1
|
Nagy I, Nguyen TA. Characterizing and Eliminating the Inbreeding Load. Vet Sci 2023; 11:8. [PMID: 38250914 PMCID: PMC10819885 DOI: 10.3390/vetsci11010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 11/28/2023] [Accepted: 12/19/2023] [Indexed: 01/23/2024] Open
Abstract
The authors evaluated the relevant literature related to purging, which is the interaction between selection and inbreeding in which the population may eliminate its inbreeding load at least partially. According to the relevant literature, the inbreeding load and the process of purging were evaluated via pedigree methods based on ancestral inbreeding, the inbreeding-purging model, and expressed opportunity of purging, along with genomic methods. Most ancestral inbreeding-related studies were performed in zoos, where only a small proportion of the studied populations show signs of purging. The inbreeding-purging model was developed with Drosophila, and it was used to evaluate different zoo ungulates and Pannon white rabbits. Purging was detected in both studies. The expressed opportunity of purging was applied in Jersey cattle and Pannon white rabbits. In the Jersey cattle, it had an effect of 12.6% for fitness, while in the Pannon white rabbits, the inbreeding load was between 40% and 80% of its original value. The genomic studies also signalled purging, but they also made it clear that, contrary to the detected purging, the evaluated populations still suffered from inbreeding depression. Therefore, especially for domesticated animals, it can be concluded that deliberate inbreeding with the purpose of generating purging is not advocated.
Collapse
Affiliation(s)
- István Nagy
- Institute of Animal Sciences, Hungarian University of Agriculture and Life Sciences (MATE), Guba Sándor u. 40, 7400 Kaposvár, Hungary;
| | | |
Collapse
|
2
|
Afonso RO, Pina-Martins F, Friesen V, Sun Z, Campioni L, Madeiros J, Silva MC. No evidence of inbreeding depression despite a historical severe bottleneck in the endangered Bermuda petrel (Pterodroma cahow). J Hered 2023; 114:459-469. [PMID: 37162284 DOI: 10.1093/jhered/esad030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 05/08/2023] [Indexed: 05/11/2023] Open
Abstract
The Bermuda petrel Pterodroma cahow is an island endemic seabird that belongs to the Procellariiformes, one of the most endangered orders of birds. Historical records suggest a significant population size decline following human settlement in Bermuda, bringing the species to near extinction. Since the 1950s, the population has been recovering aided by the implementation of an ongoing conservation plan. However, it still faces several threats, and negative genetic effects resulting from that drastic decline are to be expected, including inbreeding and genetic drift. We studied genetic diversity and levels of inbreeding, and their effects on individual fitness and mating choice. We also tested for a genetic signature of the recent demographic bottleneck. For this, we analyzed variation in thousands of nuclear single-nucleotide polymorphisms derived from double digest restriction site-associated DNA sequencing and 1 mitochondrial gene (cytochrome oxidase I). The results revealed that the Bermuda petrel suffered a recent genetic bottleneck and shows low mitochondrial diversity compared with other petrel species. Conversely, nuclear diversity was similar to that of other endangered petrels. Inbreeding levels were not high overall, although some individuals were highly inbred. However, we found no evidence that individual inbreeding or relatedness between mates affected hatching success, or that mate choice is influenced by kinship in this very small population.
