1
|
Little D, Amadio PC, Awad HA, Cone SG, Dyment NA, Fisher MB, Huang AH, Koch DW, Kuntz AF, Madi R, McGilvray K, Schnabel LV, Shetye SS, Thomopoulos S, Zhao C, Soslowsky LJ. Preclinical tendon and ligament models: Beyond the 3Rs (replacement, reduction, and refinement) to 5W1H (why, who, what, where, when, how). J Orthop Res 2023; 41:2133-2162. [PMID: 37573480 PMCID: PMC10561191 DOI: 10.1002/jor.25678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/21/2023] [Accepted: 08/02/2023] [Indexed: 08/14/2023]
Abstract
Several tendon and ligament animal models were presented at the 2022 Orthopaedic Research Society Tendon Section Conference held at the University of Pennsylvania, May 5 to 7, 2022. A key objective of the breakout sessions at this meeting was to develop guidelines for the field, including for preclinical tendon and ligament animal models. This review summarizes the perspectives of experts for eight surgical small and large animal models of rotator cuff tear, flexor tendon transection, anterior cruciate ligament tear, and Achilles tendon injury using the framework: "Why, Who, What, Where, When, and How" (5W1H). A notable conclusion is that the perfect tendon model does not exist; there is no single gold standard animal model that represents the totality of tendon and ligament disease. Each model has advantages and disadvantages and should be carefully considered in light of the specific research question. There are also circumstances when an animal model is not the best approach. The wide variety of tendon and ligament pathologies necessitates choices between small and large animal models, different anatomic sites, and a range of factors associated with each model during the planning phase. Attendees agreed on some guiding principles including: providing clear justification for the model selected, providing animal model details at publication, encouraging sharing of protocols and expertise, improving training of research personnel, and considering greater collaboration with veterinarians. A clear path for translating from animal models to clinical practice was also considered as a critical next step for accelerating progress in the tendon and ligament field.
Collapse
Affiliation(s)
- Dianne Little
- Department of Basic Medical Sciences, The Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Peter C Amadio
- Department of Orthopaedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Hani A Awad
- Department of Orthopaedics, Department of Biomedical Engineering, The Center for Musculoskeletal Research, University of Rochester, Rochester, New York, USA
| | - Stephanie G Cone
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware, USA
| | - Nathaniel A Dyment
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Matthew B Fisher
- Joint Department of Biomedical Engineering, College of Engineering, North Carolina State University-University of North Carolina at Chapel Hill, Raleigh, North Carolina, USA
| | - Alice H Huang
- Department of Orthopedic Surgery, Department of Biomedical Engineering, Columbia University, New York, New York, USA
| | - Drew W Koch
- Department of Clinical Sciences, College of Veterinary Medicine, and Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina, USA
| | - Andrew F Kuntz
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Rashad Madi
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kirk McGilvray
- Department of Mechanical Engineering, School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado, USA
| | - Lauren V Schnabel
- Department of Clinical Sciences, College of Veterinary Medicine, and Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina, USA
| | - Snehal S Shetye
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Stavros Thomopoulos
- Department of Orthopedic Surgery, Department of Biomedical Engineering, Columbia University, New York, New York, USA
| | - Chunfeng Zhao
- Department of Orthopaedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Louis J Soslowsky
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
2
|
Quam VG, Altmann NN, Brokken MT, Durgam SS. Zonal characterization and differential trilineage potentials of equine intrasynovial deep digital flexor tendon-derived cells. BMC Vet Res 2021; 17:138. [PMID: 33794882 PMCID: PMC8015054 DOI: 10.1186/s12917-021-02793-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 02/08/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Intrasynovial deep digital flexor tendon (DDFT) injuries occur frequently and are often implicated in cases of navicular disease with poor outcomes and reinjuries. Cell-based approaches to tendon healing are gaining traction in veterinary medicine and ultimately may contribute to improved DDFT healing in horses. However, a better understanding of the innate cellular characteristics of equine DDFT is necessary for developing improved therapeutic strategies. Additionally, fibrocartilaginous, intrasynovial tendons like the DDFT are common sites of injury and share a poor prognosis across species, offering translational applications of this research. The objective of this study is to isolate and characterize tendon-derived cells (TDC) from intrasynovial DDFT harvested from within the equine forelimb podotrochlear bursa. TDC from the fibrocartilaginous and tendinous zones are separately isolated and assessed. Flow cytometry is performed for mesenchymal stem cell (MSC) surface markers (CD 29, CD 44, CD 90). Basal tenogenic, osteogenic and chondrogenic markers are assessed via quantitative real time-PCR, and standard trilineage differentiation is performed with third passage TDC from the fibrocartilaginous (fTDC) and tendinous (tTDC) zones of DDFT. RESULTS Low-density plating isolated homogenous TDC populations from both zones. During monolayer passage, both TDC subpopulations exhibited clonogenicity, high in vitro proliferation rate, and fibroblast-like morphology. fTDC and tTDC were positive for MSC surface markers CD90 and CD29 and negative for CD44. There were no significant differences in basal tenogenic, osteogenic or chondrogenic marker expression between zones. While fTDC were largely restricted to chondrogenic differentiation, tTDC underwent osteogenic and chondrogenic differentiation. Both TDC subpopulations displayed weak adipogenic differentiation potentials. CONCLUSIONS TDC at the level of the podotrochlear bursa, that potentially could be targeted for enhancing DDFT injury healing in horses were identified and characterized. Pending further investigation, promoting chondrogenic properties in cells administered exogenously into the intrasynovial space may be beneficial for intrasynovial tendon regeneration.
Collapse
Affiliation(s)
- Vivian G Quam
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, 601 Vernon L. Tharp Street, Columbus, OH, USA
| | - Nadine N Altmann
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, 601 Vernon L. Tharp Street, Columbus, OH, USA
| | - Matthew T Brokken
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, 601 Vernon L. Tharp Street, Columbus, OH, USA
| | - Sushmitha S Durgam
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, 601 Vernon L. Tharp Street, Columbus, OH, USA.
