomal-mediated genes. The major issues associated with carbapenemases-producing organisms are compromising the activity and increasing the resistance to carbapenems which are the last resort antibiotics used in treating serious infections. The global increase of pathogen, carbapenem-resistant A. baumannii has significantly threatened public health. Thus, there is a pressing need for a better understanding of this pathogen, to know the various carbapenem resistance encoding genes and dissemination of resistance genes from A. baumannii which help in developing strategies to overcome this problem. The horizontal transfer of resistant determinants through mobile genetic elements increases the incidence of multidrug, extensive drug, and Pan-drug resistant A. baumannii. Therefore, the current review aims to know the various mechanisms of carbapenem resistance, categorize and discuss carbapenemases encoding genes and various mobile genetic elements, and the prevalence of carbapenemase genes in recent years in A. baumannii from various geographical regions.
Collapse
Affiliation(s)
- Neetu Gupta
- Department of Microbiology, Symbiosis Medical College for Women (SMCW) & Symbiosis University Hospital and Research Centre (SUHRC), Symbiosis International (Deemed University), Lavale, Pune, India
| | - Kalpana Angadi
- Department of Microbiology, Symbiosis Medical College for Women (SMCW) & Symbiosis University Hospital and Research Centre (SUHRC), Symbiosis International (Deemed University), Lavale, Pune, India
| | - Savita Jadhav
- Department of Microbiology, Symbiosis Medical College for Women (SMCW) & Symbiosis University Hospital and Research Centre (SUHRC), Symbiosis International (Deemed University), Lavale, Pune, India,Correspondence: Savita Jadhav, Department of Microbiology, Symbiosis Medical College for Women (SMCW) & Symbiosis University Hospital and Research Centre (SUHRC), Symbiosis International (Deemed University), Lavale, Pune, India, Tel +919284434364, Email
| |
Collapse
|
5
|
Segatore B, Piccirilli A, Cherubini S, Principe L, Alloggia G, Mezzatesta ML, Salmeri M, Di Bella S, Migliavacca R, Piazza A, Meroni E, Fazii P, Visaggio D, Visca P, Cortazzo V, De Angelis G, Pompilio A, Perilli M. In Vitro Activity of Sulbactam-Durlobactam against Carbapenem-Resistant Acinetobacter baumannii Clinical Isolates: A Multicentre Report from Italy. Antibiotics (Basel) 2022; 11:antibiotics11081136. [PMID: 36010006 PMCID: PMC9404735 DOI: 10.3390/antibiotics11081136] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
In the present study, the in vitro activity of the sulbactam-durlobactam (SUL-DUR) combination was evaluated against 141 carbapenem-resistant A. baumannii (CRAb) clinical strains collected from six Italian laboratories. Over half (54.6%) of these isolates were resistant to colistin. The SUL-DUR combination was active against these CRAb isolates with MIC50 and MIC90 values of 0.5 mg/L and 4 mg/L, respectively. Only eleven isolates were resistant to SUL-DUR with MIC values ranging from 8 to 128 mg/L. The SUL-DUR resistant A. baumannii exhibited several antimicrobial resistance genes (ARGs) such as blaOXA-20, blaOXA-58, blaOXA-66, blaADC-25, aac(6')-Ib3 and aac(6')-Ib-cr and mutations in gyrA (S81L) and parC (V104I, D105E). However, in these isolates, mutations Q488K and Y528H were found in PBP3. Different determinants were also identified in these CRAb isolates, including adeABC, adeFGH, adeIJK, abeS, abaQ and abaR, which encode multidrug efflux pumps associated with resistance to multiple antibacterial agents. This is the first report on the antimicrobial activity of SUL-DUR against carbapenem-resistant A. baumannii isolates selected from multiple regions in Italy.
Collapse
Affiliation(s)
- Bernardetta Segatore
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Alessandra Piccirilli
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Sabrina Cherubini
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Luigi Principe
- Clinical Pathology and Microbiology Unit, “S. Giovanni di Dio” Hospital, 88900 Crotone, Italy
- Correspondence:
| | - Giovanni Alloggia
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Maria Lina Mezzatesta
- Department of Biomedical and Biotechnological Sciences, Section of Microbiology, University of Catania, 95131 Catania, Italy
| | - Mario Salmeri
- Department of Biomedical and Biotechnological Sciences, Section of Microbiology, University of Catania, 95131 Catania, Italy
| | - Stefano Di Bella
- Clinical Department of Medical, Surgical and Health Sciences, University of Trieste, 34129 Trieste, Italy
| | - Roberta Migliavacca
- Unit of Microbiology and Clinical Microbiology, Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
| | - Aurora Piazza
- Unit of Microbiology and Clinical Microbiology, Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
| | - Elisa Meroni
- Clinical Microbiology and Virology Unit, “A. Manzoni” Hospital, 23900 Lecco, Italy
| | - Paolo Fazii
- Clinical Microbiology and Virology Unit, Spirito Santo Hospital, 65122 Pescara, Italy
| | - Daniela Visaggio
- Department of Science, Roma Tre University, Viale G. Marconi 446, 00146 Rome, Italy
- Santa Lucia Foundation IRCCS, 00179 Rome, Italy
| | - Paolo Visca
- Department of Science, Roma Tre University, Viale G. Marconi 446, 00146 Rome, Italy
- Santa Lucia Foundation IRCCS, 00179 Rome, Italy
| | - Venere Cortazzo
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Giulia De Angelis
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Arianna Pompilio
- Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- Center of Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Mariagrazia Perilli
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| |
Collapse
|
6
|
Vogel J, Jansen L, Setroikromo R, Cavallo FM, van Dijl JM, Quax WJ. Fighting Acinetobacter baumannii infections with the acylase PvdQ. Microbes Infect 2022; 24:104951. [DOI: 10.1016/j.micinf.2022.104951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 10/19/2022]
|
7
|
Colistin Resistance Onset Strategies and Genomic Mosaicism in Clinical Acinetobacter baumannii Lineages. Pathogens 2021; 10:pathogens10111516. [PMID: 34832671 PMCID: PMC8623500 DOI: 10.3390/pathogens10111516] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 11/16/2022] Open
Abstract
The treatment of multidrug-resistant Gram-negative infections is based on colistin. As result, COL-resistance (COL-R) can develop and spread. In Acinetobacter baumannii, a crucial step is to understand COL-R onset and stability, still far to be elucidated. COL-R phenotypic stability, onset modalities, and phylogenomics were investigated in a clinical A. baumannii sample showing a COL resistant (COLR) phenotype at first isolation. COL-R was confirmed by Minimum-Inhibitory-Concentrations as well as investigated by Resistance-Induction assays and Population-Analysis-Profiles (PAPs) to determine: (i) stability; (ii) inducibility; (iii) heteroresistance. Genomics was performed by Mi-Seq Whole-Genome-Sequencing, Phylogenesis, and Genomic Epidemiology by bioinformatics. COLRA. baumannii were subdivided as follows: (i) 3 A. baumannii with stable and high COL MICs defining the “homogeneous-resistant” onset phenotype; (ii) 6 A. baumannii with variable and lower COL MICs displaying a “COL-inducible” onset phenotype responsible for adaptive-resistance or a “subpopulation” onset phenotype responsible for COL-heteroresistance. COL-R stability and onset strategies were not uniquely linked to the amount of LPS and cell envelope charge. Phylogenomics categorized 3 lineages clustering stable and/or unstable COL-R phenotypes with increasing genomic complexity. Likewise, different nsSNP profiling in genes already associated with COL-R marked the stable and/or unstable COL-R phenotypes. Our investigation finds out that A. baumannii can range through unstable or stable COLR phenotypes emerging via different “onset strategies” within phylogenetic lineages displaying increasing genomic mosaicism.
Collapse
|
8
|
Heteroaryl-Ethylenes as New Lead Compounds in the Fight against High Priority Bacterial Strains. Antibiotics (Basel) 2021; 10:antibiotics10091034. [PMID: 34572616 PMCID: PMC8466554 DOI: 10.3390/antibiotics10091034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 11/20/2022] Open
Abstract
The widespread use of antibiotics has led to a gradual increase in drug-resistant bacterial infections, which severely weakens the clinical efficacy of antibacterial therapies. In recent decades, stilbenes aroused great interest because of their high bioavailability, as well as their manifold biological activity. Our research efforts are focused on synthetic heteroaromatic stilbene derivatives as they represent a potentially new type of antibiotic with a wide antibacterial spectrum. Herein, a preliminary molecular modeling study and a versatile synthetic scheme allowed us to define eight heteroaromatic stilbene derivatives with potential antimicrobial activity. In order to evaluate our compound’s activity spectrum and antibacterial ability, minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) tests have been performed on Gram-positive and Gram-negative ATCC strains. Compounds PB4, PB5, PB7, and PB8 showed the best values in terms of MIC and were also evaluated for MBC, which was found to be greater than MIC, confirming a bacteriostatic activity. For all compounds, we evaluated toxicity on colon-rectal adenocarcinoma cells tumor cells (CaCo2), once it was established that the whole selected set was more active than 5-Fluorouracil in reducing CaCo-2 cells viability. To the best of our knowledge, the biological assays have shown for these derivatives an excellent bacteriostatic activity, compared to similar molecular structures previously reported, thus paving the way for a new class of antibiotic compounds.