Collapse
Affiliation(s)
- Rita O Afonso
- cE3c-Centre for Ecology, Evolution and Environmental Changes & CHANGE-Global Change and Sustainability Institute, Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Francisco Pina-Martins
- cE3c-Centre for Ecology, Evolution and Environmental Changes & CHANGE-Global Change and Sustainability Institute, Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Vicki Friesen
- Department of Biology, Queen's University, Kingston, ON, Canada
| | - Zhengxin Sun
- Department of Biology, Queen's University, Kingston, ON, Canada
| | - Letizia Campioni
- MARE-Marine and Environmental Sciences Centre, Ispa-Instituto Universitário, Lisboa, Portugal
| | - Jeremy Madeiros
- Department of Environment and Natural Resources, Government of Bermuda, Hamilton, Bermuda
| | - Mónica C Silva
- cE3c-Centre for Ecology, Evolution and Environmental Changes & CHANGE-Global Change and Sustainability Institute, Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
3
|
Lagarde R, Ponton D. Predation pressure in amphidromous gobies: how their morphology is selected by predator species. J Zool (1987) 2022. [DOI: 10.1111/jzo.13021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- R. Lagarde
- Environnements Méditerranéens, Centre de Formation et de Recherche sur les Université de Perpignan Via Domitia – CNRS Perpignan France
| | - D. Ponton
- ENTROPIE, IRD‐Université de La Réunion‐CNRS‐Université de la Nouvelle‐Calédonie‐IFREMER, c/o, Institut Halieutique et des Sciences Marines (IH.SM) Université de Toliara Toliara Madagascar
| |
Collapse
|
4
|
Willi Y, Kristensen TN, Sgrò CM, Weeks AR, Ørsted M, Hoffmann AA. Conservation genetics as a management tool: The five best-supported paradigms to assist the management of threatened species. Proc Natl Acad Sci U S A 2022; 119:e2105076119. [PMID: 34930821 PMCID: PMC8740573 DOI: 10.1073/pnas.2105076119] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
About 50 y ago, Crow and Kimura [An Introduction to Population Genetics Theory (1970)] and Ohta and Kimura [Genet. Res. 22, 201-204 (1973)] laid the foundations of conservation genetics by predicting the relationship between population size and genetic marker diversity. This work sparked an enormous research effort investigating the importance of population dynamics, in particular small population size, for population mean performance, population viability, and evolutionary potential. In light of a recent perspective [J. C. Teixeira, C. D. Huber, Proc. Natl. Acad. Sci. U.S.A. 118, 10 (2021)] that challenges some fundamental assumptions in conservation genetics, it is timely to summarize what the field has achieved, what robust patterns have emerged, and worthwhile future research directions. We consider theory and methodological breakthroughs that have helped management, and we outline some fundamental and applied challenges for conservation genetics.
Collapse
Affiliation(s)
- Yvonne Willi
- Department of Environmental Sciences, University of Basel, 4056 Basel, Switzerland
| | - Torsten N Kristensen
- Department of Chemistry and Bioscience, Aalborg University, Aalborg 9220, Denmark
| | - Carla M Sgrò
- School of Biological Sciences, Monash University, Melbourne, VIC 3800, Australia
| | - Andrew R Weeks
- School of BioSciences, Bio21 Institute, University of Melbourne, Melbourne, VIC 3010, Australia
- Cesar Australia, Brunswick, VIC 3056, Australia
| | - Michael Ørsted
- Department of Chemistry and Bioscience, Aalborg University, Aalborg 9220, Denmark
- Department of Biology, Aarhus University, Aarhus 8000, Denmark
| | - Ary A Hoffmann
- School of BioSciences, Bio21 Institute, University of Melbourne, Melbourne, VIC 3010, Australia;
| |
Collapse
|
5
|
Pérez-Pereira N, Pouso R, Rus A, Vilas A, López-Cortegano E, García-Dorado A, Quesada H, Caballero A. Long-term exhaustion of the inbreeding load in Drosophila melanogaster. Heredity (Edinb) 2021; 127:373-383. [PMID: 34400819 PMCID: PMC8478893 DOI: 10.1038/s41437-021-00464-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 07/29/2021] [Accepted: 07/29/2021] [Indexed: 02/07/2023] Open
Abstract
Inbreeding depression, the decline in fitness of inbred individuals, is a ubiquitous phenomenon of great relevance in evolutionary biology and in the fields of animal and plant breeding and conservation. Inbreeding depression is due to the expression of recessive deleterious alleles that are concealed in heterozygous state in noninbred individuals, the so-called inbreeding load. Genetic purging reduces inbreeding depression by removing these alleles when expressed in homozygosis due to inbreeding. It is generally thought that fast inbreeding (such as that generated by full-sib mating lines) removes only highly deleterious recessive alleles, while slow inbreeding can also remove mildly deleterious ones. However, a question remains regarding which proportion of the inbreeding load can be removed by purging under slow inbreeding in moderately large populations. We report results of two long-term slow inbreeding Drosophila experiments (125-234 generations), each using a large population and a number of derived lines with effective sizes about 1000 and 50, respectively. The inbreeding load was virtually exhausted after more than one hundred generations in large populations and between a few tens and over one hundred generations in the lines. This result is not expected from genetic drift alone, and is in agreement with the theoretical purging predictions. Computer simulations suggest that these results are consistent with a model of relatively few deleterious mutations of large homozygous effects and partially recessive gene action.
