1
|
Zhou M, Mao J, Li X, Li Y, Yang X. Intelligent analysis and measurement of semicircular canal spatial attitude. Front Neurol 2024; 15:1396513. [PMID: 39350970 PMCID: PMC11439643 DOI: 10.3389/fneur.2024.1396513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 08/30/2024] [Indexed: 10/04/2024] Open
Abstract
Objective The primary aim of this investigation was to devise an intelligent approach for interpreting and measuring the spatial orientation of semicircular canals based on cranial MRI. The ultimate objective is to employ this intelligent method to construct a precise mathematical model that accurately represents the spatial orientation of the semicircular canals. Methods Using a dataset of 115 cranial MRI scans, this study employed the nnDetection deep learning algorithm to perform automated segmentation of the semicircular canals and the eyeballs (left and right). The center points of each semicircular canal were organized into an ordered structure using point characteristic analysis. Subsequently, a point-by-point plane fit was performed along these centerlines, and the normal vector of the semicircular canals was computed using the singular value decomposition method and calibrated to a standard spatial coordinate system whose transverse planes were the top of the common crus and the bottom of the eyeballs. Results The nnDetection target recognition segmentation algorithm achieved Dice values of 0.9585 and 0.9663. The direction angles of the unit normal vectors for the left anterior, lateral, and posterior semicircular canal planes were [80.19°, 124.32°, 36.08°], [169.88°, 100.04°, 91.32°], and [79.33°, 130.63°, 137.4°], respectively. For the right side, the angles were [79.03°, 125.41°, 142.42°], [171.45°, 98.53°, 89.43°], and [80.12°, 132.42°, 44.11°], respectively. Conclusion This study successfully achieved real-time automated understanding and measurement of the spatial orientation of semicircular canals, providing a solid foundation for personalized diagnosis and treatment optimization of vestibular diseases. It also establishes essential tools and a theoretical basis for future research into vestibular function and related diseases.
Collapse
Affiliation(s)
| | | | | | | | - Xiaokai Yang
- Third Affiliated Hospital of Shanghai University (Wenzhou People’s Hospital), School of Medicine, Shanghai University, Wenzhou, China
| |
Collapse
|
2
|
Huang Y, Liu K, Tang R, Xu N, Xie J, Yang Z, Yin H, Li X, Wang Z, Zhao P. Spatial position changes in the semicircular canals may be the anatomical basis of Meniere's disease: a preliminary study based on ultra-high-resolution computed tomography (CT) and intelligent segmentation. Quant Imaging Med Surg 2024; 14:6060-6071. [PMID: 39144002 PMCID: PMC11320523 DOI: 10.21037/qims-24-196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 06/27/2024] [Indexed: 08/16/2024]
Abstract
Background Meniere's disease (MD) is an ear-related vestibular disorder accompanied by vertigo, hearing loss, and tinnitus. The anatomical structure and spatial position of the semicircular canals are important for understanding vestibular function and disease; however, research on MD and the effect of anatomical changes in the semicircular canals is limited. This study explored the relationship between the spatial location of the semicircular canals and MD using ultra-high-resolution computed tomography (U-HRCT) and intelligent segmentation. Methods Isotropic U-HRCT images obtained from patients with MD and healthy controls (HCs) were retrospectively analyzed. We extracted the semicircular canal structures and extracted their skeleton. The plane of the skeleton of each semicircular canal was fitted separately. The mutual angles between the semicircular canals, and the angles between each semicircular canal and each plane of the coordinate system were measured. Results Among 45 MD-affected ears (MDAEs), 33 MD-healthy ears (MDHEs), and 45 HC ears, the angle between the superior and lateral semicircular canals (LSCs) and the angle between the superior and posterior semicircular canals (PSCs) were larger in the MDAE and MDHE groups than the HC group (P<0.01), while the angle between the posterior and LSCs was smaller in the MDAE group than the HC group (P<0.001). The angles between the superior and PSCs and coronal plane (CP) of the coordinate system were significantly smaller in the MDAE and MDHE groups than the HC group (P<0.01); however, the angles between the LSC and axial plane and CP were significantly larger in the MDAE and MDHE groups than the HC group (P<0.001). Conclusions Spatial position changes in the semicircular canals may be the anatomical basis of MD.