Collapse
|
9
|
Cafiso V, Stracquadanio S, Lo Verde F, Gabriele G, Mezzatesta ML, Caio C, Pigola G, Ferro A, Stefani S. Colistin Resistant A. baumannii: Genomic and Transcriptomic Traits Acquired Under Colistin Therapy. Front Microbiol 2019; 9:3195. [PMID: 30666237 PMCID: PMC6330354 DOI: 10.3389/fmicb.2018.03195] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 12/10/2018] [Indexed: 12/31/2022] Open
Abstract
Even though colistin-based treatment represents the antimicrobial-regimen backbone for the management of multidrug-resistant Gram-negative infections, colistin resistance is still rare, at least as a full resistance, in Acinetobacter baumannii (Ab). We investigated the genomics and transcriptomics of two clinical Extensively Drug Resistance (XDR) colistin-susceptible/resistant (COL-S/R) Ab strain-pairs in which COL-resistance was developed after exposure to colistin therapy. The molecular characterization of the strains showed that all strains belonged to PFGE-A, ST-281, OXA-23 producers, Global Clone-II, and were resistant to imipenem, meropenem, ampicillin/sulbactam, ciprofloxacin, gentamicin, amikacin, trimethoprim/sulfamethoxazole, and susceptible to tigecycline, in agreement with NGS-acquired resistome. COL-R vs. COL-S Ab comparative genomics, mapping on Ab ATCC 17978 and Ab ACICU Reference Genomes, revealed a closely related genomic phylogeny, especially between strain-pair isolates, and distinctive common genomic non-synonymous SNPs (nsSNPs) in COL-R Ab strains. Furthermore, pmrB and pmrC nsSNPs were found. Notably we recovered, for the first time, lpxC and lpxD nsSNPs previously described only in "in-vitro" mutants and associated with colistin resistance in a clinical COL-R Ab. COL-R vs. COL-S Ab comparative transcriptomics evidenced a strain-dependent response to the colistin resistance onset highly variable among the single COL-R strains vs. their COL-S parents and merely seven common over-expressed transcripts, i.e. the PgaB lipoprotein for biofilm-matrix production, the diacylglycerol kinase for the lipid recycling in the membrane-derived oligosaccharide cycle, a membrane non-ribosomal peptide synthetase, the Lipid A phosphoethanol aminotransferase PmrC, and three hypothetical proteins. The transcript analysis of the "COL-R related genes" and the RNA-seq data confirmed pmrCAB over-expression responsible for a greater positive net cell-charge, and lpxACD under-expression in COL-R causing a decreased LPS production, as main mechanisms of colistin resistance. Our study reports the COL-R Ab genomic and transcriptomic signatures reflecting the interplay between several direct and indirect potential adaptations to antimicrobial pressure, including the occurrence of SNP accumulation hotspot loci in genes related to intrinsic or adaptive colistin resistance, surface adhesion proteins and porins, and over-expressed genes involved in different pathways, i.e. biofilm production, oxidative stress response, extensive drug and COL resistance.
Collapse
Affiliation(s)
- Viviana Cafiso
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Stefano Stracquadanio
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Flavia Lo Verde
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Giacoma Gabriele
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Maria Lina Mezzatesta
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Carla Caio
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Giuseppe Pigola
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Alfredo Ferro
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Stefania Stefani
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| |
Collapse
|
10
|
Gentilini F, Turba ME, Pasquali F, Mion D, Romagnoli N, Zambon E, Terni D, Peirano G, Pitout JDD, Parisi A, Sambri V, Zanoni RG. Hospitalized Pets as a Source of Carbapenem-Resistance. Front Microbiol 2018; 9:2872. [PMID: 30574124 PMCID: PMC6291488 DOI: 10.3389/fmicb.2018.02872] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 11/08/2018] [Indexed: 12/24/2022] Open
Abstract
The massive and irrational use of antibiotics in livestock productions has fostered the occurrence and spread of resistance to “old class antimicrobials.” To cope with that phenomenon, some regulations have been already enforced in the member states of the European Union. However, a role of livestock animals in the relatively recent alerts on the rapid worldwide increase of resistance to last-choice antimicrobials as carbapenems is very unlikely. Conversely, these antimicrobials are increasingly administered in veterinary hospitals whose role in spreading bacteria or mobile genetic elements has not adequately been addressed so far. A cross-sectional study was carried out on 105 hospitalized and 100 non-hospitalized pets with the aim of measuring the prevalence of carbapenem-resistant Gram-negative bacteria (GNB) colonizing dogs and cats, either hospitalized or not hospitalized and estimating the relative odds. Stool samples were inoculated on MacConkey agar plates containing 1 mg/L imipenem which were then incubated aerobically at 37°C ± 1 for 48 h. Isolated bacteria were identified first by Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and were confirmed by 16S rRNA sequencing. The genetic basis of resistance was investigated using PCR methods, gene or whole genome sequencing (WGS). The prevalence of pets harboring carbapenem-resistant bacteria was 11.4 and 1.0% in hospitalized and not-hospitalized animals, respectively, with an odds ratio of 12.8 (p < 0.01). One pet carried two diverse isolates. Overall, 14 gram-negative non-fermenting bacteria, specifically, one Acinetobacter radioresistens, five Acinetobacter baumannii, six Pseudomonas aeruginosa and two Stenotrophomonas maltophilia were isolated. The Acinetobacter species carried acquired carbapenemases genes encoded by blaNDM-1 and blaOXA-23. In contrast, Pseudomonas phenotypic resistance was associated with the presence of mutations in the oprD gene. Notably, inherent carbapenem-resistant isolates of S. maltophilia were also resistant to the first-line recommended chemotherapeutic trimethoprim/sulfamethoxazole. This study estimates the risk of colonization by carbapenem-resistant non-fermenting GNB in pets hospitalized in veterinary tertiary care centers and highlights their potential role in spreading resistance genes among the animal and human community. Public health authorities should consider extending surveillance systems and putting the release of critical antibiotics under more strict control in order to manage the infection/colonization of pets in veterinary settings.
Collapse
Affiliation(s)
- Fabio Gentilini
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | | | - Frederique Pasquali
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Domenico Mion
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Noemi Romagnoli
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Elisa Zambon
- Ospedale: Veterinario I Portoni Rossi s.r.l., Bologna, Italy
| | - Daniele Terni
- Ospedale: Veterinario I Portoni Rossi s.r.l., Bologna, Italy
| | - Gisele Peirano
- Unit of Microbiology, University of Calgary and Calgary Laboratory Services, Calgary, AB, Canada
| | | | - Antonio Parisi
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Foggia, Italy
| | - Vittorio Sambri
- The Great Romagna Hub Laboratory, Pievesestina, Italy.,Department of Experimental, Diagnostic and Specialty Medicine - DIMES, University of Bologna, Bologna, Italy
| | - Renato Giulio Zanoni
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
11
|
Zhen X, Chen Y, Hu X, Dong P, Gu S, Sheng YY, Dong H. The difference in medical costs between carbapenem-resistant Acinetobacter baumannii and non-resistant groups: a case study from a hospital in Zhejiang province, China. Eur J Clin Microbiol Infect Dis 2017; 36:1989-1994. [PMID: 28831598 DOI: 10.1007/s10096-017-3088-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 08/02/2017] [Indexed: 11/25/2022]
Abstract
This retrospective study aims to compare differences in the medical costs between inpatients infected/colonised with carbapenem-resistant (CRAB) and carbapenem-susceptible (CSAB) Acinetobacter baumannii in a hospital in Zhejiang province, China. Because the patient population was large, we randomly selected 60% of all inpatients with clinical specimens between 2013 and 2015. We classified the A. baumannii cases as CRAB or CSAB based on antibiotic susceptibility testing. Univariate and multivariate analyses were used to identify factors associated with the total medical cost (TMC). Those included in the study totalled 2980 inpatients, 71.3% of whom had CRAB infection/colonisation. Differences in the TMC between the CRAB and CSAB groups were lower by multivariate analyses than the differences obtained by univariate analyses. Carbapenem resistance was significantly associated with an approximately 1.5-fold increase in the TMC after accounting for confounding factors. Our study highlights the heavy financial burden imposed by A. baumannii and carbapenem resistance on the Chinese healthcare system.
Collapse
Affiliation(s)
- X Zhen
- Center for Health Policy Studies, School of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Y Chen
- Pfizer Investment Co. Ltd., Beijing, China
| | - X Hu
- Center for Health Policy Studies, School of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - P Dong
- Pfizer Investment Co. Ltd., Beijing, China
| | - S Gu
- Center for Health Policy Studies, School of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Y Y Sheng
- Princeton University, Princeton, NJ, USA
| | - H Dong
- Center for Health Policy Studies, School of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China. .,China Hospital Development Institute, Shanghai Jiaotong University, Shanghai, China.
| |
Collapse
|
12
|
A reliable combination method to identification and typing of epidemic and endemic clones among clinical isolates of Acinetobacter baumannii. INFECTION GENETICS AND EVOLUTION 2017; 54:501-507. [PMID: 28827174 DOI: 10.1016/j.meegid.2017.08.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 08/01/2017] [Accepted: 08/18/2017] [Indexed: 11/21/2022]
Abstract
The multi-drug resistant (MDR) Acinetobacter baumannii as an important nosocomial pathogen has emerged a global health concern in recent years. In this study, we applied three easier, faster, and cost-effective methods including PCR-based open reading frames (ORFs) typing, sequence typing of blaOXA-51-like and RAPD-PCR method to rapid typing of A. baumannii strains. Taken together in the present study the results of ORFs typing, PCR-sequencing of blaOXA-51-like genes and MLST sequence typing revealed there was a high prevalence (62%, 35/57) of ST2 as international and successful clone which detected among clinical isolates of multi-drug resistant A. baumannii with ORF pattern B and blaOXA-66 gene. Only 7% (4/57) of MDR isolates belonged to ST1 with ORF pattern A and blaOXA-69 gene. Interestingly, we detected singleton ST513 (32%, 18/57) that encoded blaOXA-90 and showed the ORF pattern H as previously isolated in Middle East. Moreover, our data showed RAPD-PCR method can detect divergent strains of the STs. The Cl-1, Cl-2, Cl-3, Cl-4, Cl-10, Cl-11, Cl-12, Cl-13 and Cl-14 belonged to ST2. While the Cl-6, Cl-7, Cl-8 and Cl-9 belonged to ST513. Only Cl-5 belonged to ST1. It seems that the combination of these methods have more discriminatory than any method separately and could be effectively applied to rapid detection of the clonal complex (CC) of A. baumannii strains without performing of MLST or PFGE.
