1
|
Liao X, Tao B, Zhang X, Chen L, Chen J, Song Y, Hu W. Loss of gdnfa disrupts spermiogenesis and male courtship behavior in zebrafish. Mol Cell Endocrinol 2023; 576:112010. [PMID: 37419437 DOI: 10.1016/j.mce.2023.112010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/19/2023] [Accepted: 07/04/2023] [Indexed: 07/09/2023]
Abstract
Spermatogenesis is essential for establishment and maintenance of reproduction in male vertebrates. Spermatogenesis, which is mainly regulated by the combined action of hormones, growth factors, and epigenetic factors, is highly conserved. Glial cell line-derived neurotrophic factor (GDNF) is a member of the transforming growth factor-β superfamily. In this study, global gdnfa knockout and Tg (gdnfa: mcherry) transgenic zebrafish lines were generated. Loss of gdnfa resulted in disorganized testes, decreased gonadosomatic index, and low percentage of mature spermatozoa. In the Tg (gdnfa: mcherry) zebrafish line, we found that gdnfa was expressed in Leydig cells. The mutation in gdnfa significantly decreased Leydig cell marker gene expression and androgen secretion in Leydig cells. In addition, courtship behavior was disrupted in the male mutants. We present in vivo data showing that global knockout of gdnfa disrupts spermiogenesis and male courtship behavior in zebrafish. The first viable vertebrate model with a global gdnfa knockout may be valuable for studying the role of GDNF in animal reproduction.
Collapse
Affiliation(s)
- Xianyao Liao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hubei Hongshan Laboratory, Wuhan, 430072, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Binbin Tao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hubei Hongshan Laboratory, Wuhan, 430072, China.
| | - Xiya Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hubei Hongshan Laboratory, Wuhan, 430072, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lu Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hubei Hongshan Laboratory, Wuhan, 430072, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ji Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hubei Hongshan Laboratory, Wuhan, 430072, China
| | - Yanlong Song
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hubei Hongshan Laboratory, Wuhan, 430072, China
| | - Wei Hu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hubei Hongshan Laboratory, Wuhan, 430072, China; Guangdong Laboratory for Lingnan Modem Agriculture, China; Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
2
|
Gdnf Acts as a Germ Cell-Derived Growth Factor and Regulates the Zebrafish Germ Stem Cell Niche in Autocrine- and Paracrine-Dependent Manners. Cells 2022; 11:cells11081295. [PMID: 35455974 PMCID: PMC9030868 DOI: 10.3390/cells11081295] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 03/27/2022] [Accepted: 04/06/2022] [Indexed: 11/30/2022] Open
Abstract
Glial cell line-derived neurotrophic factor (GDNF) and its receptor (GDNF Family Receptor α1-GFRα1) are well known to mediate spermatogonial stem cell (SSC) proliferation and survival in mammalian testes. In nonmammalian species, Gdnf and Gfrα1 orthologs have been found but their functions remain poorly investigated in the testes. Considering this background, this study aimed to understand the roles of the Gdnf-Gfrα1 signaling pathway in zebrafish testes by combining in vivo, in silico and ex vivo approaches. Our analysis showed that zebrafish exhibit two paralogs for Gndf (gdnfa and gdnfb) and its receptor, Gfrα1 (gfrα1a and gfrα1b), in accordance with a teleost-specific third round of whole genome duplication. Expression analysis further revealed that both ligands and receptors were expressed in zebrafish adult testes. Subsequently, we demonstrated that gdnfa is expressed in the germ cells, while Gfrα1a/Gfrα1b was detected in early spermatogonia (mainly in types Aund and Adiff) and Sertoli cells. Functional ex vivo analysis showed that Gdnf promoted the creation of new available niches by stimulating the proliferation of both type Aund spermatogonia and their surrounding Sertoli cells but without changing pou5f3 mRNA levels. Strikingly, Gdnf also inhibited late spermatogonial differentiation, as shown by the decrease in type B spermatogonia and down-regulation of dazl in a co-treatment with Fsh. Altogether, our data revealed that a germ cell-derived factor is involved in maintaining germ cell stemness through the creation of new available niches, supporting the development of spermatogonial cysts and inhibiting late spermatogonial differentiation in autocrine- and paracrine-dependent manners.