Collapse
Affiliation(s)
- Yan Huang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Ke Liu
- School of Information Science and Technology, Beijing University of Technology, Beijing, China
| | - Ruowei Tang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Ning Xu
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jing Xie
- Department of Otolaryngology, Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhenghan Yang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Hongxia Yin
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xiaoguang Li
- School of Information Science and Technology, Beijing University of Technology, Beijing, China
| | - Zhenchang Wang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Pengfei Zhao
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
3
|
Evers SW, Joyce WG, Choiniere JN, Ferreira GS, Foth C, Hermanson G, Yi H, Johnson CM, Werneburg I, Benson RBJ. Independent origin of large labyrinth size in turtles. Nat Commun 2022; 13:5807. [PMID: 36220806 PMCID: PMC9553989 DOI: 10.1038/s41467-022-33091-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 09/01/2022] [Indexed: 11/30/2022] Open
Abstract
The labyrinth of the vertebrate inner ear is a sensory system that governs the perception of head rotations. Central hypotheses predict that labyrinth shape and size are related to ecological adaptations, but this is under debate and has rarely been tested outside of mammals. We analyze the evolution of labyrinth morphology and its ecological drivers in living and fossil turtles, an understudied group that underwent multiple locomotory transitions during 230 million years of evolution. We show that turtles have unexpectedly large labyrinths that evolved during the origin of aquatic habits. Turtle labyrinths are relatively larger than those of mammals, and comparable to many birds, undermining the hypothesis that labyrinth size correlates directly with agility across vertebrates. We also find that labyrinth shape variation does not correlate with ecology in turtles, undermining the widespread expectation that reptilian labyrinth shapes convey behavioral signal, and demonstrating the importance of understudied groups, like turtles.
Collapse
Affiliation(s)
- Serjoscha W Evers
- Department of Geosciences, University of Fribourg, Chemin du Musée 6, 1700, Fribourg, Switzerland.
- Department of Earth Sciences, University of Oxford, South Parks Road, Oxford, OX1 3AN, United Kingdom.
| | - Walter G Joyce
- Department of Geosciences, University of Fribourg, Chemin du Musée 6, 1700, Fribourg, Switzerland
| | - Jonah N Choiniere
- Evolutionary Studies Institute, University of the Witwatersrand, 1 Jan Smuts Avenue, Johannesburg, 2000, South Africa
| | - Gabriel S Ferreira
- Senckenberg Centre for Human Evolution and Paleoenvironment an der Universität Tübingen, Sigwartstraße 10, 72076, Tübingen, Germany
- Fachbereich Geowissenschaften, Universität Tübingen, Hölderlinstraße 12, 72074, Tübingen, Germany
| | - Christian Foth
- Department of Geosciences, University of Fribourg, Chemin du Musée 6, 1700, Fribourg, Switzerland
| | - Guilherme Hermanson
- Department of Geosciences, University of Fribourg, Chemin du Musée 6, 1700, Fribourg, Switzerland
- Laboratório de Paleontologia de Ribeirão Preto, FFCLRP, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Hongyu Yi
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences Beijing, 100049, Beijing, China
- CAS Center for Excellence in Life and Paleoenvironment Beijing, 100044, Beijing, China
| | - Catherine M Johnson
- Department of Earth Sciences, University of Oxford, South Parks Road, Oxford, OX1 3AN, United Kingdom
| | - Ingmar Werneburg
- Senckenberg Centre for Human Evolution and Paleoenvironment an der Universität Tübingen, Sigwartstraße 10, 72076, Tübingen, Germany
- Fachbereich Geowissenschaften, Universität Tübingen, Hölderlinstraße 12, 72074, Tübingen, Germany
| | - Roger B J Benson
- Department of Earth Sciences, University of Oxford, South Parks Road, Oxford, OX1 3AN, United Kingdom
- Evolutionary Studies Institute, University of the Witwatersrand, 1 Jan Smuts Avenue, Johannesburg, 2000, South Africa
| |
Collapse
|
4
|
Liu W, Chen G, Xie J, Liang T, Zhang C, Liao X, Liao W, Song L, Zhang X. A New Coordinate System for Magnetic Resonance Imaging of the Vestibular System. Front Neurol 2022; 12:789887. [PMID: 35069419 PMCID: PMC8766740 DOI: 10.3389/fneur.2021.789887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 12/06/2021] [Indexed: 11/13/2022] Open
Abstract
Objectives: To develop and evaluate a new coordinate system for MRI of the vestibular system. Methods: In this study, 53 internal auditory canal MRI and 78 temporal bone CT datasets were analyzed. Mimics Medical software version 21.0 was used to visualize and three-dimensionally reconstruct the image data. We established a new coordinate system, named W–X, based on the center of the bilateral eyeballs and vertex of the bilateral superior semicircular canals. Using the W–X coordinate system and Reid's coordinate system, we measured the orientations of the planes of the anterior semicircular canal (ASCC), the lateral semicircular canal (LSCC), and the posterior semicircular canal (PSCC). Results: No significant differences between the angles measured using CT and MRI were found for any of the semicircular canal planes (p > 0.05). No statistical differences were found between the angles measured using Reid's coordinate system (CT) and the W–X coordinate system (MRI). The mean values of ∠ASCC & LSCC, ∠ASCC & PSCC, and ∠LSCC & PSCC were 84.67 ± 5.76, 94.21 ± 3.81, and 91.79 ± 5.22 degrees, respectively. The angle between the LSCC plane and the horizontal imaging plane was 15.64 ± 3.92 degrees, and the angle between the PSCC plane and the sagittal imaging plane was 48.79 ± 4.46 degrees. Conclusion: A new W–X coordinate system was developed for MRI studies of the vestibular system and can be used to measure the orientations of the semicircular canals.