Collapse
|
13
|
Chen H, Cao J, Zhou C, Liu H, Zhang X, Zhou T. Biofilm Formation Restrained by Subinhibitory Concentrations of Tigecyclin in Acinetobacter baumannii Is Associated with Downregulation of Efflux Pumps. Chemotherapy 2016; 62:128-133. [PMID: 27816975 DOI: 10.1159/000450537] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 08/21/2016] [Indexed: 11/19/2022]
Abstract
BACKGROUND Tigecycline, one of the few therapeutic options against multidrug-resistant Acinetobacter baumannii, reaches subinhibitory serum concentrations only with cautious clinical dosing and pharmacokinetics. Subinhibitory concentrations of tigecycline might induce an A. baumannii biofilm. METHODS Biofilm formation was assessed via the crystal violet staining method. We further analyzed the main biofilm components with NaIO4, proteinase K, and DNase. Real-time RT-PCR was applied for quantitative detection of biofilm potential-associated genes. RESULTS In this study, A. baumannii proved to be a strong biofilm producer, and we found that proteins and extracellular DNA are crucial components of the A. baumannii biofilm. Quantitative real-time RT-PCR revealed positive correlations between biofilm formation restrained by subinhibitory concentrations of tigecycline and the expression of biofilm potential-associated genes, especially the AdeFGH efflux pump gene. CONCLUSION Our results suggest that downregulation of efflux pumps, especially the AdeFGH efflux pump, is probably responsible for the decline in biofilm formation in A. baumannii treated with subinhibitory concentrations of tigecyclin.
Collapse
Affiliation(s)
- Huale Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | | | | | | | | | | |
Collapse
|
14
|
Pourhajibagher M, Hashemi FB, Pourakbari B, Aziemzadeh M, Bahador A. Antimicrobial Resistance of Acinetobacter baumannii to Imipenem in Iran: A Systematic Review and Meta-Analysis. Open Microbiol J 2016; 10:32-42. [PMID: 27099638 PMCID: PMC4814728 DOI: 10.2174/1874285801610010032] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 11/10/2015] [Accepted: 11/13/2015] [Indexed: 11/22/2022] Open
Abstract
Imipenem-resistant multi-drug resistant (IR-MDR) Acinetobacter baumannii
has been emerged as a morbidity successful nosocomial pathogen throughout the
world.To address imipenem being yet the most effective antimicrobial
agent against A. baumannii to control outbreaks and treat patients, a
systematic review and meta-analysis was performed to evaluate the prevalence of
IR-MDR A. baumannii. We systematically searched Web of Science, PubMed,
MEDLINE, Science Direct, EMBASE, Scopus, Cochrane Library, Google Scholar, and
Iranian databases to identify studies addressing the antibiotic resistance of
A. baumannii to imipenem and the frequency of MDR strains in Iran. Out of 58
articles and after a secondary screening using inclusion and exclusion criteria
and on the basis of title and abstract evaluation, 51 studies were selected for
analysis. The meta-analysis revealed that 55% [95% confidence interval (CI),
53.0–56.5] of A. baumannii were resistant to imipenem and 74% (95% CI,
61.3–83.9) were MDR. The MDR A. baumannii population in Iran is rapidly
changing toward a growing resistance to imipenem. Our findings highlight the
critical need for a comprehensive monitoring and infection control policy as
well as a national susceptibility review program that evaluates IR-MDR A.
baumannii isolates from various parts of Iran.
Collapse
Affiliation(s)
- Maryam Pourhajibagher
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Farhad B Hashemi
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Babak Pourakbari
- Pediatrics Infectious Disease Research Center, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoud Aziemzadeh
- Department of Microbiology, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Abbas Bahador
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Ganjo AR, Maghdid DM, Mansoor IY, Kok DJ, Severin JA, Verbrugh HA, Kreft D, Fatah MH, Alnakshabandi AA, Dlnya A, Hammerum AM, Ng K, Goessens W. OXA-Carbapenemases Present in Clinical Acinetobacter baumannii-calcoaceticus Complex Isolates from Patients in Kurdistan Region, Iraq. Microb Drug Resist 2016; 22:627-637. [PMID: 27003287 DOI: 10.1089/mdr.2015.0060] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
In addition to intrinsic resistance in Acinetobacter baumannii, many different types of acquired resistance mechanisms have been reported, including the presence of VIM and IMP metallo β-lactamases and also of blaOXA-23-like and blaOXA-58-like enzymes. In the Kurdistan region of Iraq, the multiresistant A. baumannii-calcoaceticus complex is prevalent. We characterized the different mechanisms of resistance present in clinical isolates collected from different wards and different hospitals from the Kurdistan region. One hundred twenty clinical nonduplicate A. baumannii-calcoaceticus complex isolates were collected from four hospitals between January 2012 and October 2013. The identification of the isolates was confirmed by MALDI-TOF. The susceptibility to different antibiotics was determined by disk diffusion and analyzed in accordance to EUCAST guidelines. By PCR, the presence of blaOXA-51-like, blaOXA-23-like, blaOXA-24-like, and blaOXA-58-like genes was determined as well as the presence of the insertion element ISAba1. Clonal diversity was analyzed by pulsed-field gel electrophoresis (PFGE) using the restriction enzyme ApaI and, in addition, multilocus sequence typing (MLST) was performed on a selected subset of 15 isolates. All 120 A. baumannii isolates harbored blaOXA-51-like genes. One hundred one out of 110 (92%) imipenem (IMP)-resistant A. baumannii-calcoaceticus complex isolates additionally carried the blaOXA-23-like gene and four isolates (3%) were positive for blaOXA-24-like. All 101 blaOXA-23-like-positive isolates had the ISAba1 insertion sequence, 1,600 bp upstream of the blaOXA-23-like gene. The blaOXA-58-like gene was not detected in any of the 110 IMP-resistant strains. Eight different PFGE clusters were identified and distributed over the different hospitals. MLST analysis performed on a subset of 15 representative isolates revealed the presence of the international clone ST2 (Pasteur). Besides ST2 (Pasteur), also many other STs (Pasteur) were encountered such as ST136, ST94, ST623, ST792, and ST793, all carrying the blaOXA-23 gene. In clinical A. baumannii-calcoaceticus complex isolates from Kurdistan-Iraq, the blaOXA-23 gene in combination with the upstream ISAba1 insertion element is largely responsible for carbapenem resistance. Several small clusters of identical genotypes were found from patients admitted to the same ward and during overlapping time periods, suggesting transmission within the hospital. Identification of source(s) and limiting the transmission of these strains to patients needs to be prioritized.
Collapse
Affiliation(s)
- Aryann R Ganjo
- 1 College of Pharmacy, Hawler Medical University , Erbil, Iraq
| | - Delshad M Maghdid
- 2 Department of Medical Microbiology and Infectious Diseases, Erasmus MC, University Medical Center Rotterdam , Rotterdam, The Netherlands
| | - Isam Y Mansoor
- 3 College of Health Sciences, Hawler Medical University , Erbil, Iraq
| | - Dik J Kok
- 2 Department of Medical Microbiology and Infectious Diseases, Erasmus MC, University Medical Center Rotterdam , Rotterdam, The Netherlands
| | - Juliette A Severin
- 2 Department of Medical Microbiology and Infectious Diseases, Erasmus MC, University Medical Center Rotterdam , Rotterdam, The Netherlands
| | - Henri A Verbrugh
- 2 Department of Medical Microbiology and Infectious Diseases, Erasmus MC, University Medical Center Rotterdam , Rotterdam, The Netherlands
| | - Deborah Kreft
- 2 Department of Medical Microbiology and Infectious Diseases, Erasmus MC, University Medical Center Rotterdam , Rotterdam, The Netherlands
| | - M H Fatah
- 4 Kalar Technical Institute , Sulaimani, Iraq
| | | | - Asad Dlnya
- 5 School of Science, Sulaimani University , Sulaimani, Iraq
| | - Anette M Hammerum
- 6 Department of Microbiology & Infection Control, Statens Serum Institute , Copenhagen S, Denmark
| | - Kim Ng
- 6 Department of Microbiology & Infection Control, Statens Serum Institute , Copenhagen S, Denmark
| | - Wil Goessens
- 2 Department of Medical Microbiology and Infectious Diseases, Erasmus MC, University Medical Center Rotterdam , Rotterdam, The Netherlands
| |
Collapse
|
16
|
Milan A, Furlanis L, Cian F, Bressan R, Luzzati R, Lagatolla C, Deiana ML, Knezevich A, Tonin E, Dolzani L. Epidemic Dissemination of a Carbapenem-Resistant Acinetobacter baumannii Clone Carrying armA Two Years After Its First Isolation in an Italian Hospital. Microb Drug Resist 2016; 22:668-674. [PMID: 26990617 DOI: 10.1089/mdr.2015.0167] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This study describes the dissemination of a carbapenem-resistant Acinetobacter baumannii (CRAB) strain in a university hospital in Northeast Italy. Characterization of the outbreak strain was combined with a retrospective analysis of all CRAB isolates collected in the same hospital during the 5 years preceding the outbreak, with the aim of elucidating the origin of the epidemic spread. The outbreak strain was shown to belong to the International Clone II and carry the blaOXA-23 gene, flanked by two ISAba1 sequences in opposite orientation (Tn2006 arrangement). The epidemic clone harbored also the blaOXA-66 allele of the carbapenemase intrinsic to A. baumannii, the determinant of ArmA 16S rRNA methylase and a class 1 integron, with the aacA4, catB8, and aadA1 cassette array. Genotype analysis, performed by macrorestriction analysis and VRBA, revealed that isolates related to outbreak strain had been sporadically collected from inpatients in the 2 years preceding outbreak start. Carriage of blaOXA-66, armA, and the integron further supported relatedness of these isolates to the outbreak clone. Outbreak initially involved three medical wards, typically hosting elderly patients with a history of prolonged hospitalization. The study highlights the need to adopt strict infection control measures also when CRAB isolation appears to be a sporadic event.