Collapse
|
3
|
Rore H, Owen N, Piña-Aguilar RE, Docherty K, Sekido R. Testicular somatic cell-like cells derived from embryonic stem cells induce differentiation of epiblasts into germ cells. Commun Biol 2021; 4:802. [PMID: 34183774 PMCID: PMC8239049 DOI: 10.1038/s42003-021-02322-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 06/09/2021] [Indexed: 02/06/2023] Open
Abstract
Regeneration of the testis from pluripotent stem cells is a real challenge, reflecting the complexity of the interaction of germ cells and somatic cells. Here we report the generation of testicular somatic cell-like cells (TesLCs) including Sertoli cell-like cells (SCLCs) from mouse embryonic stem cells (ESCs) in xeno-free culture. We find that Nr5a1/SF1 is critical for interaction between SCLCs and PGCLCs. Intriguingly, co-culture of TesLCs with epiblast-like cells (EpiLCs), rather than PGCLCs, results in self-organised aggregates, or testicular organoids. In the organoid, EpiLCs differentiate into PGCLCs or gonocyte-like cells that are enclosed within a seminiferous tubule-like structure composed of SCLCs. Furthermore, conditioned medium prepared from TesLCs has a robust inducible activity to differentiate EpiLCs into PGCLCs. Our results demonstrate conditions for in vitro reconstitution of a testicular environment from ESCs and provide further insights into the generation of sperm entirely in xeno-free culture.
Collapse
Affiliation(s)
- Holly Rore
- Institute of Medical Sciences, Foresterhill, University of Aberdeen, Aberdeen, UK
| | - Nicholas Owen
- Institute of Ophthalmology, University College London, London, UK
| | | | - Kevin Docherty
- Institute of Medical Sciences, Foresterhill, University of Aberdeen, Aberdeen, UK
| | - Ryohei Sekido
- Institute of Medical Sciences, Foresterhill, University of Aberdeen, Aberdeen, UK.
- Institute of Ophthalmology, University College London, London, UK.
| |
Collapse
|
4
|
Ayers KL, Lambeth LS, Davidson NM, Sinclair AH, Oshlack A, Smith CA. Identification of candidate gonadal sex differentiation genes in the chicken embryo using RNA-seq. BMC Genomics 2015; 16:704. [PMID: 26377738 PMCID: PMC4574023 DOI: 10.1186/s12864-015-1886-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 08/27/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Despite some advances in recent years, the genetic control of gonadal sex differentiation during embryogenesis is still not completely understood. To identify new candidate genes involved in ovary and testis development, RNA-seq was used to define the transcriptome of embryonic chicken gonads at the onset of sexual differentiation (day 6.0/stage 29). RESULTS RNA-seq revealed more than 1000 genes that were transcribed in a sex-biased manner at this early stage of gonadal differentiation. Comparison with undifferentiated gonads revealed that sex biased expression was derived primarily from autosomal rather than sex-linked genes. Gene ontology and pathway analysis indicated that many of these genes encoded proteins involved in extracellular matrix function and cytoskeletal remodelling, as well as tubulogenesis. Several of these genes are novel candidate regulators of gonadal sex differentiation, based on sex-biased expression profiles that are altered following experimental sex reversal. We further characterised three female-biased (ovarian) genes; calpain-5 (CAPN5), G-protein coupled receptor 56 (GPR56), and FGFR3 (fibroblast growth factor receptor 3). Protein expression of these candidates in the developing ovaries suggests that they play an important role in this tissue. CONCLUSIONS This study provides insight into the earliest steps of vertebrate gonad sex differentiation, and identifies novel candidate genes for ovarian and testicular development.
Collapse
Affiliation(s)
- Katie L Ayers
- Murdoch Childrens Research Institute, Royal Children's Hospital, Flemington Road, 3052, Parkville, VIC, Australia. .,Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia.
| | - Luke S Lambeth
- Murdoch Childrens Research Institute, Royal Children's Hospital, Flemington Road, 3052, Parkville, VIC, Australia.
| | - Nadia M Davidson
- Murdoch Childrens Research Institute, Royal Children's Hospital, Flemington Road, 3052, Parkville, VIC, Australia.
| | - Andrew H Sinclair
- Murdoch Childrens Research Institute, Royal Children's Hospital, Flemington Road, 3052, Parkville, VIC, Australia. .,Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia.
| | - Alicia Oshlack
- Murdoch Childrens Research Institute, Royal Children's Hospital, Flemington Road, 3052, Parkville, VIC, Australia.
| | - Craig A Smith
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, 3168, Australia.
