Kotoulas C, Panagiotou I, Tsipas P, Melachrinou M, Alexopoulos D, Dougenis D. Experimental studies in the bronchial circulation. Which is the ideal animal model?
J Thorac Dis 2014;
6:1506-12. [PMID:
25364530 DOI:
10.3978/j.issn.2072-1439.2014.09.32]
[Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 09/09/2014] [Indexed: 11/14/2022]
Abstract
BACKGROUND
The importance of the role of bronchial arteries is notable in modern days thoracic surgery. The significance of their anastomoses with adjusted structures has not yet been sufficiently rated, especially in cases of haemoptysis, heart-lung transplantations and treatment of aneurysms of the thoracic aorta. The need of a thorough study is more relevant than ever and appropriate laboratory animals are required.
METHODS
We review the literature in order to highlight the ideal experimental animal for the implementation of pilot programs relative to the bronchial circulation. A comparative analysis of the anatomy of the bronchial arterial system in humans along with these of pigs, dogs, rats, and birds, as being the most commonly used laboratory animals, is presented in details.
RESULTS
The pig has the advantage that the broncho-oesophageal artery usually originates from the aorta as a single vessel, which makes the recognition and dissection of the artery easy to perform. In dogs, there is significant anatomical variation of the origin of the bronchial arteries. In rats, bronchial artery coming from the aorta is a rare event while in birds the pattern of the bronchial artery tree is clearly different from the human analog.
CONCLUSIONS
The pig is anatomically and physiologically suited for experimental studies on the bronchial circulation. The suitable bronchial anatomy and physiology along with the undeniable usefulness of the pig in experimental research and the low maintenance cost make the pig the ideal model for experiments in bronchial circulation.
Collapse