Collapse
Affiliation(s)
- Annalisa Milan
- 1 Department of Life Sciences, University of Trieste , Trieste, Italy
| | - Linda Furlanis
- 1 Department of Life Sciences, University of Trieste , Trieste, Italy
| | - Franca Cian
- 2 Department of Laboratory Medicine, Microbiology CS, Azienda Ospedaliero-Universitaria "Ospedali Riuniti," Trieste, Italy
| | - Raffaela Bressan
- 1 Department of Life Sciences, University of Trieste , Trieste, Italy
| | - Roberto Luzzati
- 3 Division of Infective Diseases, Azienda Ospedaliero-Universitaria "Ospedali Riuniti," Trieste, Italy .,4 Department of Medical, Surgical and Health Sciences, University of Trieste , Trieste, Italy
| | | | - Maria Luisa Deiana
- 2 Department of Laboratory Medicine, Microbiology CS, Azienda Ospedaliero-Universitaria "Ospedali Riuniti," Trieste, Italy
| | - Anna Knezevich
- 2 Department of Laboratory Medicine, Microbiology CS, Azienda Ospedaliero-Universitaria "Ospedali Riuniti," Trieste, Italy
| | - Enrico Tonin
- 1 Department of Life Sciences, University of Trieste , Trieste, Italy
| | - Lucilla Dolzani
- 1 Department of Life Sciences, University of Trieste , Trieste, Italy
| |
Collapse
|
17
|
Garnacho-Montero J, Gutiérrez-Pizarraya A, Díaz-Martín A, Cisneros-Herreros JM, Cano ME, Gato E, Ruiz de Alegría C, Fernández-Cuenca F, Vila J, Martínez-Martínez L, Tomás-Carmona MDM, Pascual Á, Bou G, Pachón-Diaz J, Rodríguez-Baño J. Acinetobacter baumannii in critically ill patients: Molecular epidemiology, clinical features and predictors of mortality. Enferm Infecc Microbiol Clin 2016; 34:551-558. [PMID: 26821549 DOI: 10.1016/j.eimc.2015.11.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 11/30/2015] [Accepted: 11/30/2015] [Indexed: 12/29/2022]
Abstract
INTRODUCTION The main aim of this study was to assess changes in the epidemiology and clinical presentation of Acinetobacter baumannii over a 10-year period, as well as risk factors of mortality in infected patients. METHOD Prospective, multicentre, hospital-based cohort studies including critically ill patients with A. baumannii isolated from any clinical sample were included. These were divided into a first period ("2000 study") (one month), and a second period ("2010 study") (two months). Molecular typing was performed by REP-PCR, PFGE and MSLT. The primary endpoint was 30-day mortality. RESULTS In 2000 and 2010, 103 and 108 patients were included, and the incidence of A. baumannii colonization/infection in the ICU decreased in 2010 (1.23 vs. 4.35 cases/1000 patient-days; p<0.0001). No differences were found in the colonization rates (44.3 vs. 38.6%) or infected patients (55.7 vs. 61.4%) in both periods. Overall, 30-day mortality was similar in both periods (29.1 vs. 27.8%). The rate of pneumonia increased from 46.2 in 2000 to 64.8% in 2010 (p<0.001). Performing MSLT, 18 different sequence types (ST) were identified (18 in 2000, 8 in 2010), but ST2 and ST79 were the predominant clones. ST2 isolates in the ICU increased from 53.4% in the year 2000 to 73.8% in 2010 (p=0.002). In patients with A. baumannii infection, the multivariate analysis identified appropriate antimicrobial therapy and ST79 clonal group as protective factors for mortality. CONCLUSIONS At 10 years of the first analysis, some variations have been observed in the epidemiology of A. baumannii in the ICU, with no changes in mortality. Epidemic ST79 clone seems to be associated with a better prognosis and adequate treatment is crucial in terms of survival.
Collapse
Affiliation(s)
- José Garnacho-Montero
- Unidad Clínica de Cuidados Intensivos, Hospital Universitario Virgen del Rocío, Spain; Institute of Biomedicine of Seville, IBiS/CSIC/University of Seville, Spain.
| | - Antonio Gutiérrez-Pizarraya
- Institute of Biomedicine of Seville, IBiS/CSIC/University of Seville, Spain; Spanish Network for the Research in Infectious Diseases (REIPI), Spain
| | - Ana Díaz-Martín
- Unidad Clínica de Cuidados Intensivos, Hospital Universitario Virgen del Rocío, Spain; Institute of Biomedicine of Seville, IBiS/CSIC/University of Seville, Spain
| | - José Miguel Cisneros-Herreros
- Institute of Biomedicine of Seville, IBiS/CSIC/University of Seville, Spain; Spanish Network for the Research in Infectious Diseases (REIPI), Spain; Unidad Clínica de Enfermedades Infecciosas, Microbiología y Medicina Preventiva, Hospital Virgen del Rocío, Spain
| | - María Eugenia Cano
- Service of Microbiology, University Hospital Marqués de Valdecilla, Spain
| | - Eva Gato
- Service of Microbiology, University Hospital Marqués de Valdecilla, Spain
| | | | - Felipe Fernández-Cuenca
- Clinical Unit of Infectious Diseases, Microbiology and Preventive Medicine, Virgen Macarena Hospital, Spain
| | - Jordi Vila
- Department of Clinical Microbiology, Hospital Clínic, Barcelona Centre for International Health Research, Barcelona, Spain
| | - Luis Martínez-Martínez
- Service of Microbiology, University Hospital Marqués de Valdecilla, Spain; IDIVAL, Department of Molecular Biology, University of Cantabria, Spain
| | | | - Álvaro Pascual
- Spanish Network for the Research in Infectious Diseases (REIPI), Spain; Clinical Unit of Infectious Diseases, Microbiology and Preventive Medicine, Virgen Macarena Hospital, Spain
| | - Germán Bou
- Microbiology Department, A Coruña University Hospital Complex, A Coruña, Spain
| | - Jerónimo Pachón-Diaz
- Institute of Biomedicine of Seville, IBiS/CSIC/University of Seville, Spain; Spanish Network for the Research in Infectious Diseases (REIPI), Spain; Unidad Clínica de Enfermedades Infecciosas, Microbiología y Medicina Preventiva, Hospital Virgen del Rocío, Spain
| | - Jesús Rodríguez-Baño
- Spanish Network for the Research in Infectious Diseases (REIPI), Spain; Clinical Unit of Infectious Diseases, Microbiology and Preventive Medicine, Virgen Macarena Hospital, Spain
| |
Collapse
|
18
|
Mularoni A, Bertani A, Vizzini G, Gona F, Campanella M, Spada M, Gruttadauria S, Vitulo P, Conaldi P, Luca A, Gridelli B, Grossi P. Outcome of Transplantation Using Organs From Donors Infected or Colonized With Carbapenem-Resistant Gram-Negative Bacteria. Am J Transplant 2015; 15:2674-82. [PMID: 25981339 DOI: 10.1111/ajt.13317] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 03/08/2015] [Accepted: 03/13/2015] [Indexed: 02/06/2023]
Abstract
Donor-derived infections due to multidrug-resistant bacteria are a growing problem in solid organ transplantation, and optimal management options are not clear. In a 2-year period, 30/214 (14%) recipients received an organ from 18/170 (10.5%) deceased donors with infection or colonization caused by a carbapenem-resistant gram-negative bacteria that was unknown at the time of transplantation. Among them, 14/30 recipients (47%) received a transplant from a donor with bacteremia or with infection/colonization of the transplanted organ and were considered at high risk of donor-derived infection transmission. The remaining 16/30 (53%) recipients received an organ from a nonbacteremic donor with colonization of a nontransplanted organ and were considered at low risk of infection transmission. Proven transmission occurred in 4 of the 14 high-risk recipients because donor infection was either not recognized, underestimated, or not communicated. These recipients received late, short or inappropriate posttransplant antibiotic therapy. Transmission did not occur in high-risk recipients who received appropriate and prompt antibiotic therapy for at least 7 days. The safe use of organs from donors with multidrug-resistant bacteria requires intra- and inter-institutional communication to allow appropriate management and prompt treatment of recipients in order to avoid transmission of infection.