Collapse
Affiliation(s)
- Noelia Pérez-Pereira
- grid.6312.60000 0001 2097 6738Centro de Investigación Mariña, Universidade de Vigo, Facultade de Bioloxía, Vigo, Spain
| | - Ramón Pouso
- grid.6312.60000 0001 2097 6738Centro de Investigación Mariña, Universidade de Vigo, Facultade de Bioloxía, Vigo, Spain
| | - Ana Rus
- grid.6312.60000 0001 2097 6738Centro de Investigación Mariña, Universidade de Vigo, Facultade de Bioloxía, Vigo, Spain
| | - Ana Vilas
- grid.6312.60000 0001 2097 6738Centro de Investigación Mariña, Universidade de Vigo, Facultade de Bioloxía, Vigo, Spain
| | - Eugenio López-Cortegano
- grid.6312.60000 0001 2097 6738Centro de Investigación Mariña, Universidade de Vigo, Facultade de Bioloxía, Vigo, Spain ,grid.4305.20000 0004 1936 7988Present Address: Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Aurora García-Dorado
- grid.4795.f0000 0001 2157 7667Facultad de Ciencias Biológicas, Departamento de Genética, Universidad Complutense, Madrid, Spain
| | - Humberto Quesada
- grid.6312.60000 0001 2097 6738Centro de Investigación Mariña, Universidade de Vigo, Facultade de Bioloxía, Vigo, Spain
| | - Armando Caballero
- grid.6312.60000 0001 2097 6738Centro de Investigación Mariña, Universidade de Vigo, Facultade de Bioloxía, Vigo, Spain
| |
Collapse
|
6
|
Kyriazis CC, Wayne RK, Lohmueller KE. Strongly deleterious mutations are a primary determinant of extinction risk due to inbreeding depression. Evol Lett 2021; 5:33-47. [PMID: 33552534 PMCID: PMC7857301 DOI: 10.1002/evl3.209] [Citation(s) in RCA: 116] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 11/10/2020] [Accepted: 11/21/2020] [Indexed: 11/08/2022] Open
Abstract
Human-driven habitat fragmentation and loss have led to a proliferation of small and isolated plant and animal populations with high risk of extinction. One of the main threats to extinction in these populations is inbreeding depression, which is primarily caused by recessive deleterious mutations becoming homozygous due to inbreeding. The typical approach for managing these populations is to maintain high genetic diversity, increasingly by translocating individuals from large populations to initiate a "genetic rescue." However, the limitations of this approach have recently been highlighted by the demise of the gray wolf population on Isle Royale, which declined to the brink of extinction soon after the arrival of a migrant from the large mainland wolf population. Here, we use a novel population genetic simulation framework to investigate the role of genetic diversity, deleterious variation, and demographic history in mediating extinction risk due to inbreeding depression in small populations. We show that, under realistic models of dominance, large populations harbor high levels of recessive strongly deleterious variation due to these mutations being hidden from selection in the heterozygous state. As a result, when large populations contract, they experience a substantially elevated risk of extinction after these strongly deleterious mutations are exposed by inbreeding. Moreover, we demonstrate that, although genetic rescue is broadly effective as a means to reduce extinction risk, its effectiveness can be greatly increased by drawing migrants from small or moderate-sized source populations rather than large source populations due to smaller populations harboring lower levels of recessive strongly deleterious variation. Our findings challenge the traditional conservation paradigm that focuses on maximizing genetic diversity in small populations in favor of a view that emphasizes minimizing strongly deleterious variation. These insights have important implications for managing small and isolated populations in the increasingly fragmented landscape of the Anthropocene.