Collapse
Affiliation(s)
- Weixing Liu
- State Key Laboratory of Respiratory Disease, Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Gui Chen
- State Key Laboratory of Respiratory Disease, Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Junyang Xie
- State Key Laboratory of Respiratory Disease, Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Tianhao Liang
- State Key Laboratory of Respiratory Disease, Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Chunyi Zhang
- State Key Laboratory of Respiratory Disease, Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiao Liao
- State Key Laboratory of Respiratory Disease, Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wenjing Liao
- State Key Laboratory of Respiratory Disease, Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lijuan Song
- State Key Laboratory of Respiratory Disease, Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaowen Zhang
- State Key Laboratory of Respiratory Disease, Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
5
|
Wu S, Lin P, Zheng Y, Zhou Y, Liu Z, Yang X. Measurement of Human Semicircular Canal Spatial Attitude. Front Neurol 2021; 12:741948. [PMID: 34630312 PMCID: PMC8498035 DOI: 10.3389/fneur.2021.741948] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 08/27/2021] [Indexed: 11/16/2022] Open
Abstract
Located deep in the temporal bone, the semicircular canal is a subtle structure that requires a spatial coordinate system for measurement and observation. In this study, 55 semicircular canal and eyeball models were obtained by segmentation of MRI data. The spatial coordinate system was established by taking the top of the common crus and the bottom of the eyeball as the horizontal plane. First, the plane equation was established according to the centerline of the semicircular canals. Then, according to the parameters of the plane equation, the plane normal vectors were obtained. Finally, the average unit normal vector of each semicircular canal plane was obtained by calculating the average value of the vectors. The standard normal vectors of the and left posterior semicircular canal, superior semicircular canal and lateral semicircular canal were [−0.651, 0.702, 0.287], [0.749, 0.577, 0.324], [−0.017, −0.299, 0.954], [0.660, 0.702, 0.266], [−0.739, 0.588, 0.329], [0.025, −0.279, 0.960]. The different angles for the different ways of calculating the standard normal vectors of the right and left posterior semicircular canal, superior semicircular canal and lateral semicircular canal were 0.011, 0.028, 0.008, 0.011, 0.024, and 0.006 degrees. The technology for measuring the semicircular canal spatial attitudes in this study are reliable, and the measurement results can guide vestibular function examinations and help with guiding the diagnosis and treatment of BPPV.