Collapse
Affiliation(s)
- A Mularoni
- Department for the Treatment and Study of Abdominal Diseases and Abdominal Transplantation, IRCCS - ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione), Palermo, Italy
| | - A Bertani
- Department for the Treatment and Study of Cardiothoracic Diseases and Cardiothoracic Transplantation, IRCCS - ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione), Palermo, Italy
| | - G Vizzini
- Department for the Treatment and Study of Abdominal Diseases and Abdominal Transplantation, IRCCS - ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione), Palermo, Italy
| | - F Gona
- Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS - ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione), Palermo, Italy
| | - M Campanella
- Department for the Treatment and Study of Abdominal Diseases and Abdominal Transplantation, IRCCS - ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione), Palermo, Italy
| | - M Spada
- Department for the Treatment and Study of Abdominal Diseases and Abdominal Transplantation, IRCCS - ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione), Palermo, Italy
| | - S Gruttadauria
- Department for the Treatment and Study of Abdominal Diseases and Abdominal Transplantation, IRCCS - ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione), Palermo, Italy
| | - P Vitulo
- Department for the Treatment and Study of Cardiothoracic Diseases and Cardiothoracic Transplantation, IRCCS - ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione), Palermo, Italy
| | - P Conaldi
- Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS - ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione), Palermo, Italy
| | - A Luca
- Department of Diagnostic and Therapeutic Services, IRCCS - ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione), Palermo, Italy
| | - B Gridelli
- Department for the Treatment and Study of Abdominal Diseases and Abdominal Transplantation, IRCCS - ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione), Palermo, Italy
| | - P Grossi
- Department of Infectious and Tropical Diseases, University of Insubria, Varese, Italy
| |
Collapse
|
19
|
Perelshtein I, Lipovsky A, Perkas N, Tzanov T, Аrguirova M, Leseva M, Gedanken A. Making the hospital a safer place by sonochemical coating of all its textiles with antibacterial nanoparticles. ULTRASONICS SONOCHEMISTRY 2015; 25:82-88. [PMID: 25577972 DOI: 10.1016/j.ultsonch.2014.12.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Revised: 10/02/2014] [Accepted: 12/21/2014] [Indexed: 06/04/2023]
Abstract
The ability to scale-up the sonochemical coating of medical textiles with antibacterial nanoparticles is demonstrated in the current paper. A roll-to-roll pilot installation to coat textiles was built taking into consideration the requirements of the sonochemical process. A long-run experiment was conducted in which 2500 m of fabric were coated with antibacterial ZnO nanoparticles (NPs). The metal oxide NPs were deposited from an ethanol:water solution. In this continuous process a uniform concentration of coated NPs over the length/width of the fabric was achieved. The antibacterial efficiency of the sonochemically-coated textiles was validated in a hospital environment by a reduction in the occurrence of nosocomial infections. NP-coated bed sheets, patient gowns, pillow cover, and bed covers were used by 21 patients. For comparison 16 patients used regular textiles. The clinical data indicated the reduced occurrence of hospital-acquired infections when using the metal oxide NP-coated textiles. In order to reduce the cost of the coating process and considering safety issues during manufacturing, the solvent (ethanol:water) (9:1 v:v) used for the long-run experiment, was replaced by water. Although lesser amounts of ZnO NPs were deposited on the fabric in the water-based process the antibacterial activity of the textiles was preserved due to the smaller size of the particles.
Collapse
Affiliation(s)
- Ilana Perelshtein
- Department of Chemistry and Kanbar Laboratory for Nanomaterials, Bar-Ilan University Center for Advanced Materials and Nanotechnology, Ramat-Gan, Israel.
| | - Anat Lipovsky
- Department of Chemistry and Kanbar Laboratory for Nanomaterials, Bar-Ilan University Center for Advanced Materials and Nanotechnology, Ramat-Gan, Israel.
| | - Nina Perkas
- Department of Chemistry and Kanbar Laboratory for Nanomaterials, Bar-Ilan University Center for Advanced Materials and Nanotechnology, Ramat-Gan, Israel.
| | - Tzanko Tzanov
- Universitat Politècnica de Catalunya, Edifici Gaia, Pg. Ernest Lluch/Rambla Sant Nebridi s/n, 08222 Terrassa, Spain.
| | - M Аrguirova
- Burn and Plastic Surgery Clinic, MHATEM, N.I. Pirogov, Sofia, Bulgaria.
| | - M Leseva
- Clinical Microbiological Laboratory, MHATEM, N.I. Pirogov, Sofia, Bulgaria.
| | - Aharon Gedanken
- Department of Chemistry and Kanbar Laboratory for Nanomaterials, Bar-Ilan University Center for Advanced Materials and Nanotechnology, Ramat-Gan, Israel; The Department of Materials Science & Engineering, National Cheng Kung University, Tainan 70101, Taiwan.
| |
Collapse
|
20
|
Biofilm Formation Caused by Clinical Acinetobacter baumannii Isolates Is Associated with Overexpression of the AdeFGH Efflux Pump. Antimicrob Agents Chemother 2015; 59:4817-25. [PMID: 26033730 DOI: 10.1128/aac.00877-15] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 05/25/2015] [Indexed: 01/05/2023] Open
Abstract
Chronic wound infections are associated with biofilm formation, which in turn has been correlated with drug resistance. However, the mechanism by which bacteria form biofilms in clinical environments is not clearly understood. This study was designed to investigate the biofilm formation potency of Acinetobacter baumannii and the potential association of biofilm formation with genes encoding efflux pumps, quorum-sensing regulators, and outer membrane proteins. A total of 48 clinically isolated A. baumannii strains, identified by enterobacterial repetitive intergenic consensus (ERIC)-PCR as types A-II, A-III, and A-IV, were analyzed. Three representative strains, which were designated A. baumannii ABR2, ABR11, and ABS17, were used to evaluate antimicrobial susceptibility, biofilm inducibility, and gene transcription (abaI, adeB, adeG, adeJ, carO, and ompA). A significant increase in the MICs of different classes of antibiotics was observed in the biofilm cells. The formation of a biofilm was significantly induced in all the representative strains exposed to levofloxacin. The levels of gene transcription varied between bacterial genotypes, antibiotics, and antibiotic concentrations. The upregulation of adeG correlated with biofilm induction. The consistent upregulation of adeG and abaI was detected in A-III-type A. baumannii in response to levofloxacin and meropenem (1/8 to 1/2× the MIC), conditions which resulted in the greatest extent of biofilm induction. This study demonstrates a potential role of the AdeFGH efflux pump in the synthesis and transport of autoinducer molecules during biofilm formation, suggesting a link between low-dose antimicrobial therapy and a high risk of biofilm infections caused by A. baumannii. This study provides useful information for the development of antibiofilm strategies.
Collapse
|
21
|
Investigation of the molecular epidemiology of Acinetobacter baumannii isolated from patients and environmental contamination. J Antibiot (Tokyo) 2015; 68:562-7. [DOI: 10.1038/ja.2015.30] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 01/12/2015] [Accepted: 02/22/2015] [Indexed: 12/20/2022]
|
22
|
Novovic K, Mihajlovic S, Vasiljevic Z, Filipic B, Begovic J, Jovcic B. Carbapenem-resistant Acinetobacter baumannii from Serbia: revision of CarO classification. PLoS One 2015; 10:e0122793. [PMID: 25822626 PMCID: PMC4378888 DOI: 10.1371/journal.pone.0122793] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 02/23/2015] [Indexed: 01/01/2023] Open
Abstract
Carbapenem-resistant A. baumannii present a significant therapeutic challenge for the treatment of nosocomial infections in many European countries. Although it is known that the gradient of A. baumannii prevalence increases from northern to southern Europe, this study provides the first data from Serbia. Twenty-eight carbapenem-resistant A. baumannii clinical isolates were collected at a Serbian pediatric hospital during a 2-year period. The majority of isolates (67.68%) belonged to the sequence type Group 1, European clonal complex II. All isolates harbored intrinsic OXA-51 and AmpC cephalosporinase. OXA-23 was detected in 16 isolates (57.14%), OXA-24 in 23 isolates (82.14%) and OXA-58 in 11 isolates (39.29%). Six of the isolates (21.43%) harbored all of the analyzed oxacillinases, except OXA-143 and OXA-235 that were not detected in this study. Production of oxacillinases was detected in different pulsotypes indicating the presence of horizontal gene transfer. NDM-1, VIM and IMP were not detected in analyzed clinical A. baumannii isolates. ISAba1 insertion sequence was present upstream of OXA-51 in one isolate, upstream of AmpC in 13 isolates and upstream of OXA-23 in 10 isolates. In silico analysis of carO sequences from analyzed A. baumannii isolates revealed the existence of two out of six highly polymorphic CarO variants. The phylogenetic analysis of CarO protein among Acinetobacter species revised the previous classification CarO variants into three groups based on strong bootstraps scores in the tree analysis. Group I comprises four variants (I-IV) while Groups II and III contain only one variant each. One half of the Serbian clinical isolates belong to Group I variant I, while the other half belongs to Group I variant III.