| |
Collapse
|
3
|
Qiu B, Cobb J, Loiselle AE, Ketonis C. Development of a Murine Model of Pyogenic Flexor Tenosynovitis. J Bone Joint Surg Am 2021; 103:432-438. [PMID: 33411464 DOI: 10.2106/jbjs.20.00428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Pyogenic flexor tenosynovitis is a debilitating infection of the hand flexor tendon sheath with high morbidity despite standard treatments of empiric antibiotics with irrigation and debridement. In vivo studies in the available literature have used avian models, but these models are difficult to scale and maintain. The purpose of this study was to demonstrate the plausibility of a murine model of pyogenic flexor tenosynovitis utilizing bioluminescence imaging and tissue analysis at harvest. METHODS A 2-μL inoculate of bioluminescent Xen29 Staphylococcus aureus or sterile phosphate-buffered saline solution (sPBS) was administered to the tendon sheath of 36 male C57BL/6J mice. The infectious course was monitored by bioluminescence imaging (BLI) via an in vivo imaging system, gross anatomic deformity, and weight change. The infected hind paws were harvested at 4 time points: 24 hours, 72 hours, 1 week, and 2 weeks for histological analysis using Alcian blue, hematoxylin, and Orange-G staining. Two-way analysis of variance with the Sidak multiple comparison test was used to assess differences in bioluminescence and weight at each time point. RESULTS The infected cohort displayed significantly elevated bioluminescence values, had reductions in weight, and exhibited swelling of the infected digit throughout the course of infection. By day 4, most infected mice saw a substantial decrease in BLI signal intensity; however, 2 infected mice exhibited persistent BLI intensity through day 14. Histological analysis of the infected cohort showed tissue disorganization and the presence of a cellular infiltrate in and around the flexor tendon sheath. CONCLUSIONS A murine model of pyogenic flexor tenosynovitis is possible and can serve as an experimental platform for further investigation of the pathophysiology of pyogenic flexor tenosynovitis. CLINICAL RELEVANCE This animal model can be utilized in elucidating the basic molecular and/or cellular mechanisms of pyogenic flexor tenosynovitis while simultaneously evaluating novel therapeutic strategies.
Collapse
Affiliation(s)
- Bowen Qiu
- Center for Musculoskeletal Research, Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, New York
| | | | | | | |
Collapse
|
4
|
Proceed with Caution: Mouse Deep Digit Flexor Tendon Injury Model. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2021; 9:e3359. [PMID: 33552814 PMCID: PMC7859083 DOI: 10.1097/gox.0000000000003359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 11/17/2020] [Indexed: 11/26/2022]
Abstract
Supplemental Digital Content is available in the text. The purpose of this study was to determine the feasibility of using mouse models for translational study of flexor tendon repair and reconstruction.
Collapse
|
5
|
Nwadozi E, Rudnicki M, De Ciantis M, Milkovich S, Pulbere A, Roudier E, Birot O, Gustafsson T, Ellis CG, Haas TL. High-fat diet pre-conditioning improves microvascular remodelling during regeneration of ischaemic mouse skeletal muscle. Acta Physiol (Oxf) 2020; 229:e13449. [PMID: 32012450 DOI: 10.1111/apha.13449] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/26/2020] [Accepted: 01/28/2020] [Indexed: 12/25/2022]
Abstract
AIM Critical limb ischaemia (CLI) is characterized by inadequate angiogenesis, arteriolar remodelling and chronic myopathy, which are most severe in type 2 diabetic patients. Hypertriglyceridaemia, commonly observed in these patients, compromises macrovascular function. However, the effects of high-fat diet-induced increases in circulating lipids on microvascular remodelling are not established. Here, we investigated if high-fat diet would mimic the detrimental effect of type 2 diabetes on post-ischaemia vascular remodelling and muscle regeneration, using a mouse model of hindlimb ischaemia. METHODS Male C57Bl6/J mice were fed with normal or high-fat diets for 8 weeks prior to unilateral femoral artery ligation. Laser doppler imaging was used to assess limb perfusion recovery. Vascular recovery, inflammation, myofibre regeneration and fibrosis were assessed at 4 or 14 days post-ligation by histology and RNA analyses. Capillary-level haemodynamics were assessed by intravital microscopy of control and regenerating muscles 14 days post-ligation. RESULTS High-fat diet increased muscle succinate dehydrogenase activity and capillary-level oxygen supply. At 4 days post-ligation, no diet differences were detected in muscle damage, inflammatory infiltration or capillary activation. At 14 days post-ligation, high fat-fed mice displayed accelerated limb blood flow recovery, elevated capillary and arteriole densities as well as greater red blood cell supply rates and capillary-level oxygen supply. Regenerating muscles from high fat-fed mice displayed lower interstitial fat and collagen deposition. CONCLUSION The muscle-level adaptations to high-fat diet improved multiple aspects of muscle recovery in response to ischaemia and did not recapitulate the worse outcomes seen in diabetic CLI patients.
Collapse
Affiliation(s)
- Emmanuel Nwadozi
- School of Kinesiology and Health Science Muscle Health Research Centre Angiogenesis Research Group York University Toronto ON Canada
| | - Martina Rudnicki
- School of Kinesiology and Health Science Muscle Health Research Centre Angiogenesis Research Group York University Toronto ON Canada
| | - Matthew De Ciantis
- School of Kinesiology and Health Science Muscle Health Research Centre Angiogenesis Research Group York University Toronto ON Canada
| | - Stephanie Milkovich
- Department of Medical Biophysics University of Western Ontario London ON Canada
| | - Alexandru Pulbere
- School of Kinesiology and Health Science Muscle Health Research Centre Angiogenesis Research Group York University Toronto ON Canada
| | - Emilie Roudier
- School of Kinesiology and Health Science Muscle Health Research Centre Angiogenesis Research Group York University Toronto ON Canada
| | - Olivier Birot
- School of Kinesiology and Health Science Muscle Health Research Centre Angiogenesis Research Group York University Toronto ON Canada
| | - Thomas Gustafsson
- Division of Clinical Physiology Department of Laboratory Medicine Karolinska Institutet Stockholm Sweden
- Unit of Clinical Physiology Karolinska University Hospital Stockholm Sweden
| | | | - Tara L. Haas
- School of Kinesiology and Health Science Muscle Health Research Centre Angiogenesis Research Group York University Toronto ON Canada
| |
Collapse
|
6
|
Muneoka K, Dawson LA. Evolution of epimorphosis in mammals. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2020; 336:165-179. [PMID: 31951104 DOI: 10.1002/jez.b.22925] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 10/29/2019] [Accepted: 12/23/2019] [Indexed: 12/30/2022]
Abstract
Mammalian epimorphic regeneration is rare and digit tip regeneration in mice is the best-studied model for a multi-tissue regenerative event that involves blastema formation. Digit tip regeneration parallels human fingertip regeneration, thus understanding the details of this response can provide insight into developing strategies to expand the potential of human regeneration. Following amputation, the digit stump undergoes a strong histolytic response involving osteoclast-mediated bone degradation that is spatially and temporally linked to the expansion of blastema osteoprogenitor cells. Blastemal differentiation occurs via direct intramembranous ossification. Although robust, digit regeneration is imperfect: The amputated cortical bone is replaced with woven bone and there is excessive bone regeneration restricted to the dorsal-ventral axis. Ontogenetic and phylogenetic analysis of digit regeneration in amphibians and mammals raise the possibility that mammalian blastema is a product of convergent evolution and we hypothesize that digit tip regeneration evolved from a nonregenerative precondition. A model is proposed in which the mammalian blastema evolved in part from an adaptation of two bone repair strategies (the bone remodeling cycle and fracture healing) both of which are conserved across tetrapod vertebrates. The view that epimorphic regeneration evolved in mammals from a nonregenerative precondition is supported by recent studies demonstrating that complex regenerative responses can be induced from a number of different nonregenerative amputation wounds by specific modification of the healing response.