Collapse
Affiliation(s)
- Christopher C. Kyriazis
- Department of Ecology and Evolutionary BiologyUniversity of CaliforniaLos AngelesCalifornia90095
| | - Robert K. Wayne
- Department of Ecology and Evolutionary BiologyUniversity of CaliforniaLos AngelesCalifornia90095
| | - Kirk E. Lohmueller
- Department of Ecology and Evolutionary BiologyUniversity of CaliforniaLos AngelesCalifornia90095
- Interdepartmental Program in BioinformaticsUniversity of CaliforniaLos AngelesCalifornia90095
- Department of Human Genetics, David Geffen School of MedicineUniversity of CaliforniaLos AngelesCalifornia90095
| |
Collapse
|
7
|
Purging of highly deleterious mutations through severe bottlenecks in Alpine ibex. Nat Commun 2020; 11:1001. [PMID: 32081890 PMCID: PMC7035315 DOI: 10.1038/s41467-020-14803-1] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 02/05/2020] [Indexed: 12/14/2022] Open
Abstract
Human activity has caused dramatic population declines in many wild species. The resulting bottlenecks have a profound impact on the genetic makeup of a species with unknown consequences for health. A key genetic factor for species survival is the evolution of deleterious mutation load, but how bottleneck strength and mutation load interact lacks empirical evidence. We analyze 60 complete genomes of six ibex species and the domestic goat. We show that historic bottlenecks rather than the current conservation status predict levels of genome-wide variation. By analyzing the exceptionally well-characterized population bottlenecks of the once nearly extinct Alpine ibex, we find genomic evidence of concurrent purging of highly deleterious mutations but accumulation of mildly deleterious mutations. This suggests that recolonization bottlenecks induced both relaxed selection and purging, thus reshaping the landscape of deleterious mutation load. Our findings highlight that even populations of ~1000 individuals can accumulate mildly deleterious mutations. Conservation efforts should focus on preventing population declines below such levels to ensure long-term survival of species. Although there is extensive theory predicting the effects of population bottlenecks on mutation load, there is little empirical evidence from recent bottlenecks. Here, Grossen et al. compare the consequences of population bottlenecks in six ibex species for genome-wide variation and mutation load.
Collapse
|
8
|
Affiliation(s)
- Graham P. Wallis
- Department of Zoology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
9
|
Todd ET, Ho SYW, Thomson PC, Ang RA, Velie BD, Hamilton NA. Founder-specific inbreeding depression affects racing performance in Thoroughbred horses. Sci Rep 2018; 8:6167. [PMID: 29670190 PMCID: PMC5906619 DOI: 10.1038/s41598-018-24663-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 04/05/2018] [Indexed: 11/18/2022] Open
Abstract
The Thoroughbred horse has played an important role in both sporting and economic aspects of society since the establishment of the breed in the 1700s. The extensive pedigree and phenotypic information available for the Thoroughbred horse population provides a unique opportunity to examine the effects of 300 years of selective breeding on genetic load. By analysing the relationship between inbreeding and racing performance of 135,572 individuals, we found that selective breeding has not efficiently alleviated the Australian Thoroughbred population of its genetic load. However, we found evidence for purging in the population that might have improved racing performance over time. Over 80% of inbreeding in the contemporary population is accounted for by a small number of ancestors from the foundation of the breed. Inbreeding to these ancestors has variable effects on fitness, demonstrating that an understanding of the distribution of genetic load is important in improving the phenotypic value of a population in the future. Our findings hold value not only for Thoroughbred and other domestic breeds, but also for small and endangered populations where such comprehensive information is not available.