Collapse
Affiliation(s)
- Katarina Novovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Sanja Mihajlovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Zorica Vasiljevic
- Institute for Mother and Child Health Care of Serbia "Dr Vukan Čupić", Belgrade, Serbia
| | - Brankica Filipic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
- Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Jelena Begovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Branko Jovcic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
- Faculty of Biology, University of Belgrade, Belgrade, Serbia
- * E-mail:
| |
Collapse
|
23
|
OXA-23 Carbapenemase in Multidrug-ResistantAcinetobacter baumanniiST2 Type: First Identification in L'Aquila Hospital (Italy). Microb Drug Resist 2015; 21:97-101. [DOI: 10.1089/mdr.2014.0056] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
24
|
Labarca JA, Salles MJC, Seas C, Guzmán-Blanco M. Carbapenem resistance in Pseudomonas aeruginosa and Acinetobacter baumannii in the nosocomial setting in Latin America. Crit Rev Microbiol 2014; 42:276-92. [PMID: 25159043 DOI: 10.3109/1040841x.2014.940494] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Increasing prevalence of carbapenem-resistant Pseudomonas aeruginosa and Acinetobacter baumannii strains in the nosocomial setting in Latin America represents an emerging challenge to public health, as the range of therapeutic agents active against these pathogens becomes increasingly constrained. We review published reports from 2002 to 2013, compiling data from throughout the region on prevalence, mechanisms of resistance and molecular epidemiology of carbapenem-resistant strains of P. aeruginosa and A. baumannii. We find rates of carbapenem resistance up to 66% for P. aeruginosa and as high as 90% for A. baumannii isolates across the different countries of Latin America, with the resistance rate of A. baumannii isolates greater than 50% in many countries. An outbreak of the SPM-1 carbapenemase is a chief cause of resistance in P. aeruginosa strains in Brazil. Elsewhere in Latin America, members of the VIM family are the most important carbapenemases among P. aeruginosa strains. Carbapenem resistance in A. baumannii in Latin America is predominantly due to the oxacillinases OXA-23, OXA-58 and (in Brazil) OXA-143. Susceptibility of P. aeruginosa and A. baumannii to colistin remains high, however, development of resistance has already been detected in some countries. Better epidemiological data are needed to design effective infection control interventions.
Collapse
Affiliation(s)
- Jaime A Labarca
- a Department of Infectious Diseases , School of Medicine, Pontificia Universidad Católica de Chile , Lira , Santiago , Chile
| | | | - Carlos Seas
- c Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia , Lima , Perú , and
| | - Manuel Guzmán-Blanco
- d Hospital Privado Centro Médico de Caracas and Hospital Vargas de Caracas , Caracas , Venezuela
| |
Collapse
|
25
|
Mezzatesta ML, Caio C, Gona F, Cormaci R, Salerno I, Zingali T, Denaro C, Gennaro M, Quattrone C, Stefani S. Carbapenem and multidrug resistance in Gram-negative bacteria in a single centre in Italy: Considerations on in vitro assay of active drugs. Int J Antimicrob Agents 2014; 44:112-6. [DOI: 10.1016/j.ijantimicag.2014.04.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 04/16/2014] [Indexed: 10/25/2022]
|
26
|
Epidemic diffusion of OXA-23-producing Acinetobacter baumannii isolates in Italy: results of the first cross-sectional countrywide survey. J Clin Microbiol 2014; 52:3004-10. [PMID: 24920776 DOI: 10.1128/jcm.00291-14] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Carbapenem-resistant Acinetobacter baumannii (CRAb) is emerging worldwide as a public health problem in various settings. The aim of this study was to investigate the prevalence of CRAb isolates in Italy and to characterize their resistance mechanisms and genetic relatedness. A countrywide cross-sectional survey was carried out at 25 centers in mid-2011. CRAb isolates were reported from all participating centers, with overall proportions of 45.7% and 22.2% among consecutive nonreplicate clinical isolates of A. baumannii from inpatients (n = 508) and outpatients (n = 63), respectively. Most of them were resistant to multiple antibiotics, whereas all remained susceptible to colistin, with MIC50 and MIC90 values of ≤ 0.5 mg/liter. The genes coding for carbapenemase production were identified by PCR and sequencing. OXA-23 enzymes (found in all centers) were by far the most common carbapenemases (81.7%), followed by OXA-58 oxacillinases (4.5%), which were found in 7 of the 25 centers. In 6 cases, CRAb isolates carried both bla(OXA-23-like) and bla(OXA-58-like) genes. A repetitive extragenic palindromic (REP)-PCR technique, multiplex PCRs for group identification, and multilocus sequence typing (MLST) were used to determine the genetic relationships among representative isolates (n = 55). Two different clonal lineages were identified, including a dominant clone of sequence type 2 (ST2) related to the international clone II (sequence group 1 [SG1], SG4, and SG5) and a clone of ST78 (SG6) previously described in Italy. Overall, our results demonstrate that OXA-23 enzymes have become the most prevalent carbapenemases and are now endemic in Italy. In addition, molecular typing profiles showed the presence of international and national clonal lineages in Italy.
Collapse
|
27
|
Khajuria A, Praharaj AK, Kumar M, Grover N. Molecular Characterization of Carbapenem Resistant Isolates of Acinetobacter baumannii in An Intensive Care Unit of A Tertiary Care Centre at Central India. J Clin Diagn Res 2014; 8:DC38-40. [PMID: 24995182 DOI: 10.7860/jcdr/2014/7749.4398] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 04/02/2014] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To detect genes encoding carbapenem resistance in Acinetobacter baumannii in an intensive care unit. METHODS A. baumannii isolates were recovered from various clinical specimens of hospitalized patients admitted to the Medical and Surgical intensive care units of a tertiary care centre in Pune. Bacterial identification was performed by routine conventional microbial culture and biochemical tests using standard recommended techniques. Antibiotic sensitivity test was performed by standard Kirby Bauer disc diffusion technique. PCR amplification and automated sequencing was carried out. RESULTS A total of 155 /368 (42.11%) isolates A. baumannii were found to have reduced susceptibility to imipenem (diameter of zones of inhibition ≤13mm) by disc diffusion method. Among these 155 isolates tested 130 (83.87%) isolates showed MIC values for imipenem and meropenem ranging from16-64 mg/L as per CLSI breakpoints. Among these 155 isolates, Carbapenemase production was confirmed by Modified Hodge test for 93 (60%) isolates. Out of 155 isolates, DDST was positive for 89 (57.41%), CDST was positive for 73(47.09%) and MBL (IP/IPI) E-test was positive for 105 (67.74%). blaOXA-51 gene was detected in 47/105 (44.76%), blaOXA-23 gene in 55/105 (52.38%) and blaOXA-58 like gene in 15/105 (14.28%). CONCLUSION MBL production along with co- production of OXA enzymes are considered to be the important reason for resistance to imipenem in Acinetobacter in our health care settings. Hence, early detection of these drug resistant genes by molecular methods is essential in limiting the spread of infection due to these organisms.
Collapse
Affiliation(s)
- Atul Khajuria
- Demonstrator, Department of Microbiology, AIIMS , Bhubaneshwar, Odisha, India
| | - Ashok Kumar Praharaj
- Professor and Head, Department of Microbiology, AIIMS , Bhubaneshwar, Odisha, India
| | - Mahadevan Kumar
- Associate Professor, Department of Microbiology, Armed Forces Medical College , Pune, India
| | - Naveen Grover
- Associate Professor, Department of Microbiology, Armed Forces Medical College , Pune, India
| |
Collapse
|
28
|
Agodi A, Voulgari E, Barchitta M, Quattrocchi A, Bellocchi P, Poulou A, Santangelo C, Castiglione G, Giaquinta L, Romeo MA, Vrioni G, Tsakris A. Spread of a carbapenem- and colistin-resistant Acinetobacter baumannii ST2 clonal strain causing outbreaks in two Sicilian hospitals. J Hosp Infect 2014; 86:260-6. [PMID: 24680473 DOI: 10.1016/j.jhin.2014.02.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 02/01/2014] [Indexed: 11/30/2022]
Abstract
BACKGROUND Infections caused by multidrug-resistant (MDR) Acinetobacter baumannii have become an important healthcare-associated problem, particularly in intensive care units (ICUs). AIM To investigate the emergence of carbapenem- and colistin-resistant A. baumannii infections in two Sicilian hospitals. METHODS From October 2008 to May 2011, a period which included two Italian Nosocomial Infections Surveillance in ICUs network (SPIN-UTI) project surveys, all carbapenem-resistant A. baumannii isolates from the ICUs of two hospitals in Catania, Italy, were prospectively collected. Minimum inhibitory concentrations (MICs) were measured by agar dilution, and phenotypic testing for metallo-β-lactamase (MBL) production was performed. Carbapenem resistance genes and their genetic elements were identified by polymerase chain reaction and sequencing. Genotypic relatedness was assessed by pulsed-field gel electrophoresis (PFGE) and multi-locus sequence typing. Patient-based surveillance was conducted using the SPIN-UTI protocol and previous antibiotic consumption was recorded. FINDINGS Twenty-six carbapenem-resistant A. baumannii were identified. Imipenem and meropenem MICs ranged from 4 to >32 mg/L, and 15 isolates exhibited high-level colistin resistance (MICs >32 mg/L). PFGE demonstrated that all isolates belonged to a unique clonal type and were assigned to ST2 of the international clone II. They harboured an intrinsic blaOxA-51-like carbapenemase gene, blaOxA-82, which was flanked upstream by ISAba1. CONCLUSIONS The dissemination of clonally related isolates of carbapenem-resistant A. baumannii in two hospitals is described. Simultaneous resistance to colistin in more than half of the isolates is a problem for effective antibiotic treatment. Prior carbapenem and colistin consumption may have acted as triggering factors.