Collapse
Affiliation(s)
- Ken Muneoka
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas
| | - Lindsay A Dawson
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas
| |
Collapse
|
7
|
Cui H, He Y, Chen S, Zhang D, Yu Y, Fan C. Macrophage-Derived miRNA-Containing Exosomes Induce Peritendinous Fibrosis after Tendon Injury through the miR-21-5p/Smad7 Pathway. MOLECULAR THERAPY. NUCLEIC ACIDS 2018; 14:114-130. [PMID: 30594070 PMCID: PMC6307349 DOI: 10.1016/j.omtn.2018.11.006] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 11/13/2018] [Accepted: 11/13/2018] [Indexed: 01/02/2023]
Abstract
Following tendon injury, the development of fibrotic healing response impairs tendon function and restricts tendon motion. Peritendinous tissue fibrosis poses a major clinical problem in hand surgery. Communication between macrophages and tendon cells has a critical role in regulating the tendon-healing process. Yet, the mechanisms employed by macrophages to control peritendinous fibrosis are not fully understood. Here we analyze the role of macrophages in tendon adhesion in mice by pharmacologically depleting them. Such macrophage-depleted mice have less peritendinous fibrosis formation around the injured tendon compared with wild-type littermates. Macrophage-depleted mice restart fibrotic tendon healing by treatment with bone marrow macrophage-derived exosomes. We show that bone marrow macrophages secrete exosomal miR-21-5p that directly targets Smad7, leading to the activation of fibrogenesis in tendon cells. These results demonstrate that intercellular crosstalk between bone marrow macrophages and tendon cells is mediated by macrophage-derived miR-21-5p-containing exosomes that control the fibrotic healing response, providing potential targets for the prevention and treatment of tendon adhesion.
Collapse
Affiliation(s)
- Haomin Cui
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China; Department of Orthopaedics, Shanghai Sixth People's Hospital East Affiliated to Shanghai University of Medicine & Health Sciences, Shanghai 201306, China
| | - Yu He
- Department of Orthopaedics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100010, China
| | - Shuai Chen
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Deming Zhang
- Zhejiang Province's Key Laboratory of 3D Printing and Equipment, College of Mechanical Engineering, Zhejiang University, Hangzhou 310058, China
| | - Yaling Yu
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China.
| | - Cunyi Fan
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China; Department of Orthopaedics, Shanghai Sixth People's Hospital East Affiliated to Shanghai University of Medicine & Health Sciences, Shanghai 201306, China.
| |
Collapse
|
8
|
Dolan CP, Dawson LA, Muneoka K. Digit Tip Regeneration: Merging Regeneration Biology with Regenerative Medicine. Stem Cells Transl Med 2018; 7:262-270. [PMID: 29405625 PMCID: PMC5827737 DOI: 10.1002/sctm.17-0236] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 01/04/2018] [Indexed: 12/13/2022] Open
Abstract
Regeneration Biology is the study of organisms with endogenous regenerative abilities, whereas Regenerative Medicine focuses on engineering solutions for human injuries that do not regenerate. While the two fields are fundamentally different in their approach, there is an obvious interface involving mammalian regeneration models. The fingertip is the only part of the human limb that is regeneration-competent and the regenerating mouse digit tip has emerged as a model to study a clinically relevant regenerative response. In this article, we discuss how studies of digit tip regeneration have identified critical components of the regenerative response, and how an understanding of endogenous regeneration can lead to expanding the regenerative capabilities of nonregenerative amputation wounds. Such studies demonstrate that regeneration-incompetent wounds can respond to treatment with individual morphogenetic agents by initiating a multi-tissue response that culminates in structural regeneration. In addition, the healing process of nonregenerative wounds are found to cycle through nonresponsive, responsive and nonresponsive phases, and we call the responsive phase the Regeneration Window. We also find the responsiveness of mature healed amputation wounds can be reactivated by reinjury, thus nonregenerated wounds retain a potential for regeneration. We propose that regeneration-incompetent injuries possess dormant regenerative potential that can be activated by targeted treatment with specific morphogenetic agents. We believe that future Regenerative Medicine-based-therapies should be designed to promote, not replace, regenerative responses. Stem Cells Translational Medicine 2018;7:262-270.
Collapse
Affiliation(s)
- Connor P Dolan
- Department of Veterinary Physiology & Pharmacology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Lindsay A Dawson
- Department of Veterinary Physiology & Pharmacology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Ken Muneoka
- Department of Veterinary Physiology & Pharmacology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
9
|
Godinez F, Gong K, Zhou J, Judenhofer MS, Chaudhari AJ, Badawi RD. Development of an Ultra High Resolution PET Scanner for Imaging Rodent Paws: PawPET. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2017; 2:7-16. [PMID: 31930184 DOI: 10.1109/trpms.2017.2765486] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A positron emission tomography (PET) scanner with submillimeter spatial resolution, capable of in vivo imaging of murine extremities was built based on two dual ended readout, hybrid depth of interaction (DOI) PET detectors. Each was composed of a 36 × 36 array of 0.43 mm × 0.43 mm × 8 mm unpolished lutetium oxyorthosilicate crystals separated by a 50 μm white diffuse reflector. The array was coupled to a position-sensing photomultiplier tube at one end and to an avalanche photodiode at the other end. The detector characterization included crystal identification accuracy, DOI, energy, and timing resolution measurements. The scanner was characterized in terms of its spatial resolution and its sensitivity and mouse images were acquired of a mouse paw injected with 18-F-NaF. Out of the 36 × 36 crystals only 33 × 33 crystals were identified. The coincidence timing, DOI, and energy resolution of the scanner was measured to be 2.8 ns, 1.4 mm, and 27%, respectively. The scanner's spatial resolution was measured with a line source and determined from an ordered subsets expectation maximization reconstruction to be 0.56 mm. The sensitivity of the scanner was measured to be 0.6% at the center of the field of view.
