1
|
Beza-Beza CF, Wiegmann BM, Ware JA, Petersen M, Gunter N, Cole ME, Schwarz M, Bertone MA, Young D, Mikaelyan A. Chewing through challenges: Exploring the evolutionary pathways to wood-feeding in insects. Bioessays 2024; 46:e2300241. [PMID: 38537113 DOI: 10.1002/bies.202300241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/14/2024] [Accepted: 02/26/2024] [Indexed: 04/23/2024]
Abstract
Decaying wood, while an abundant and stable resource, presents considerable nutritional challenges due to its structural rigidity, chemical recalcitrance, and low nitrogen content. Despite these challenges, certain insect lineages have successfully evolved saproxylophagy (consuming and deriving sustenance from decaying wood), impacting nutrient recycling in ecosystems and carbon sequestration dynamics. This study explores the uneven phylogenetic distribution of saproxylophagy across insects and delves into the evolutionary origins of this trait in disparate insect orders. Employing a comprehensive analysis of gut microbiome data, from both saproxylophagous insects and their non-saproxylophagous relatives, including new data from unexplored wood-feeding insects, this Hypothesis paper discusses the broader phylogenetic context and potential adaptations necessary for this dietary specialization. The study proposes the "Detritivore-First Hypothesis," suggesting an evolutionary pathway to saproxylophagy through detritivory, and highlights the critical role of symbiotic gut microbiomes in the digestion of decaying wood.
Collapse
Affiliation(s)
- Cristian F Beza-Beza
- Department of Entomology, University of Minnesota, St Paul, Minnesota, USA
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina, USA
| | - Brian M Wiegmann
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina, USA
| | - Jessica A Ware
- Department of Biological Sciences, Rutgers University, Newark, New Jersey, USA
| | - Matt Petersen
- Department of Entomology, University of Minnesota, St Paul, Minnesota, USA
| | - Nicole Gunter
- Biodiversity and Geosciences Program, Queensland Museum, South Brisbane, Queensland, Australia
| | - Marissa E Cole
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina, USA
| | - Melbert Schwarz
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina, USA
| | - Matthew A Bertone
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina, USA
| | - Daniel Young
- Department of Entomology, University of Wisconsin, Madison, Wisconsin, USA
| | - Aram Mikaelyan
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
2
|
Amalgamated cross-species transcriptomes reveal organ-specific propensity in gene expression evolution. Nat Commun 2020; 11:4459. [PMID: 32900997 PMCID: PMC7479108 DOI: 10.1038/s41467-020-18090-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 07/29/2020] [Indexed: 12/24/2022] Open
Abstract
The origins of multicellular physiology are tied to evolution of gene expression. Genes can shift expression as organisms evolve, but how ancestral expression influences altered descendant expression is not well understood. To examine this, we amalgamate 1,903 RNA-seq datasets from 182 research projects, including 6 organs in 21 vertebrate species. Quality control eliminates project-specific biases, and expression shifts are reconstructed using gene-family-wise phylogenetic Ornstein-Uhlenbeck models. Expression shifts following gene duplication result in more drastic changes in expression properties than shifts without gene duplication. The expression properties are tightly coupled with protein evolutionary rate, depending on whether and how gene duplication occurred. Fluxes in expression patterns among organs are nonrandom, forming modular connections that are reshaped by gene duplication. Thus, if expression shifts, ancestral expression in some organs induces a strong propensity for expression in particular organs in descendants. Regardless of whether the shifts are adaptive or not, this supports a major role for what might be termed preadaptive pathways of gene expression evolution.
Collapse
|
3
|
Schack CR, Gordon DP, Ryan KG. Modularity is the mother of invention: a review of polymorphism in bryozoans. Biol Rev Camb Philos Soc 2018; 94:773-809. [DOI: 10.1111/brv.12478] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 10/15/2018] [Accepted: 10/18/2018] [Indexed: 11/28/2022]
Affiliation(s)
- Carolann R. Schack
- School of Biological SciencesVictoria University of Wellington PO Box 600, Wellington, 6140 New Zealand
- National Institute of Water & Atmospheric Research Private Bag 14901, Kilbirnie, Wellington, 6021 New Zealand
| | - Dennis P. Gordon
- National Institute of Water & Atmospheric Research Private Bag 14901, Kilbirnie, Wellington, 6021 New Zealand
| | - Ken G. Ryan
- School of Biological SciencesVictoria University of Wellington PO Box 600, Wellington, 6140 New Zealand
| |
Collapse
|