Collapse
Affiliation(s)
- Shuzhi Wu
- Neurology Department, Third Affiliated Hospital of Shanghai University, Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou, China
| | - Ping Lin
- Neurology Department, Third Affiliated Hospital of Shanghai University, Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou, China
| | - Yanyan Zheng
- Neurology Department, Third Affiliated Hospital of Shanghai University, Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou, China
| | - Yifei Zhou
- ENT Department, Third Affiliated Hospital of Shanghai University, Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou, China
| | - Zhaobang Liu
- Department of Medical Imaging, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Xiaokai Yang
- Neurology Department, Third Affiliated Hospital of Shanghai University, Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou, China
| |
Collapse
|
6
|
Meshida K, Lin S, Domning DP, Wang P, Gilland E. The oblique extraocular muscles in cetaceans: Overall architecture and accessory insertions. J Anat 2021; 238:917-941. [PMID: 33131071 PMCID: PMC7930771 DOI: 10.1111/joa.13347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 10/03/2020] [Accepted: 10/05/2020] [Indexed: 11/27/2022] Open
Abstract
The oblique extraocular muscles (EOMs) were dissected in 19 cetacean species and 10 non-cetacean mammalian species. Both superior oblique (SO) and inferior oblique (IO) muscles in cetaceans are well developed in comparison to out-groups and have unique anatomical features likely related to cetacean orbital configurations, swimming mechanics, and visual behaviors. Cetacean oblique muscles originate at skeletal locations typical for mammals: SO, from a common tendinous cone surrounding the optic nerve and from the medially adjacent bone surface at the orbital apex; IO, from the maxilla adjacent to lacrimal and frontal bones. However, because of the unusual orbital geometry in cetaceans, the paths and relations of SO and IO running toward their insertions onto the temporal ocular sclera are more elaborate than in humans and most other mammals. The proximal part of the SO extends from its origin at the apex along the dorsomedial aspect of the orbital contents to a strong fascial connection proximal to the preorbital process of the frontal bone, likely the cetacean homolog of the typical mammalian trochlea. However, the SO does not turn at this connection but continues onward, still a fleshy cylinder, until turning sharply as it passes through the external circular muscle (ECM) and parts of the palpebral belly of the superior rectus muscle. Upon departing this "functional trochlea" the SO forms a primary scleral insertion and multiple accessory insertions (AIs) onto adjacent EOM tendons and fascial structures. The primary SO scleral insertions are broad and muscular in most cetacean species examined, while in the mysticete minke whale (Balaenoptera acutorostrata) and fin whale (Balaenoptera physalus) the muscular SO bellies transition into broad fibrous tendons of insertion. The IO in cetaceans originates from an elongated fleshy attachment oriented laterally on the maxilla and continues laterally as a tubular belly before turning caudally at a sharp bend where it is constrained by the ECM and parts of the inferior rectus which form a functional trochlea as with the SO. The IO continues to a fleshy primary insertion on the temporal sclera but, as with SO, also has multiple AIs onto adjacent rectus tendons and connective tissue. The multiple IO insertions were particularly well developed in pygmy sperm whale (Kogia breviceps), minke whale and fin whale. AIs of both SO and IO muscles onto multiple structures as seen in cetaceans have been described in humans and domesticated mammals. The AIs of oblique EOMs seen in all these groups, as well as the unique "functional trochleae" of cetacean SO and IO seem likely to function in constraining the lines of action at the primary scleral insertions of the oblique muscles. The gimble-like sling formed by SO and IO in cetaceans suggest that the "primary" actions of the cetacean oblique EOMs are not only to produce ocular counter-rotations during up-down pitch movements of the head during swimming but also to rotate the plane containing the functional origins of the rectus muscles during other gaze changes.
Collapse
Affiliation(s)
- Keiko Meshida
- Department of AnatomyCollege of MedicineHoward UniversityWashingtonDCUSA
| | - Stephen Lin
- Molecular Imaging LaboratoryDepartment of RadiologyHoward UniversityWashingtonDCUSA
| | - Daryl P. Domning
- Department of AnatomyCollege of MedicineHoward UniversityWashingtonDCUSA
| | - Paul Wang
- Molecular Imaging LaboratoryDepartment of RadiologyHoward UniversityWashingtonDCUSA
- College of Science and EngineeringFu Jen Catholic UniversityTaipeiTaiwan
| | - Edwin Gilland
- Department of AnatomyCollege of MedicineHoward UniversityWashingtonDCUSA
| |
Collapse
|
7
|
Capshaw G, Soares D, Carr CE. Bony labyrinth morphometry reveals hidden diversity in lungless salamanders (Family Plethodontidae): Structural correlates of ecology, development, and vision in the inner ear. Evolution 2019; 73:2135-2150. [PMID: 31436320 DOI: 10.1111/evo.13837] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 07/29/2019] [Accepted: 08/09/2019] [Indexed: 01/05/2023]
Abstract
Lungless salamanders (Family Plethodontidae) form a highly speciose group that has undergone spectacular adaptive radiation to colonize a multitude of habitats. Substantial morphological variation in the otic region coupled with great ecological diversity within this clade make plethodontids an excellent model for exploring the ecomorphology of the amphibian ear. We examined the influence of habitat, development, and vision on inner ear morphology in 52 plethodontid species. We collected traditional and 3D geometric morphometric measurements to characterize variation in size and shape of the otic endocast and peripheral structures of the salamander ear. Phylogenetic comparative analyses demonstrate structural convergence in the inner ear across ecologically similar species. Species that dwell in spatially complex microhabitats exhibit robust, highly curved semicircular canals suggesting enhanced vestibular sense, whereas species with reduced visual systems demonstrate reduced canal curvature indicative of relaxed selection on the vestibulo-ocular reflex. Cave specialists show parallel enlargement of auditory-associated structures. The morphological correlates of ecology among diverse species reveal underlying evidence of habitat specialization in the inner ear and suggest that there exists physiological variation in the function of the salamander ear even in the apparent absence of selective pressures on the auditory system to support acoustic behavior.