Collapse
Affiliation(s)
- Felipe Godinez
- Department of Perinatal Imaging, King's College London, London SE1 7EH, U.K
| | - Kuang Gong
- Department of Biomedical Engineering, University of California at Davis, Davis, CA 95616 USA
| | - Jian Zhou
- Toshiba Medical Research Institute, USA, Inc., Vernon Hills, IL 60061 USA
| | - Martin S Judenhofer
- Department of Biomedical Engineering, University of California at Davis, Davis, CA 95616 USA
| | - Abhijit J Chaudhari
- Department of Biomedical Engineering, University of California at Davis, Davis, CA 95616 USA
| | - Ramsey D Badawi
- Department of Biomedical Engineering, University of California at Davis, Davis, CA 95616 USA
| |
Collapse
|
10
|
Abstract
Tendon connects skeletal muscle and bone, facilitating movement of nearly the entire body. In the hand, flexor tendons (FTs) enable flexion of the fingers and general hand function. Injuries to the FTs are common, and satisfactory healing is often impaired due to excess scar tissue and adhesions between the tendon and surrounding tissue. However, little is known about the molecular and cellular components of FT repair. To that end, a murine model of FT repair that recapitulates many aspects of healing in humans, including impaired range of motion and decreased mechanical properties, has been developed and previously described. Here an in-depth demonstration of this surgical procedure is provided, involving transection and subsequent repair of the flexor digitorum longus (FDL) tendon in the murine hind paw. This technique can be used to conduct lineage analysis of different cell types, assess the effects of gene gain or loss-of-function, and to test the efficacy of pharmacological interventions in the healing process. However, there are two primary limitations to this model: i) the FDL tendon in the mid-portion of the murine hind paw, where the transection and repair occur, is not surrounded by a synovial sheath. Therefore this model does not account for the potential contribution of the sheath to the scar formation process. ii) To protect the integrity of the repair site, the FT is released at the myotendinous junction, decreasing the mechanical forces of the tendon, likely contributing to increased scar formation. Isolation of sufficient cells from the granulation tissue of the FT during the healing process for flow cytometric analysis has proved challenging; cytology centrifugation to concentrate these cells is an alternate method used, and allows for generation of cell preparations on which immunofluorescent labeling can be performed. With this method, quantification of cells or proteins of interest during FT healing becomes possible.
Collapse
Affiliation(s)
- Jessica E Ackerman
- Center for Musculoskeletal Research, Department of Orthopaedics & Rehabilitation, University of Rochester Medical Center
| | - Alayna E Loiselle
- Center for Musculoskeletal Research, Department of Orthopaedics & Rehabilitation, University of Rochester Medical Center;
| |
Collapse
|
11
|
Linderman SW, Gelberman RH, Thomopoulos S, Shen H. Cell and Biologic-Based Treatment of Flexor Tendon Injuries. ACTA ACUST UNITED AC 2016; 26:206-215. [PMID: 28042226 DOI: 10.1053/j.oto.2016.06.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The two primary factors leading to poor clinical results after intrasynovial tendon repair are adhesion formation within the digital sheath and repair-site elongation and rupture. As the outcomes following modern tendon multi-strand repair and controlled rehabilitation techniques are often unsatisfactory, alternative approaches, such as the application of growth factors and mesenchymal stem cells (MSCs), have become increasingly attractive treatment options. Successful biological therapies require carefully controlled spatiotemporal delivery of cells, growth factors, and biocompatible scaffold matrices in order to simultaneously (1) promote matrix synthesis at the tendon repair site leading to increased biomechanical strength and stiffness and (2) suppress matrix synthesis along the tendon surface and synovial sheath preventing adhesion formation. This review summarizes recent cell and biologic-based experimental treatments for flexor tendon injury, with an emphasis on large animal translational studies.
Collapse
Affiliation(s)
- Stephen W Linderman
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO, United States; Department of Biomedical Engineering, Washington University, St. Louis, MO, United States
| | - Richard H Gelberman
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO, United States
| | - Stavros Thomopoulos
- Department of Orthopaedic Surgery, Columbia University, New York, NY, United States; Department of Biomedical Engineering, Columbia University, New York, NY, United States
| | - Hua Shen
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO, United States
| |
Collapse
|
12
|
Fossey S, Vahle J, Long P, Schelling S, Ernst H, Boyce RW, Jolette J, Bolon B, Bendele A, Rinke M, Healy L, High W, Roth DR, Boyle M, Leininger J. Nonproliferative and Proliferative Lesions of the Rat and Mouse Skeletal Tissues (Bones, Joints, and Teeth). J Toxicol Pathol 2016; 29:49S-103S. [PMID: 27621538 PMCID: PMC5013709 DOI: 10.1293/tox.29.3s-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The INHAND (International Harmonization of Nomenclature and Diagnostic Criteria for Lesions in Rats and Mice) Project (www.toxpath.org/inhand.asp) is an initiative of the Societies of Toxicological Pathology from Europe (ESTP), Great Britain (BSTP), Japan (JSTP) and North America (STP) to develop an internationally accepted nomenclature for proliferative and nonproliferative lesions in laboratory animals. The purpose of this publication is to provide a standardized nomenclature for classifying microscopic lesions observed in the skeletal tissues and teeth of laboratory rats and mice, with color photomicrographs illustrating examples of many common lesions. The standardized nomenclature presented in this document is also available on the internet (http://www.goreni.org/). Sources of material were databases from government, academic and industrial laboratories throughout the world.
Collapse
Affiliation(s)
| | - John Vahle
- Lilly Research Laboratories, Indianapolis, IN, USA
| | | | - Scott Schelling
- Pfizer Inc., Andover, MA, USA
- Dr. Schelling retired April 2015
| | | | | | | | | | | | | | - Laura Healy
- LNH Tox Path Consulting, LLC, Kalamazoo, MI, USA
| | - Wanda High
- WB High Preclin Path/Tox Consulting, LLC, Rochester, NY,
USA
| | | | | | - Joel Leininger
- JRL Consulting, LLC, Chapel Hill, NC, USA
- Chair of the Skeletal Tissues INHAND Committee
| |
Collapse
|
13
|
Dawson LA, Simkin J, Sauque M, Pela M, Palkowski T, Muneoka K. Analogous cellular contribution and healing mechanisms following digit amputation and phalangeal fracture in mice. ACTA ACUST UNITED AC 2016; 3:39-51. [PMID: 27499878 PMCID: PMC4857751 DOI: 10.1002/reg2.51] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 12/18/2015] [Accepted: 12/30/2015] [Indexed: 12/17/2022]
Abstract
Regeneration of amputated structures is severely limited in humans and mice, with complete regeneration restricted to the distal portion of the terminal phalanx (P3). Here, we investigate the dynamic tissue repair response of the second phalangeal element (P2) post amputation in the adult mouse, and show that the repair response of the amputated bone is similar to the proximal P2 bone fragment in fracture healing. The regeneration‐incompetent P2 amputation response is characterized by periosteal endochondral ossification resulting in the deposition of new trabecular bone, corresponding to a significant increase in bone volume; however, this response is not associated with bone lengthening. We show that cells of the periosteum respond to amputation and fracture by contributing both chondrocytes and osteoblasts to the endochondral ossification response. Based on our studies, we suggest that the amputation response represents an attempt at regeneration that ultimately fails due to the lack of a distal organizing influence that is present in fracture healing.