| |
Collapse
|
5
|
Fan YS, Hu YJ, Yang WX. TGF-β superfamily: how does it regulate testis development. Mol Biol Rep 2011; 39:4727-41. [DOI: 10.1007/s11033-011-1265-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2011] [Accepted: 09/14/2011] [Indexed: 12/26/2022]
|
6
|
Yang Y, Han C. GDNF stimulates the proliferation of cultured mouse immature Sertoli cells via its receptor subunit NCAM and ERK1/2 signaling pathway. BMC Cell Biol 2010; 11:78. [PMID: 20955573 PMCID: PMC2967512 DOI: 10.1186/1471-2121-11-78] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Accepted: 10/18/2010] [Indexed: 01/15/2023] Open
Abstract
Background The proliferation and final density of Sertoli cells in the testis are regulated by hormones and local factors. Glial cell line-derived neurotrophic factor (GDNF), a distantly related member of the transforming growth factor-β superfamily, and its receptor subunits GDNF family receptor alpha 1 (GFRα1), RET tyrosine kinase, and neural cell adhesion molecule (NCAM) have been reported to be expressed in the testis and involved in the regulation of proliferation of immature Sertoli cells (ISCs). However, the expression patterns of these receptor subunits and the downstream signaling pathways have not been addressed in ISCs. Results In the present study, we have reported that the proliferation of cultured ISCs was significantly enhanced by GDNF. The receptor subunits GFRα1 and NCAM but not RET were expressed in ISCs, and the stimulatory effect of GDNF on the proliferation of ISCs was significantly reduced by anti-NCAM antibody blocking or siRNA that specifically targets NCAM mRNA. Additionally, the ERK1/2 inhibitor, PD98059, completely abolished the mitogenic effect of GDNF on ISCs. Conclusions GDNF stimulates the proliferation of ISCs via its receptor subunit NCAM and the consequent activation of the ERK1/2 signaling pathway.
Collapse
Affiliation(s)
- Yongguang Yang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100080, China
| | | |
Collapse
|
7
|
Dole G, Nilsson EE, Skinner MK. Glial-derived neurotrophic factor promotes ovarian primordial follicle development and cell-cell interactions during folliculogenesis. Reproduction 2008; 135:671-82. [PMID: 18304989 DOI: 10.1530/rep-07-0405] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Female fertility is determined in part by the size and development of the primordial follicle pool. The current study investigates the role of glial cell-line-derived neurotrophic factor (GDNF) in the regulation of primordial follicle development in the ovary. Ovaries from 4-day-old female rat pups were maintained in organ culture for 10 days in the absence (control) or presence of GDNF or kit ligand (KL)/stem cell factor. Ovaries treated with GDNF contained a significant increase in developing follicles, similar to that observed with KL treatment previously shown to promote follicle development. The actions of GDNF on the ovarian transcriptome were investigated with a microarray analysis. Immunohistochemical studies demonstrated that GDNF is localized to oocyte cytoplasm in follicles of all developmental stages, as well as to cumulus granulosa cells and theca cells in antral follicles. GDNF receptor alpha1 (GFRalpha1) staining was localized to oocyte cytoplasm of primordial and primary follicles, and at reduced levels in the oocytes of antral follicles. GFRalpha1 was present in mural granulosa cells of antral follicles, theca cells, and ovarian surface epithelium. The localization studies were confirmed with molecular analysis. Microarray analysis was used to identify changes in the ovarian transcriptome and further elucidate the signaling network regulating early follicle development. Observations indicate that GDNF promotes primordial follicle development and mediates autocrine and paracrine cell-cell interactions required during folliculogenesis. In contrast to the testis, ovarian GDNF is predominantly produced by germ cells (oocytes) rather than somatic cells.
Collapse
Affiliation(s)
- Gretchen Dole
- School of Molecular Biosciences, Center for Reproductive Biology, Washington State University, Pullman, Washington 99164-4231, USA
| | | | | |
Collapse
|
8
|
Mackay S, Smith RA. Effects of growth factors on testicular morphogenesis. INTERNATIONAL REVIEW OF CYTOLOGY 2007; 260:113-73. [PMID: 17482905 DOI: 10.1016/s0074-7696(06)60003-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Since the discovery of the sex-determining gene Sry in 1990, research effort has focused on the events downstream of its expression. A range of different experimental approaches including gene expression, knocking-out and knocking-in genes of interest, and cell and tissue culture techniques have been applied, highlighting the importance of growth factors at all stages of testicular morphogenesis. Migration of primordial germ cells and the mesonephric precursors of peritubular myoid cells and endothelial cells to the gonad is under growth factor control. Proliferation of both germ cells and somatic cells within the gonadal primordium is also controlled by cytokines as is the interaction of Sertoli cells (with each other and with the extracellular matrix) to form testicular cords. Several growth factors/growth factor families (e.g., platelet-derived growth factor, fibroblast growth factor family, TGFbeta family, and neurotrophins) have emerged as key players, exerting an influence at different time points and steps in organogenesis. Although most evidence has emerged in the mouse, comparative studies are important in elucidating the variety, potential, and evolution of control mechanisms.
Collapse
Affiliation(s)
- Sarah Mackay
- Division of Neuroscience and Biomedical Systems, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow, UK, G12 8QQ
| | | |
Collapse
|