Collapse
Affiliation(s)
- Evelyn T Todd
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia.
| | - Simon Y W Ho
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Peter C Thomson
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Rachel A Ang
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Brandon D Velie
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, 75007, Uppsala, Sweden
| | - Natasha A Hamilton
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
10
|
Circular mating as an option for the genetic management of captive populations: response to Caballero et al. Heredity (Edinb) 2017; 119:49-50. [PMID: 28327580 DOI: 10.1038/hdy.2017.16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
11
|
Hedrick PW, Garcia-Dorado A. Understanding Inbreeding Depression, Purging, and Genetic Rescue. Trends Ecol Evol 2016; 31:940-952. [DOI: 10.1016/j.tree.2016.09.005] [Citation(s) in RCA: 196] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 09/13/2016] [Accepted: 09/14/2016] [Indexed: 01/17/2023]
|
12
|
Hammerly SC, Cerda DA, Bailey H, Johnson JA. A pedigree gone bad: increased offspring survival after using DNA‐based relatedness to minimize inbreeding in a captive population. Anim Conserv 2015. [DOI: 10.1111/acv.12247] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- S. C. Hammerly
- Department of Biological Sciences Institute of Applied Sciences University of North Texas Denton TX USA
| | - D. A. Cerda
- Department of Biological Sciences Institute of Applied Sciences University of North Texas Denton TX USA
| | | | - J. A. Johnson
- Department of Biological Sciences Institute of Applied Sciences University of North Texas Denton TX USA
| |
Collapse
|
13
|
Kristensen TN, Hoffmann AA, Pertoldi C, Stronen AV. What can livestock breeders learn from conservation genetics and vice versa? Front Genet 2015; 6:38. [PMID: 25713584 PMCID: PMC4322732 DOI: 10.3389/fgene.2015.00038] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 01/26/2015] [Indexed: 11/17/2022] Open
Abstract
The management of livestock breeds and threatened natural population share common challenges, including small effective population sizes, high risk of inbreeding, and the potential benefits and costs associated with mixing disparate gene pools. Here, we consider what has been learnt about these issues, the ways in which the knowledge gained from one area might be applied to the other, and the potential of genomics to provide new insights. Although there are key differences stemming from the importance of artificial versus natural selection and the decreased level of environmental heterogeneity experienced by many livestock populations, we suspect that information from genetic rescue in natural populations could be usefully applied to livestock. This includes an increased emphasis on maintaining substantial population sizes at the expense of genetic uniqueness in ensuring future adaptability, and on emphasizing the way that environmental changes can influence the relative fitness of deleterious alleles and genotypes in small populations. We also suspect that information gained from cross-breeding and the maintenance of unique breeds will be increasingly important for the preservation of genetic variation in small natural populations. In particular, selected genes identified in domestic populations provide genetic markers for exploring adaptive evolution in threatened natural populations. Genomic technologies in the two disciplines will be important in the future in realizing genetic gains in livestock and maximizing adaptive capacity in wildlife, and particularly in understanding how parts of the genome may respond differently when exposed to population processes and selection.