Collapse
Affiliation(s)
- Lindsay A Dawson
- Department of Cell and Molecular Biology Tulane University New Orleans Louisiana 70118 USA; Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine Texas A&M University College Station Texas 77843 USA
| | - Jennifer Simkin
- Department of Cell and Molecular Biology Tulane University New Orleans Louisiana 70118 USA; Department of Biology University of Kentucky Lexington Kentucky 40506 USA
| | - Michelle Sauque
- Department of Cell and Molecular Biology Tulane University New Orleans Louisiana 70118 USA; Department of Orthopedics University of Colorado Denver Aurora Colorado 80010 USA
| | - Maegan Pela
- Department of Cell and Molecular Biology Tulane University New Orleans Louisiana 70118 USA
| | - Teresa Palkowski
- Department of Cell and Molecular Biology Tulane University New Orleans Louisiana 70118 USA
| | - Ken Muneoka
- Department of Cell and Molecular Biology Tulane University New Orleans Louisiana 70118 USA; Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine Texas A&M University College Station Texas 77843 USA
| |
Collapse
|
14
|
Lee DJ, Southgate RD, Farhat YM, Loiselle AE, Hammert WC, Awad HA, O'Keefe RJ. Parathyroid hormone 1-34 enhances extracellular matrix deposition and organization during flexor tendon repair. J Orthop Res 2015; 33:17-24. [PMID: 25266795 PMCID: PMC4241167 DOI: 10.1002/jor.22735] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 08/20/2014] [Indexed: 02/04/2023]
Abstract
Parathyroid hormone (PTH) 1-34 is known to enhance fracture healing. Tendon repair is analogous to bone healing in its dependence on the proliferation and differentiation of mesenchymal stem cells, matrix formation, and tissue remodeling.(1,2,3) We hypothesized that PTH 1-34 enhances tendon healing in a flexor digitorum longus (FDL) tendon repair model. C57Bl/6J mice were treated with either intraperitoneal PTH 1-34 or vehicle-control (PBS). Tendons were harvested at 3-28 days for histology, gene expression, and biomechanical testing. The metatarsophalangeal joint range of motion was reduced 1.5-2-fold in PTH 1-34 mice compared to control mice. The gliding coefficient, a measure of adhesion formation, was 2-3.5-fold higher in PTH 1-34 mice. At 14 days post-repair, the tensile strength was twofold higher in PTH 1-34 specimens, but at 28 days there were no differences. PTH 1-34 mice had increased fibrous tissue deposition that correlated with elevated expression of collagens and fibronectin as seen on quantitative PCR. PTH 1-34 accelerated the deposition of reparative tissue but increased adhesion formation.
Collapse
Affiliation(s)
- Daniel J. Lee
- The Center for Musculoskeletal Research, University of Rochester Medical Center, 601 Elmwood Avenue, Box 665, Rochester, NY 14642
| | - Richard D. Southgate
- Department of Orthopaedic Surgery, University of Rochester Medical Center, 601 Elmwood Avenue, Box 665, Rochester, NY 14642
| | - Youssef M. Farhat
- The Center for Musculoskeletal Research, University of Rochester Medical Center, 601 Elmwood Avenue, Box 665, Rochester, NY 14642
| | - Alayna E. Loiselle
- The Center for Musculoskeletal Research, University of Rochester Medical Center, 601 Elmwood Avenue, Box 665, Rochester, NY 14642
| | - Warren C. Hammert
- Department of Orthopaedic Surgery, University of Rochester Medical Center, 601 Elmwood Avenue, Box 665, Rochester, NY 14642
| | - Hani A. Awad
- The Center for Musculoskeletal Research, University of Rochester Medical Center, 601 Elmwood Avenue, Box 665, Rochester, NY 14642
| | - Regis J. O'Keefe
- The Center for Musculoskeletal Research, University of Rochester Medical Center, 601 Elmwood Avenue, Box 665, Rochester, NY 14642
| |
Collapse
|
15
|
Abstract
Mouse models offer invaluable cellular and molecular tools for the study of human pathologies including those associated with fibrotic and musculoskeletal diseases. In this methods manuscript, we describe a mouse model of repair and segmental reconstruction of flexor tendons, which in our laboratory has been an invaluable model to study tendon scarring and adhesions. Specifically, we describe in details all the surgical procedures involved, as well as the associated endpoint biomechanical assessments including a novel test of the flexion of the metatarsophalangeal joint as a measure of adhesions, and a standard protocol for biomechanical assessment of the tensile strength of the tendon and repair tissue.
Collapse
|
16
|
Hayashi M, Zhao C, Thoreson AR, Chikenji T, Jay GD, An KN, Amadio PC. The effect of lubricin on the gliding resistance of mouse intrasynovial tendon. PLoS One 2013; 8:e83836. [PMID: 24349551 PMCID: PMC3862798 DOI: 10.1371/journal.pone.0083836] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 11/17/2013] [Indexed: 11/18/2022] Open
Abstract
The purpose of this study was to investigate the role of lubricin on the gliding resistance of intrasynovial tendons by comparing lubricin knockout, heterozygous, and wild type mice. A total of thirty-six deep digital flexor (DDF) tendons in the third digits of each hind paw from eighteen adult mice were used, including six lubricin knockout mice (Prg4 –/–), six heterozygous mice (Prg4 +/–), and six wild type mice (Prg4 +/+). The tendon gliding resistance was measured using a custom-made device. Tendon structural changes were evaluated by scanning electron and light microscopy. The gliding resistance of intrasynovial tendons from lubricin knockout mice was significantly higher than the gliding resistance of either wild type or heterozygous mice. The surface of the lubricin knockout tendons appeared to be rougher, compared to the wild type and heterozygous tendons. Synovial hyperplasia was found in the lubricin knockout mice. Cartilage-like tissue was found in the tendon and pulley of the lubricin knockout mice. Our findings confirm the importance of lubricin in intrasynovial tendon lubrication. This knockout model may be useful in determining the effect of lubricin on tendon healing and the response to injury.