Collapse
Affiliation(s)
- Grace Capshaw
- Department of Biology, University of Maryland, College Park, MD, 20742
| | - Daphne Soares
- Department of Biological Sciences, New Jersey Institute of Technology, Newark, NJ, 07102
| | - Catherine E Carr
- Department of Biology, University of Maryland, College Park, MD, 20742
| |
Collapse
|
8
|
Cerio DG, Witmer LM. Intraspecific variation and symmetry of the inner-ear labyrinth in a population of wild turkeys: implications for paleontological reconstructions. PeerJ 2019; 7:e7355. [PMID: 31372322 PMCID: PMC6659666 DOI: 10.7717/peerj.7355] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 06/26/2019] [Indexed: 12/25/2022] Open
Abstract
The cochlea and semicircular canals (SCCs) of the inner ear are vital neurosensory devices. There are associations between the anatomy of these sensorineural structures, their function, and the function of related biological systems, for example, hearing ability, gaze stabilization, locomotor agility, and posture. The endosseous labyrinth is frequently used as a proxy to infer the performance of the hearing and vestibular systems, locomotor abilities, and ecology of extinct species. Such fossil inferences are often based on single specimens or even a single ear, representing an entire species. To address whether a single ear is representative of a population, we used geometric morphometrics to quantitatively assess the variation in shape and symmetry in a sample of endosseous labyrinths of wild turkeys Meleagris gallopavo of southern Ohio. We predicted that ears would be symmetrical both within individuals and across the sample; that labyrinth shape and size would covary; that labyrinth shape would vary with the size of the brain, measured as width of the endocranium at the cerebellum; and that labyrinths would be morphologically integrated. To test these predictions, we microCT-scanned the heads of 26 cadaveric turkeys, digitally segmented their endosseous labyrinths in Avizo, and assigned 15 manual landmarks and 20 sliding semilandmarks to each digital model. Following Procrustes alignment, we conducted an analysis of bilateral symmetry, a Procrustes regression analysis for allometry and other covariates including side and replicate, and analyses of global integration and modularity. Based on Procrustes distances, no individual’s left and right ears were clearly different from each other. When comparing the ears of different specimens, statistically clear differences in shape were found in only 66 of more than 1,300 contrasts. Moreover, effects of both directional and fluctuating asymmetry were very small—generally, two orders of magnitude smaller than the variance explained by individual variation. Statistical tests disagreed on whether these asymmetric effects crossed the threshold of significance, possibly due to non-isotropic variation among landmarks. Regardless, labyrinths appeared to primarily vary in shape symmetrically. Neither labyrinth size nor endocranial width was correlated with labyrinth shape, contrary to our expectations. Finally, labyrinths were found to be moderately integrated in a global sense, but four weakly separated modules—the three SCCs and cochlea—were recovered using a maximum-likelihood analysis. The results show that both fluctuating and directional asymmetry play a larger role in shape variation than expected—but nonetheless, endosseous labyrinths are symmetrical within individuals and at the level of the population, and their shape varies symmetrically. Thus, inferences about populations, and very possibly species, may be confidently made when only a single specimen, or even a single ear, is available for study.