Collapse
Affiliation(s)
- A Agodi
- University of Catania, Department GF Ingrassia, Catania, Italy
| | - E Voulgari
- Department of Microbiology, Medical School, University of Athens, Athens, Greece
| | - M Barchitta
- University of Catania, Department GF Ingrassia, Catania, Italy
| | - A Quattrocchi
- University of Catania, Department GF Ingrassia, Catania, Italy
| | - P Bellocchi
- Azienda Ospedaliero - Universitaria 'Policlinico - Vittorio Emanuele', Catania, Italy
| | - A Poulou
- Department of Microbiology, Medical School, University of Athens, Athens, Greece
| | - C Santangelo
- Azienda Ospedaliero - Universitaria 'Policlinico - Vittorio Emanuele', Catania, Italy
| | - G Castiglione
- Azienda Ospedaliero - Universitaria 'Policlinico - Vittorio Emanuele', Catania, Italy
| | - L Giaquinta
- Azienda Ospedaliera Cannizzaro, Catania, Italy
| | - M A Romeo
- Azienda Ospedaliera Cannizzaro, Catania, Italy
| | - G Vrioni
- Department of Microbiology, Medical School, University of Athens, Athens, Greece
| | - A Tsakris
- Department of Microbiology, Medical School, University of Athens, Athens, Greece.
| |
Collapse
|
29
|
Todorova B, Velinov T, Ivanov I, Dobreva E, Kantardjiev T. First detection of OXA-24 carbapenemase-producing Acinetobacter baumannii isolates in Bulgaria. World J Microbiol Biotechnol 2013; 30:1427-30. [PMID: 24287943 DOI: 10.1007/s11274-013-1562-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 11/18/2013] [Indexed: 10/26/2022]
Abstract
This report describes the first identification of OXA-24 carbapenemase-producing Acinetobacter baumannii isolates from Bulgaria. According to national surveillance data A. baumannii along with Pseudomonas aeruginosa are the most troublesome microorganisms in hospital environment with high rates of acquired carbapenem resistance. In the present study real-time multiplex PCR was performed to identify the most common carbapenemase genes in 15 non-duplicate carbapenem-resistant A. baumannii isolates collected in 2012. The results showed lack of KPC, GES, VIM, IMP-type enzymes. Four A. baumannii isolates tested positive by PCR for the acquired OXA-24 together with the intrinsic OXA-51 carbapenemase. OXA-24 and OXA-23 were determined as co-existent in one isolate. Two isolates were identified with OXA-23 in addition to the OXA-51 carbapenemase.
Collapse
Affiliation(s)
- Bozhana Todorova
- National Center of Infectious and Parasitic Diseases (NCIPD), 26, Yanko Sakazov Blvd, 1504, Sofia, Bulgaria,
| | | | | | | | | |
Collapse
|
30
|
Molecular epidemiology and mechanisms of tigecycline resistance in clinical isolates of Acinetobacter baumannii from a Chinese university hospital. Antimicrob Agents Chemother 2013; 58:297-303. [PMID: 24165187 DOI: 10.1128/aac.01727-13] [Citation(s) in RCA: 140] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Because of its remarkable ability to acquire antibiotic resistance and to survive in nosocomial environments, Acinetobacter baumannii has become a significant nosocomial infectious agent worldwide. Tigecycline is one of the few therapeutic options for treating infections caused by A. baumannii isolates. However, tigecycline resistance has increasingly been reported. Our aim was to assess the prevalence and characteristics of efflux-based tigecycline resistance in clinical isolates of A. baumannii collected from a hospital in China. A total of 74 A. baumannii isolates, including 64 tigecycline-nonsusceptible A. baumannii (TNAB) and 10 tigecycline-susceptible A. baumannii (TSAB) isolates, were analyzed. The majority of them were determined to be positive for adeABC, adeRS, adeIJK, and abeM, while the adeE gene was found in only one TSAB isolate. Compared with the levels in TSAB isolates, the mean expression levels of adeB, adeJ, adeG, and abeM in TNAB isolates were observed to increase 29-, 3-, 0.7-, and 1-fold, respectively. The efflux pump inhibitors (EPIs) phenyl-arginine-β-naphthylamide (PAβN) and carbonyl cyanide 3-chlorophenylhydrazone (CCCP) could partially reverse the resistance pattern of tigecycline. Moreover, the tetX1 gene was detected in 12 (18.8%) TNAB isolates. To our knowledge, this is the first report of the tetX1 gene being detected in A. baumannii isolates. ST208 and ST191, which both clustered into clonal complex 92 (CC92), were the predominant sequence types (STs). This study showed that the active efflux pump AdeABC appeared to play important roles in the tigecycline resistance of A. baumannii. The dissemination of TNAB isolates in our hospital is attributable mainly to the spread of CC92.
Collapse
|
31
|
Globally expanding carbapenemase finally appears in Spain: nosocomial outbreak of acinetobacter baumannii producing plasmid-encoded OXA-23 in Barcelona, Spain. Antimicrob Agents Chemother 2013; 57:5155-7. [PMID: 23877694 DOI: 10.1128/aac.01486-13] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Resistance of Acinetobacter baumannii clinical isolates to carbapenems is on the rise worldwide mainly in association with the production of OXA-23. Until recently, however, OXA-23 was absent in Spain. In this work, we report the molecular characterization of a hospital outbreak of OXA-23-producing A. baumannii in Barcelona caused by a multidrug-resistant (MDR) clone belonging to international clone IC-II/sequence type ST85 between October 2010 and May 2011. blaOXA-23 was carried in a plasmid of 90 kb and located within the composite transposon Tn2006.
Collapse
|
32
|
RND-type efflux pumps in multidrug-resistant clinical isolates of Acinetobacter baumannii: major role for AdeABC overexpression and AdeRS mutations. Antimicrob Agents Chemother 2013; 57:2989-95. [PMID: 23587960 DOI: 10.1128/aac.02556-12] [Citation(s) in RCA: 185] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Increased expression of chromosomal genes for resistance-nodulation-cell division (RND)-type efflux systems plays a major role in the multidrug resistance (MDR) of Acinetobacter baumannii. However, the relative contributions of the three most prevalent pumps, AdeABC, AdeFGH, and AdeIJK, have not been evaluated in clinical settings. We have screened 14 MDR clinical isolates shown to be distinct on the basis of multilocus sequence typing (MLST) and pulsed-field gel electrophoresis (PFGE) for the presence and overexpression of the three Ade efflux systems and analyzed the sequences of the regulators AdeRS, a two-component system, for AdeABC and AdeL, a LysR-type regulator, for AdeFGH. Gene adeB was detected in 13 of 14 isolates, and adeG and the intrinsic adeJ gene were detected in all strains. Significant overexpression of adeB was observed in 10 strains, whereas only 7 had moderately increased levels of expression of AdeFGH, and none overexpressed AdeIJK. Thirteen strains had reduced susceptibility to tigecycline, but there was no correlation between tigecycline MICs and the levels of AdeABC expression, suggesting the presence of other mechanisms for tigecycline resistance. No mutations were found in the highly conserved LysR regulator of the nine strains expressing AdeFGH. In contrast, functional mutations were found in conserved domains of AdeRS in all the strains that overexpressed AdeABC with two mutational hot spots, one in AdeS near histidine 149 suggesting convergent evolution and the other in the DNA binding domain of AdeR compatible with horizontal gene transfer. This report outlines the high incidence of AdeABC efflux pump overexpression in MDR A. baumannii as a result of a variety of single mutations in the corresponding two-component regulatory system.
Collapse
|
33
|
Karah N, Sundsfjord A, Towner K, Samuelsen Ø. Insights into the global molecular epidemiology of carbapenem non-susceptible clones of Acinetobacter baumannii. Drug Resist Updat 2012; 15:237-47. [PMID: 22841809 DOI: 10.1016/j.drup.2012.06.001] [Citation(s) in RCA: 198] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 06/29/2012] [Indexed: 12/17/2022]
Abstract
The global emergence of multidrug resistance (MDR) among Gram-negative bacteria has dramatically limited the therapeutic options. During the last two decades, Acinetobacter baumannii has become a pathogen of increased clinical importance due to its remarkable ability to cause outbreaks of infections and to acquire resistance to almost all currently used antibiotics, including the carbapenems. This review considers the literature on A. baumannii and data from multilocus sequence typing studies to explore the global population structure of A. baumannii and detect the occurrence of clonality, with the focus on the presence of specific resistance mechanisms such as the OXA-carbapenemases. The worldwide dissemination of MDR and carbapenem non-susceptible A. baumannii is associated with diverse genetic backgrounds, but predominated by a number of extensively distributed clones, such as CC92(B)/CC2(P) and CC109(B)/CC1(P), which have frequently been supplemented by acquired OXA-type carbapenemase genes.