Collapse
Affiliation(s)
- Masanori Hayashi
- Biomechanics Laboratory, Division of Orthopedic Research, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Chunfeng Zhao
- Biomechanics Laboratory, Division of Orthopedic Research, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Andrew R. Thoreson
- Biomechanics Laboratory, Division of Orthopedic Research, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Takako Chikenji
- Biomechanics Laboratory, Division of Orthopedic Research, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Gregory D. Jay
- Department of Emergency Medicine, Rhode Island Hospital and Brown University, Providence, Rhode Island, United States of America
| | - Kai-Nan An
- Biomechanics Laboratory, Division of Orthopedic Research, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Peter C. Amadio
- Biomechanics Laboratory, Division of Orthopedic Research, Mayo Clinic, Rochester, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
17
|
Fischer CR, Müller A, Bochsler B, Rancic Z, Kaufmann P, Schibli R, Ametamey SM. Assessment of an elastin binding molecule for PET imaging of atherosclerotic plaques. AMERICAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING 2013; 3:326-335. [PMID: 23901358 PMCID: PMC3715777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 04/22/2013] [Indexed: 06/02/2023]
Abstract
Elastin is considered as a key player in human vascular diseases and it might contribute to the development of atherosclerosis. The elastin binding radiotracer, [(18)F]AlF-NOTA-EBM ([(18)F]2), was evaluated in a wild type mouse to determine its in vivo distribution and on human carotid atherosclerotic plaque tissues to assess its utility as a PET imaging agent for visualizing human atherosclerotic plaque lesions. The free ligand NOTA-EBM, which served as the precursor, was obtained in 25% chemical yield. The radiosynthesis of [(18)F]2 was accomplished by coordination of Al(18)F to NOTA-EBM in 8-13% decay corrected radiochemical yield (n = 7) and specific radioactivity of 59 ± 12 GBq/μmol. A dynamic in vivo PET scan in a healthy wild type mouse (C57BL/6) showed high accumulation of radioactivity in heart and lungs, organs reported to have high elastin content. Excretion of [(18)F]2 proceeded via the renal pathway and through the hepatobiliary system as indicated by a high uptake of radioactivity in the liver, intestines and gall bladder. In vitro autoradiography on human atherosclerotic plaque sections showed a heterogeneous distribution of [(18)F]2 with an elevated accumulation in stable and vulnerable atherosclerotic plaques compared to control samples of normal arteries. However, there was no statistical significance between the different plaque phenotypes and control samples. Competition experiments with 10.000-fold excess of free ligand NOTA-EBM resulted in a marked decrease of radioactivity accumulation, consistent with a target-specific ligand.
Collapse
Affiliation(s)
- Cindy R Fischer
- Center for Radiopharmaceutical Sciences of ETH, PSI and USZ, Department of Chemistry and Applied Biosciences of ETH ZurichWolfgang-Pauli Strasse 10, CH-8093 Zurich, Switzerland
| | - Adrienne Müller
- Center for Radiopharmaceutical Sciences of ETH, PSI and USZ, Department of Chemistry and Applied Biosciences of ETH ZurichWolfgang-Pauli Strasse 10, CH-8093 Zurich, Switzerland
| | - Bianca Bochsler
- Center for Radiopharmaceutical Sciences of ETH, PSI and USZ, Department of Chemistry and Applied Biosciences of ETH ZurichWolfgang-Pauli Strasse 10, CH-8093 Zurich, Switzerland
| | - Zoran Rancic
- Clinic for Cardiovascular Surgery, University Hospital ZurichRämistrasse 100, CH-8091 Zurich, Switzerland
| | - Philipp Kaufmann
- Cardiac Imaging, University Hospital ZurichRämistrasse 100, CH-8091 Zurich, Switzerland
| | - Roger Schibli
- Center for Radiopharmaceutical Sciences of ETH, PSI and USZ, Department of Chemistry and Applied Biosciences of ETH ZurichWolfgang-Pauli Strasse 10, CH-8093 Zurich, Switzerland
- Center for Radiopharmaceutical Sciences of ETH, PSI and USZ, Paul Scherrer Institute, Department Biology and ChemistryCH-5232 Villigen-PSI, Switzerland
| | - Simon M Ametamey
- Center for Radiopharmaceutical Sciences of ETH, PSI and USZ, Department of Chemistry and Applied Biosciences of ETH ZurichWolfgang-Pauli Strasse 10, CH-8093 Zurich, Switzerland
| |
Collapse
|
18
|
Juneja SC, Schwarz EM, O’Keefe RJ, Awad HA. Cellular and molecular factors in flexor tendon repair and adhesions: a histological and gene expression analysis. Connect Tissue Res 2013; 54:218-26. [PMID: 23586515 PMCID: PMC3697755 DOI: 10.3109/03008207.2013.787418] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Flexor tendon healing is mediated by cell proliferation, migration, and extracellular matrix synthesis that contribute to the formation of scar tissue and adhesion. The biological mechanisms of flexor tendon adhesion formation have been linked to transforming growth factor β (TGF-β). To elucidate the cellular and molecular events in this pathology, we implanted live flexor digitorum longus grafts from the reporter mouse Rosa26(LacZ/+) in wild-type recipients, and used histological β-galactosidase (β-gal) staining to evaluate the intrinsic versus extrinsic cellular origins of scar, and reverse transcription-polymerase chain reaction to measure gene expression of TGF-β and its receptors, extracellular matrix proteins, and matrix metalloproteinases (MMPs) and their regulators. Over the course of healing, graft cellularity and β-gal activity progressively increased, and β-gal-positive cells migrated out of the Rosa26(LacZ/+) graft. In addition, there was an evidence of influx of host cells (β-gal-negative) into the gliding space and the graft, suggesting that both graft and host cells contribute to adhesions. Interestingly, we observed a biphasic pattern in which Tgfb1 expression was the highest in the early phases of healing and gradually decreased thereafter, whereas Tgfb3 increased and remained upregulated later. The expression of TGF-β receptors was also upregulated throughout the healing phases. In addition, type III collagen and fibronectin were upregulated during the proliferative phase of healing, confirming that murine flexor tendon heals by scar tissue. Furthermore, gene expression of MMPs showed a differential pattern in which inflammatory MMPs were the highest early and matrix MMPs increased over time. These findings offer important insights into the complex cellular and molecular factors during flexor tendon healing.
Collapse
Affiliation(s)
- Subhash C. Juneja
- The Center for Musculoskeletal Research, University of Rochester, Rochester, NY, USA,Division of Orthopaedic Surgery, TWH, UHN, Toronto, ON M5T 2S8
| | - Edward M. Schwarz
- The Center for Musculoskeletal Research, University of Rochester, Rochester, NY, USA,Department of Orthopaedics, University of Rochester, Rochester, NY, USA
| | - Regis J. O’Keefe
- The Center for Musculoskeletal Research, University of Rochester, Rochester, NY, USA,Department of Orthopaedics, University of Rochester, Rochester, NY, USA
| | - Hani A. Awad
- The Center for Musculoskeletal Research, University of Rochester, Rochester, NY, USA,Department of Orthopaedics, University of Rochester, Rochester, NY, USA,Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
| |
Collapse
|
19
|
Abstract
BACKGROUND We have recently reported that interpositional synovium grafts from tendon sheath have a potential to accelerate tendon healing when implanted at the repair site. The purpose of this study was to investigate the effect of orientation of the synovium after synovium graft transplantation, by comparing the ability of cells from the visceral and parietal surfaces to migrate into the tendon in a canine tissue culture model. METHODS The synovium graft was placed within a complete tendon laceration, with either the visceral or parietal surface facing the proximal end of the lacerated tendon. The number of migrating cells was quantified by a cell migration assay. Qualitative immunohistochemistry and confocal laser microscopy were also used at day 10. RESULTS Many labeled synovial cells were observed within the tendon to which the visceral surface of the synovium graft was facing. Migrated cells were also observed on the parietal side, but there were fewer cells compared to visceral surface cells. Migrating cells all expressed α-smooth muscle actin. CONCLUSION We found that graft orientation affected cell migration. Whether this finding has clinical significance awaits in vivo study.