Collapse
Affiliation(s)
- Torsten N. Kristensen
- Section of Biology and Environmental Science, Department of Chemistry and Bioscience, Aalborg UniversityAalborg, Denmark
| | - Ary A. Hoffmann
- Department of Zoology and Department of Genetics, Bio21 Institute, The University of MelbourneMelbourne, VIC, Australia
| | - Cino Pertoldi
- Section of Biology and Environmental Science, Department of Chemistry and Bioscience, Aalborg UniversityAalborg, Denmark
- Aalborg ZooAalborg, Denmark
| | - Astrid V. Stronen
- Section of Biology and Environmental Science, Department of Chemistry and Bioscience, Aalborg UniversityAalborg, Denmark
| |
Collapse
|
14
|
Losdat S, Chang SM, Reid JM. Inbreeding depression in male gametic performance. J Evol Biol 2014; 27:992-1011. [DOI: 10.1111/jeb.12403] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 04/01/2014] [Accepted: 04/02/2014] [Indexed: 12/23/2022]
Affiliation(s)
- S. Losdat
- Institute of Biological and Environmental Sciences; School of Biological Sciences; University of Aberdeen; Aberdeen UK
| | - S.-M. Chang
- Plant Biology Department; University of Georgia; Athens GA USA
| | - J. M. Reid
- Institute of Biological and Environmental Sciences; School of Biological Sciences; University of Aberdeen; Aberdeen UK
| |
Collapse
|
15
|
Kennedy ES, Grueber CE, Duncan RP, Jamieson IG. SEVERE INBREEDING DEPRESSION AND NO EVIDENCE OF PURGING IN AN EXTREMELY INBRED WILD SPECIES-THE CHATHAM ISLAND BLACK ROBIN. Evolution 2013; 68:987-95. [DOI: 10.1111/evo.12315] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 11/01/2013] [Indexed: 11/27/2022]
Affiliation(s)
- Euan S. Kennedy
- Science and Capability; Department of Conservation; PO Box 4715 Christchurch 8140 New Zealand
| | - Catherine E. Grueber
- Department of Zoology and Allan Wilson Centre for Molecular Ecology and Evolution; University of Otago; PO Box 56 Dunedin New Zealand
| | - Richard P. Duncan
- Institute for Applied Ecology; University of Canberra; ACT 2601 Australia
| | - Ian G. Jamieson
- Department of Zoology and Allan Wilson Centre for Molecular Ecology and Evolution; University of Otago; PO Box 56 Dunedin New Zealand
| |
Collapse
|
16
|
Reid JM, Keller LF, Marr AB, Nietlisbach P, Sardell RJ, Arcese P. Pedigree error due to extra-pair reproduction substantially biases estimates of inbreeding depression. Evolution 2013; 68:802-15. [PMID: 24171712 DOI: 10.1111/evo.12305] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 10/17/2013] [Indexed: 11/28/2022]
Abstract
Understanding the evolutionary dynamics of inbreeding and inbreeding depression requires unbiased estimation of inbreeding depression across diverse mating systems. However, studies estimating inbreeding depression often measure inbreeding with error, for example, based on pedigree data derived from observed parental behavior that ignore paternity error stemming from multiple mating. Such paternity error causes error in estimated coefficients of inbreeding (f) and reproductive success and could bias estimates of inbreeding depression. We used complete "apparent" pedigree data compiled from observed parental behavior and analogous "actual" pedigree data comprising genetic parentage to quantify effects of paternity error stemming from extra-pair reproduction on estimates of f, reproductive success, and inbreeding depression in free-living song sparrows (Melospiza melodia). Paternity error caused widespread error in estimates of f and male reproductive success, causing inbreeding depression in male and female annual and lifetime reproductive success and juvenile male survival to be substantially underestimated. Conversely, inbreeding depression in adult male survival tended to be overestimated when paternity error was ignored. Pedigree error stemming from extra-pair reproduction therefore caused substantial and divergent bias in estimates of inbreeding depression that could bias tests of evolutionary theories regarding inbreeding and inbreeding depression and their links to variation in mating system.
Collapse
Affiliation(s)
- Jane M Reid
- Institute of Biological and Environmental Sciences, School of Biological Sciences, Zoology Building, University of Aberdeen, Tillydrone Avenue, Aberdeen, AB24 2TZ, Scotland.