Collapse
Affiliation(s)
- Nabil Karah
- Reference Centre for Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
| | | | | | | |
Collapse
|
34
|
Mammina C, Palma DM, Bonura C, Aleo A, Fasciana T, Sodano C, Saporito MA, Verde MS, Calà C, Cracchiolo AN, Tetamo R. Epidemiology and clonality of carbapenem-resistant Acinetobacter baumannii from an intensive care unit in Palermo, Italy. BMC Res Notes 2012; 5:365. [PMID: 22818424 PMCID: PMC3410802 DOI: 10.1186/1756-0500-5-365] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 07/20/2012] [Indexed: 01/18/2023] Open
Abstract
Background Multidrug-resistant Acinetobacter baumannii, initially considered as having a poor clinical relevance, is frequently isolated from infection cases in intensive care units. We describe the epidemiology of carbapenem resistant A. baumannii (CRAB) in a general ICU in Palermo, Italy, from October 2010 to March 2011. Findings 58 of 61 isolates exhibited MICs for meropenem or imipenem ≥16 mg/L. Forty-nine carried blaOXA-23 and two blaOXA-58 genes. Five subtype clusters were detected by rep-PCR. Clusters D and E included 10 isolates that tested negative for the carbapenem resistance genes. MLST attributed all isolates, but two, with sequence type (ST)2, whereas the two remaining isolates with ST78. The respiratory tract was the most common site of infection (26 out of 36 cases. 72.2%). A high infection related mortality rate was observed (18 out of 35 patients, 51.4%). Nineteen patients tested positive for other multidrug resistant organisms in addition to CRAB. In eight cases isolates belonging to distinct subtype clusters and/or with distinct carbapenemase profiles were identified. Conclusions Carbapenem resistance was prominently driven by the dissemination of CRAB isolates belonging to ST2, carrying the carbapenemase gene blaOXA-23. The colonization/infection of some patients by multiple strains is suggestive of an endemic circulation of CRAB.
Collapse
Affiliation(s)
- Caterina Mammina
- Department of Sciences for Health Promotion G, D'Alessandro, Section of Hygiene, University of Palermo, Palermo, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
|
36
|
Mataseje LF, Bryce E, Roscoe D, Boyd DA, Embree J, Gravel D, Katz K, Kibsey P, Kuhn M, Mounchili A, Simor A, Taylor G, Thomas E, Turgeon N, Mulvey MR. Carbapenem-resistant Gram-negative bacilli in Canada 2009-10: results from the Canadian Nosocomial Infection Surveillance Program (CNISP). J Antimicrob Chemother 2012; 67:1359-67. [PMID: 22398651 DOI: 10.1093/jac/dks046] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVES To investigate the occurrence and molecular mechanisms associated with carbapenemases in carbapenem-resistant Gram-negative isolates from Canadian cases. METHODS Twenty hospital sites across Canada submitted isolates for a 1 year period starting 1 September 2009. All Enterobacteriaceae with MICs ≥ 2 mg/L and Acinetobacter baumannii and Pseudomonas aeruginosa with MICs ≥ 16 mg/L of carbapenems were submitted to the National Microbiology Laboratory (NML) where carbapenem MICs were confirmed by Etest and isolates were characterized by PCR for carbapenemase genes, antimicrobial susceptibilities, PFGE and plasmid isolation. RESULTS A total of 444 isolates (298 P. aeruginosa, 134 Enterobacteriaceae and 12 A. baumannii) were submitted to the NML of which 274 (61.7%; 206 P. aeruginosa, 59 Enterobacteriaceae and 9 A. baumannii) met the inclusion criteria as determined by Etest. Carbapenemase genes were identified in 30 isolates: bla(GES-5) (n = 3; P. aeruginosa), bla(KPC-3) (n = 7; Enterobacteriaceae), bla(NDM-1) (n = 2; Enterobacteriaceae), bla(VIM-2) and bla(VIM-4) (n = 8; P. aeruginosa) bla(SME-2) (n = 1; Enterobacteriaceae) and bla(OXA-23) (n = m9; A. baumannii). PFGE identified a cluster in each of Enterobacteriaceae, P. aeruginosa and A. baumannii corresponding to isolates harbouring carbapenemase genes. Three KPC plasmid patterns (IncN and FllA) were identified where indistinguishable plasmid patterns were identified in unrelated clinical isolates. CONCLUSIONS Carbapenemases were rare at the time of this study. Dissemination of carbapenemases was due to both dominant clones and common plasmid backbones.
Collapse
Affiliation(s)
- L F Mataseje
- Public Health Agency of Canada, Winnipeg, MB, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Kempf M, Bakour S, Flaudrops C, Berrazeg M, Brunel JM, Drissi M, Mesli E, Touati A, Rolain JM. Rapid detection of carbapenem resistance in Acinetobacter baumannii using matrix-assisted laser desorption ionization-time of flight mass spectrometry. PLoS One 2012; 7:e31676. [PMID: 22359616 PMCID: PMC3280980 DOI: 10.1371/journal.pone.0031676] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 01/11/2012] [Indexed: 11/17/2022] Open
Abstract
Rapid detection of carbapenem-resistant Acinetobacter baumannii strains is critical and will benefit patient care by optimizing antibiotic therapies and preventing outbreaks. Herein we describe the development and successful application of a mass spectrometry profile generated by matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) that utilized the imipenem antibiotic for the detection of carbapenem resistance in a large series of A. baumannii clinical isolates from France and Algeria. A total of 106 A. baumannii strains including 63 well-characterized carbapenemase-producing and 43 non-carbapenemase-producing strains, as well as 43 control strains (7 carbapenem-resistant and 36 carbapenem-sensitive strains) were studied. After an incubation of bacteria with imipenem for up to 4 h, the mixture was centrifuged and the supernatant analyzed by MALDI-TOF MS. The presence and absence of peaks representing imipenem and its natural metabolite was analyzed. The result was interpreted as positive for carbapenemase production if the specific peak for imipenem at 300.0 m/z disappeared during the incubation time and if the peak of the natural metabolite at 254.0 m/z increased as measured by the area under the curves leading to a ratio between the peak for imipenem and its metabolite being <0.5. This assay, which was applied to the large series of A. baumannii clinical isolates, showed a sensitivity of 100.0% and a specificity of 100.0%. Our study is the first to demonstrate that this quick and simple assay can be used as a routine tool as a point-of-care method for the identification of A. baumannii carbapenemase-producers in an effort to prevent outbreaks and the spread of uncontrollable superbugs.
Collapse
Affiliation(s)
- Marie Kempf
- Aix-Marseille-Université, Unité de Recherche sur les Maladies Infectieuses et Tropicales Émergentes (URMITE), CNRS-IRD-INSERM UMR 6236, Méditerranée Infection, Faculté de Médecine et de Pharmacie, Marseille, France
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Evidence of diversity among epidemiologically related carbapenemase-producing Acinetobacter baumannii strains belonging to international clonal lineage II. J Clin Microbiol 2012; 50:590-7. [PMID: 22205821 DOI: 10.1128/jcm.05555-11] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Carbapenem-resistant Acinetobacter baumannii strains belonging to international clonal lineage II (ICL-II) have become predominant in intensive care units (ICUs) throughout Italy. Between 2005 and 2009, the carbapenem-hydrolyzing class D β-lactamase (CHDL) bla(OXA-23) gene became more prevalent than bla(OXA-58) among epidemic ICL-II strains showing extensive genetic similarity. These findings posed the question of whether CHDL gene replacement occurred in the homogeneous ICL-II population or a new OXA-23 clone(s) emerged and spread in ICUs. In this study, the changes in the ICL-II A. baumannii population and CHDL gene carriage were investigated in 30 genetically related isolates collected during the bla(OXA-58)-to-bla(OXA-23) transition period. Pulsotyping, randomly amplified polymorphic DNA (RAPD) analysis, and multilocus sequence typing (MLST) results were combined with multilocus variable-number tandem-repeat (VNTR) analysis (MLVA-8), siderotyping, and plasmid profiling to improve genotype-based discrimination between isolates. Pulsotyping, RAPD analysis, and MLST clustered isolates into a single type. MLVA-8 identified 19 types that clustered into three complexes. All OXA-23-producing isolates formed a single complex, while OXA-58 producers were split into two complexes. Southern blot analysis of the physical localization and genetic context of the CHDL genes showed that bla(OXA-58) was invariably located on plasmids, while bla(OXA-23) was present within Tn2006 on the chromosome or both the chromosome and plasmids. These data indicate that the apparently homogeneous population of CHDL-producing ICL-II strains was composed of several independent strains and that, between 2005 and 2009, distinct OXA-23 producers displaced the preexisting OXA-58 producers. Thus, MLVA-8 appears to be a suitable tool not only for investigating A. baumannii population structure but also for high-resolution epidemiological typing.
Collapse
|
39
|
Tn125-related acquisition of blaNDM-like genes in Acinetobacter baumannii. Antimicrob Agents Chemother 2011; 56:1087-9. [PMID: 22143526 DOI: 10.1128/aac.05620-11] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
A multidrug-resistant Acinetobacter baumannii isolate recovered from a patient hospitalized in Switzerland after a transfer from Serbia produced the NDM-1 carbapenemase. The bla(NDM-1) gene was part of a chromosomally located Tn125 composite transposon bracketed by two copies of the same insertion sequence, ISAba125. This transposon was also associated with the acquisition and expression of the bla(NDM-2) gene in an A. baumannii isolate in Germany. Tn125 appears to be the main vehicle for dissemination of bla(NDM) genes in that species.
Collapse
|