Collapse
Affiliation(s)
- Masanori Hayashi
- Biomechanics Laboratory, Division of Orthopedic Research, Mayo Clinic, 200 1st Street S.W., Rochester, MN 55905 USA
| | - Chunfeng Zhao
- Biomechanics Laboratory, Division of Orthopedic Research, Mayo Clinic, 200 1st Street S.W., Rochester, MN 55905 USA
| | - Kai-Nan An
- Biomechanics Laboratory, Division of Orthopedic Research, Mayo Clinic, 200 1st Street S.W., Rochester, MN 55905 USA
| | - Peter C. Amadio
- Biomechanics Laboratory, Division of Orthopedic Research, Mayo Clinic, 200 1st Street S.W., Rochester, MN 55905 USA
| |
Collapse
|
20
|
Zetlitz E, Wearing SC, Nicol A, Hart AM. Objective assessment of surgical training in flexor tendon repair: the utility of a low-cost porcine model as demonstrated by a single-subject research design. JOURNAL OF SURGICAL EDUCATION 2012; 69:504-510. [PMID: 22677590 DOI: 10.1016/j.jsurg.2012.01.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 12/05/2011] [Accepted: 01/16/2012] [Indexed: 06/01/2023]
Abstract
OBJECTIVES This study evaluated the utility of a porcine flexor tendon model and standard biomechanical testing procedures to quantify the acquisition of surgical skills associated with Zone II flexor tendon repair in a trainee by benchmarking task performance outcomes relative to evidence-based standards. STUDY DESIGN Single-subject repeated measures research design. Bench-top set-up of apparatus undertaken in a University Research laboratory. After initial directed learning, a trainee repaired 70 fresh flexor digitorum profundus tendons within the flexor sheath using either a Pennington or ventral-locking-loop modification of a two-strand Kessler core repair. Tendon repairs were then preconditioned and distracted to failure. Key biomechanical parameters of the repair, including the ultimate tensile strength (UTS), yield strength, 3 mm gap force and stiffness, were calculated. Repairs were divided into 3 categories, early (first 10 days), intermediate (ensuing 10 days), and late repairs (final 10 days), and potential changes in repair properties over the training period were evaluated using a general linear modeling approach. RESULTS There was a significant change in the mechanical characteristics of the repairs over the training period, evidencing a clear learning effect (p < 0.05). Irrespective of the repair technique employed, early and intermediate repairs were characterized by a significantly lower UTS (29% and 20%, respectively), 3 mm gap (21% and 16%, respectively), and yield force (18% and 23%, respectively), but had a higher stiffness (33% and 38%, respectively) than late repairs (p < 0.05). The UTS of late repairs (47-48 N) were comparable to those published within the literature (45-51 N), suggesting surgical competence of the trainee. CONCLUSIONS This simple, low-cost porcine model appears to be useful for providing preclinical training in flexor tendon repair techniques and has the potential to provide a quantitative index to evaluate the competency of surgical trainees. Further research is now required to identify optimal training parameters for flexor tendon repair and to develop procedure-specific standards for adequate benchmarking.
Collapse
Affiliation(s)
- Elisabeth Zetlitz
- Bioengineering Unit, University of Strathclyde, Glasgow, United Kingdom.
| | | | | | | |
Collapse
|
21
|
Wong JKF, Alyouha S, Kadler KE, Ferguson MWJ, McGrouther DA. The cell biology of suturing tendons. Matrix Biol 2010; 29:525-36. [PMID: 20600895 PMCID: PMC3925995 DOI: 10.1016/j.matbio.2010.06.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2010] [Revised: 06/14/2010] [Accepted: 06/15/2010] [Indexed: 01/22/2023]
Abstract
Trauma by suturing tendon form areas devoid of cells termed "acellular zones" in the matrix. This study aimed to characterise the cellular insult of suturing and acellular zone formation in mouse tendon. Acellular zone formation was evaluated using single grasping sutures placed using flexor tendons with time lapse cell viability imaging for a period of 12h. Both tension and injury were required to induce cell death and cell movement in the formation of the acellular zone. DNA fragmentation studies and transmission electron microscopy indicated that cells necrosed. Parallel in vivo studies showed that cell-to-cell contacts were disrupted following grasping by the suture in tensioned tendon. Without tension, cell death was lessened and cell-to-cell contacts remained intact. Quantitative immunohistochemistry and 3D cellular profile mapping of wound healing markers over a one year time course showed that acellular zones arise rapidly and showed no evidence of healing whilst the wound healing response occurred in the surrounding tissues. The acellular zones were also evident in a standard modified "Kessler" clinical repair. In conclusion, the suture repair of injured tendons produces acellular zones, which may potentially cause early tendon failure.
Collapse
Affiliation(s)
- J K F Wong
- Plastic Surgery Research, University of Manchester, Manchester, United Kingdom.
| | | | | | | | | |
Collapse
|
22
|
Wong JKF, Lui YH, Kapacee Z, Kadler KE, Ferguson MWJ, McGrouther DA. The cellular biology of flexor tendon adhesion formation: an old problem in a new paradigm. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 175:1938-51. [PMID: 19834058 DOI: 10.2353/ajpath.2009.090380] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Intrasynovial flexor tendon injuries of the hand can frequently be complicated by tendon adhesions to the surrounding sheath, limiting finger function. We have developed a new tendon injury model in the mouse to investigate the three-dimensional cellular biology of intrasynovial flexor tendon healing and adhesion formation. We investigated the cell biology using markers for inflammation, proliferation, collagen synthesis, apoptosis, and vascularization/myofibroblasts. Quantitative immunohistochemical image analysis and three-dimensional reconstruction with cell mapping was performed on labeled serial sections. Flexor tendon adhesions were also assessed 21 days after wounding using transmission electron microscopy to examine the cell phenotypes in the wound. When the tendon has been immobilized, the mouse can form tendon adhesions in the flexor tendon sheath. The cell biology of tendon healing follows the classic wound healing response of inflammation, proliferation, synthesis, and apoptosis, but the greater activity occurs in the surrounding tissue. Cells that have multiple "fibripositors" and cells with cytoplasmic protrusions that contain multiple large and small diameter fibrils can be found in the wound during collagen synthesis. In conclusion, adhesion formation occurs due to scarring between two damaged surfaces. The mouse model for flexor tendon injury represents a new platform to study adhesion formation that is genetically tractable.