| | | | | | | | | | | |
Collapse
|
17
|
Richter SC, Nunziata SO. Survival to metamorphosis is positively related to genetic variability in a critically endangered amphibian species. Anim Conserv 2013. [DOI: 10.1111/acv.12088] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- S. C. Richter
- Department of Biological Sciences; Eastern Kentucky University; Richmond KY USA
| | - S. O. Nunziata
- Department of Biological Sciences; Eastern Kentucky University; Richmond KY USA
| |
Collapse
|
18
|
Grueber CE, Wallis GP, Jamieson IG. Genetic drift outweighs natural selection at toll-like receptor (TLR) immunity loci in a re-introduced population of a threatened species. Mol Ecol 2013; 22:4470-82. [DOI: 10.1111/mec.12404] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 05/14/2013] [Accepted: 05/23/2013] [Indexed: 01/22/2023]
Affiliation(s)
| | - Graham P. Wallis
- Department of Zoology; University of Otago; PO Box 56 Dunedin 9054 New Zealand
| | - Ian G. Jamieson
- Department of Zoology; University of Otago; PO Box 56 Dunedin 9054 New Zealand
| |
Collapse
|
19
|
Shoemaker KT, Breisch AR, Jaycox JW, Gibbs JP. Reexamining the minimum viable population concept for long-lived species. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2013; 27:542-551. [PMID: 23458501 DOI: 10.1111/cobi.12028] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2012] [Accepted: 10/04/2012] [Indexed: 06/01/2023]
Abstract
For decades conservation biologists have proposed general rules of thumb for minimum viable population size (MVP); typically, they range from hundreds to thousands of individuals. These rules have shifted conservation resources away from small and fragmented populations. We examined whether iteroparous, long-lived species might constitute an exception to general MVP guidelines. On the basis of results from a 10-year capture-recapture study in eastern New York (U.S.A.), we developed a comprehensive demographic model for the globally threatened bog turtle (Glyptemys muhlenbergii), which is designated as endangered by the IUCN in 2011. We assessed population viability across a wide range of initial abundances and carrying capacities. Not accounting for inbreeding, our results suggest that bog turtle colonies with as few as 15 breeding females have >90% probability of persisting for >100 years, provided vital rates and environmental variance remain at currently estimated levels. On the basis of our results, we suggest that MVP thresholds may be 1-2 orders of magnitude too high for many long-lived organisms. Consequently, protection of small and fragmented populations may constitute a viable conservation option for such species, especially in a regional or metapopulation context.
Collapse
Affiliation(s)
- Kevin T Shoemaker
- Department of Environmental and Forest Biology, State University of New York College of Environmental Science and Forestry, Syracuse, NY 13210, USA.
| | | | | | | |
Collapse
|
20
|
Bilski DR, Pie MR, Passos FC. Variable inbreeding effects across life-history stages in a captive carnivorous mammal population. Anim Conserv 2013. [DOI: 10.1111/acv.12038] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- D. R. Bilski
- Programa de Pós-Graduação em Ecologia e Conservação; Universidade Federal do Paraná; Curitiba PR Brazil
| | - M. R. Pie
- Departamento de Zoologia; Universidade Federal do Paraná; Curitiba PR Brazil
| | - F. C. Passos
- Departamento de Zoologia; Universidade Federal do Paraná; Curitiba PR Brazil
| |
Collapse
|
21
|
Townsend SM, Jamieson IG. Molecular and pedigree measures of relatedness provide similar estimates of inbreeding depression in a bottlenecked population. J Evol Biol 2013; 26:889-99. [DOI: 10.1111/jeb.12109] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 12/05/2012] [Accepted: 12/15/2012] [Indexed: 11/29/2022]
Affiliation(s)
- S. M. Townsend
- Allan Wilson Centre for Molecular Ecology and Evolution; Department of Zoology; University of Otago; Dunedin New Zealand
| | - I. G. Jamieson
- Allan Wilson Centre for Molecular Ecology and Evolution; Department of Zoology; University of Otago; Dunedin New Zealand
| |
Collapse
|
22
|
Garnett ST, Zander KK. Minimum viable population limitations ignore evolutionary history. Trends Ecol Evol 2011; 26:618-9; author reply 620-2. [DOI: 10.1016/j.tree.2011.08.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2011] [Revised: 08/11/2011] [Accepted: 08/16/2011] [Indexed: 10/17/2022]
|
23
|
GRUEBER CE, NAKAGAWA S, LAWS RJ, JAMIESON IG. Multimodel inference in ecology and evolution: challenges and solutions. J Evol Biol 2011; 24:699-711. [DOI: 10.1111/j.1420-9101.2010.02210.x] [Citation(s) in RCA: 1549] [Impact Index Per Article: 119.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|