Collapse
Affiliation(s)
- Donald G Cerio
- Department of Biological Sciences, Ohio University, Athens, OH, USA.,Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Lawrence M Witmer
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| |
Collapse
|
9
|
Benson RBJ, Starmer-Jones E, Close RA, Walsh SA. Comparative analysis of vestibular ecomorphology in birds. J Anat 2018; 231:990-1018. [PMID: 29156494 DOI: 10.1111/joa.12726] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2017] [Indexed: 02/06/2023] Open
Abstract
The bony labyrinth of vertebrates houses the semicircular canals. These sense rotational accelerations of the head and play an essential role in gaze stabilisation during locomotion. The sizes and shapes of the semicircular canals have hypothesised relationships to agility and locomotory modes in many groups, including birds, and a burgeoning palaeontological literature seeks to make ecological interpretations from the morphology of the labyrinth in extinct species. Rigorous tests of form-function relationships for the vestibular system are required to support these interpretations. We test the hypothesis that the lengths, streamlines and angles between the semicircular canals are related to body size, wing kinematics and flying style in birds. To do this, we applied geometric morphometrics and multivariate phylogenetic comparative methods to a dataset of 64 three-dimensional reconstructions of the endosseous labyrinth obtained using micro-computed tomography scanning of bird crania. A strong relationship between centroid size of the semicircular canals and body size indicates that larger birds have longer semicircular canals compared with their evolutionary relatives. Wing kinematics related to manoeuvrability (and quantified using the brachial index) explain a small additional portion of the variance in labyrinth size. We also find strong evidence for allometric shape change in the semicircular canals of birds, indicating that major aspects of the shape of the avian labyrinth are determined by spatial constraints. The avian braincase accommodates a large brain, a large eye and large semicircular canals compared with other tetrapods. Negative allometry of these structures means that the restriction of space within the braincase is intense in small birds. This may explain our observation that the angles between planes of the semicircular canals of birds deviate more strongly from orthogonality than those of mammals, and especially from agile, gliding and flying mammals. Furthermore, we find little support for relationships between labyrinth shape and flying style or wing kinematics. Overall, our results suggest that the topological problem of fitting long semicircular canals into a spatially constrained braincase is more important in determining the shape of the avian labyrinth than the specifics of locomotory style or agility. Our results tentatively indicate a link between visual acuity and proportional size of the labyrinth among birds. This suggests that the large labyrinths of birds compared with other tetrapods may result from their generally high visual acuities, and not directly from their ability to fly. The endosseous labyrinths of extinct birds and their close dinosaurian relatives may allow broad inferences about flight or vision, but so far provide few specific insights into detailed aspects of locomotion.
Collapse
Affiliation(s)
| | | | - Roger A Close
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Stig A Walsh
- Department of Natural Sciences, National Museums Scotland, Edinburgh, UK.,School of GeoSciences, The King's Buildings, Edinburgh, UK
| |
Collapse
|
10
|
Belli HM, Bresee CS, Graff MM, Hartmann MJZ. Quantifying the three-dimensional facial morphology of the laboratory rat with a focus on the vibrissae. PLoS One 2018; 13:e0194981. [PMID: 29621356 PMCID: PMC5886528 DOI: 10.1371/journal.pone.0194981] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 03/14/2018] [Indexed: 11/24/2022] Open
Abstract
The morphology of an animal's face will have large effects on the sensory information it can acquire. Here we quantify the arrangement of cranial sensory structures of the rat, with special emphasis on the mystacial vibrissae (whiskers). Nearly all mammals have vibrissae, which are generally arranged in rows and columns across the face. The vibrissae serve a wide variety of important behavioral functions, including navigation, climbing, wake following, anemotaxis, and social interactions. To date, however, there are few studies that compare the morphology of vibrissal arrays across species, or that describe the arrangement of the vibrissae relative to other facial sensory structures. The few studies that do exist have exploited the whiskers' grid-like arrangement to quantify array morphology in terms of row and column identity. However, relying on whisker identity poses a challenge for comparative research because different species have different numbers and arrangements of whiskers. The present work introduces an approach to quantify vibrissal array morphology regardless of the number of rows and columns, and to quantify the array's location relative to other sensory structures. We use the three-dimensional locations of the whisker basepoints as fundamental parameters to generate equations describing the length, curvature, and orientation of each whisker. Results show that in the rat, whisker length varies exponentially across the array, and that a hard limit on intrinsic curvature constrains the whisker height-to-length ratio. Whiskers are oriented to "fan out" approximately equally in dorsal-ventral and rostral-caudal directions. Quantifying positions of the other sensory structures relative to the whisker basepoints shows remarkable alignment to the somatosensory cortical homunculus, an alignment that would not occur for other choices of coordinate systems (e.g., centered on the midpoint of the eyes). We anticipate that the quantification of facial sensory structures, including the vibrissae, will ultimately enable cross-species comparisons of multi-modal sensing volumes.