Collapse
|
23
|
Loiselle AE, Bragdon GA, Jacobson JA, Hasslund S, Cortes ZE, Schwarz EM, Mitten DJ, Awad HA, O’Keefe RJ. Remodeling of murine intrasynovial tendon adhesions following injury: MMP and neotendon gene expression. J Orthop Res 2009; 27:833-40. [PMID: 19051246 PMCID: PMC4472455 DOI: 10.1002/jor.20769] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Tendon injury frequently results in the formation of adhesions that reduce joint range of motion. To study the cellular, molecular, and biomechanical events involved in intrasynovial tendon healing and adhesion formation, we developed a murine flexor tendon healing model in which the flexor digitorum longus (FDL) tendon of C57BL/6 mice was transected and repaired using suture. This model was used to test the hypothesis that murine flexor tendons heal with differential expression of matrix metalloproteases (MMPs), resulting in the formation of scar tissue as well as the subsequent remodeling of scar and adhesions. Healing tendons were evaluated by histology, gene expression via real-time RT-PCR, and in situ hybridization, as well as biomechanical testing to assess the metatarsophalangeal (MTP) joint flexion range of motion (ROM) and the tensile failure properties. Tendons healed with a highly disorganized fibroblastic tissue response that was progressively remodeled through day 35 resulting in a more organized pattern of collagen fibers. Initial repair involved elevated levels of Mmp-9 at day 7, which is associated with catabolism of damaged collagen fibers. High levels of Col3 are consistent with scar tissue, and gradually transition to the expression of Col1. Scleraxis expression peaked at day 7, but the expression was limited to the original tendon adjacent to the injury site, and no expression was present in granulation tissue involved in the repair response. The MTP joint ROM with standardized force on the tendon was decreased on days 14 and 21 compared to day 0, indicating the presence of adhesions. Peak expressions of Mmp-2 and Mmp-14 were observed at day 21, associated with tendon remodeling. At day 28, two genes associated with neotendon formation, Smad8 and Gdf-5, were elevated and an improvement in MTP ROM occurred. Tensile strength of the tendon progressively increased, but by 63 days the repaired tendons had not reached the tensile strength of normal tendon. The murine model of primary tendon repair, described here, provides a novel mechanism to study the tendon healing process, and further enhances the understanding of this process at the molecular, cellular, and biomechanical level.
Collapse
Affiliation(s)
- Alayna E. Loiselle
- Department of Orthopaedics, The Center for Musculoskeletal Research, University of Rochester—Box 665, 601 Elmwood Avenue, Rochester, New York 14620
| | - Gwynne A. Bragdon
- Department of Orthopaedics, The Center for Musculoskeletal Research, University of Rochester—Box 665, 601 Elmwood Avenue, Rochester, New York 14620
| | - Justin A. Jacobson
- Department of Orthopaedics, The Center for Musculoskeletal Research, University of Rochester—Box 665, 601 Elmwood Avenue, Rochester, New York 14620
| | - Sys Hasslund
- Department of Orthopaedics, The Center for Musculoskeletal Research, University of Rochester—Box 665, 601 Elmwood Avenue, Rochester, New York 14620,Department of Orthopedics, Aarhus University Hospital, Aarhus, Denmark
| | - Zenia E. Cortes
- Department of Orthopaedics, The Center for Musculoskeletal Research, University of Rochester—Box 665, 601 Elmwood Avenue, Rochester, New York 14620
| | - Edward M. Schwarz
- Department of Orthopaedics, The Center for Musculoskeletal Research, University of Rochester—Box 665, 601 Elmwood Avenue, Rochester, New York 14620
| | - David J. Mitten
- Department of Orthopaedics, The Center for Musculoskeletal Research, University of Rochester—Box 665, 601 Elmwood Avenue, Rochester, New York 14620
| | - Hani A. Awad
- Department of Orthopaedics, The Center for Musculoskeletal Research, University of Rochester—Box 665, 601 Elmwood Avenue, Rochester, New York 14620,Department of Biomedical Engineering, University of Rochester, Rochester, New York
| | - Regis J. O’Keefe
- Department of Orthopaedics, The Center for Musculoskeletal Research, University of Rochester—Box 665, 601 Elmwood Avenue, Rochester, New York 14620
| |
Collapse
|
24
|
Nuclear contrast angiography: a simple method for morphological characterization of cerebral arteries. Brain Res 2009; 1261:75-81. [PMID: 19401159 DOI: 10.1016/j.brainres.2009.01.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2008] [Revised: 01/10/2009] [Accepted: 01/12/2009] [Indexed: 01/01/2023]
Abstract
Visualization of the cerebral vascular tree is important in experimental stroke and cerebral vascular malformation research. We describe a simple method, nuclear contrast angiography, that enables simultaneous visualization of the arterial tree and cerebral endothelial cells in rodent brain whole mounts. A mixture of latex and black ink was injected into the arterial system of rodents, resulting in high contrast demarcation of the arterial tree of the brain. This method clearly differentiates arteries from veins. We applied this method to demonstrate that 14 days of unilateral carotid artery occlusion induces increases in the caliber of (1) bilateral anterior communicating arteries, (2) bilateral anterior cerebral arteries, and (3) ipsilateral proximal middle cerebral artery of the circle of Willis. Unlike other methods, this procedure selectively stains endothelial nuclei of arteries. Thus, cerebral endothelial nuclei can be visualized, quantitated, and morphologically characterized at the same time the cortical arterial tree is delineated. This method should be useful in studies of stroke and cerebral arteriogenesis, which require the accurate assessment of both arterial diameters and endothelial cell density.
Collapse
|
25
|
Hwang J, Rodgers K, Oliver JC, Schluep T. Alpha-methylprednisolone conjugated cyclodextrin polymer-based nanoparticles for rheumatoid arthritis therapy. Int J Nanomedicine 2008; 3:359-71. [PMID: 18990945 PMCID: PMC2626937 DOI: 10.2147/ijn.s3217] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
A glycinate derivative of α-methylprednisolone (MP) was prepared and conjugated to a linear cyclodextrin polymer (CDP) with a loading of 12.4% w/w. The polymer conjugate (CDP-MP) self-assembled into nanoparticles with a size of 27 nm. Release kinetics of MP from the polymer conjugate showed a half-life (t1/2) of 50 h in phosphate buffer solution (PBS) and 19 h in human plasma. In vitro, the proliferation of human lymphocytes was suppressed to a similar extent but with a delayed effect when CDP-MP was compared with free MP. In vivo, CDP-MP was administered intravenously to mice with collagen-induced arthritis and compared with free MP. CDP-MP was administered weekly for six weeks (0.07, 0.7, and 7 mg/kg/week) and MP was administered daily for six weeks (0.01, 0.1, and 1 mg/kg/day). Body weight changes were minimal in all animals. After 28 days, a significant decrease in arthritis score was observed in animals treated weekly with an intermediate or high dose of CDP-MP. Additionally, dorsoplantar swelling was reduced to baseline in animals treated with CDP-MP at the intermediate and high dose level. Histological evaluation showed a reduction in synovitis, pannus formation and disruption of architecture at the highest dose level of CDP-MP. MP administered daily at equivalent cumulative doses showed minimal efficacy in this model. This study demonstrates that conjugation of MP to a cyclodextrin-polymer may improve its efficacy, leading to lower doses and less frequent administration for a safer and more convenient management of rheumatoid arthritis.
Collapse
|