Collapse
Affiliation(s)
- Hayley M. Belli
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, United States of America
| | - Chris S. Bresee
- Northwestern University Interdepartmental Neuroscience Program, Northwestern University, Evanston, Illinois, United States of America
| | - Matthew M. Graff
- Department of Mechanical Engineering, Northwestern University, Evanston, Illinois, United States of America
| | - Mitra J. Z. Hartmann
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, United States of America
- Department of Mechanical Engineering, Northwestern University, Evanston, Illinois, United States of America
| |
Collapse
|
11
|
Recent inner ear specialization for high-speed hunting in cheetahs. Sci Rep 2018; 8:2301. [PMID: 29396425 PMCID: PMC5797172 DOI: 10.1038/s41598-018-20198-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 01/15/2018] [Indexed: 11/30/2022] Open
Abstract
The cheetah, Acinonyx jubatus, is the fastest living land mammal. Because of its specialized hunting strategy, this species evolved a series of specialized morphological and functional body features to increase its exceptional predatory performance during high-speed hunting. Using high-resolution X-ray computed micro-tomography (μCT), we provide the first analyses of the size and shape of the vestibular system of the inner ear in cats, an organ essential for maintaining body balance and adapting head posture and gaze direction during movement in most vertebrates. We demonstrate that the vestibular system of modern cheetahs is extremely different in shape and proportions relative to other cats analysed (12 modern and two fossil felid species), including a closely-related fossil cheetah species. These distinctive attributes (i.e., one of the greatest volumes of the vestibular system, dorsal extension of the anterior and posterior semicircular canals) correlate with a greater afferent sensitivity of the inner ear to head motions, facilitating postural and visual stability during high-speed prey pursuit and capture. These features are not present in the fossil cheetah A. pardinensis, that went extinct about 126,000 years ago, demonstrating that the unique and highly specialized inner ear of the sole living species of cheetah likely evolved extremely recently, possibly later than the middle Pleistocene.
Collapse
|
12
|
Pfaff C, Martin T, Ruf I. Bony labyrinth morphometry indicates locomotor adaptations in the squirrel-related clade (Rodentia, Mammalia). Proc Biol Sci 2016; 282:20150744. [PMID: 26019162 DOI: 10.1098/rspb.2015.0744] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The semicircular canals (SCs) of the inner ear detect angular acceleration and are located in the bony labyrinth of the petrosal bone. Based on high-resolution computed tomography, we created a size-independent database of the bony labyrinth of 50 mammalian species especially rodents of the squirrel-related clade comprising taxa with fossorial, arboreal and gliding adaptations. Our sampling also includes gliding marsupials, actively flying bats, the arboreal tree shrew and subterranean species. The morphometric anatomy of the SCs was correlated to the locomotion mode. Even if the phylogenetic signal cannot entirely be excluded, the main significance for functional morphological studies has been found in the diameter of the SCs, whereas the radius of curvature is of minor interest. Additionally, we found clear differences in the bias angle of the canals between subterranean and gliding taxa, but also between sciurids and glirids. The sensitivity of the inner ear correlates with the locomotion mode, with a higher sensitivity of the SCs in fossorial species than in flying taxa. We conclude that the inner ear of flying and gliding mammals is less sensitive due to the large information flow into this sense organ during locomotion.
Collapse
Affiliation(s)
- Cathrin Pfaff
- Department of Palaeontology, Geozentrum, University of Vienna, Althanstrasse 14, Vienna 1090, Austria
| | - Thomas Martin
- Steinmann-Institut für Geologie, Mineralogie und Paläontologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Nussallee 8, Bonn 53115, Germany
| | - Irina Ruf
- Senckenberg Forschungsinstitut und Naturmuseum Frankfurt, Abteilung Paläoanthropologie und Messelforschung, Senckenberganlage 25, Frankfurt am Main 60325, Germany
| |
Collapse
|
13
|
Kraatz BP, Sherratt E, Bumacod N, Wedel MJ. Ecological correlates to cranial morphology in Leporids (Mammalia, Lagomorpha). PeerJ 2015; 3:e844. [PMID: 25802812 PMCID: PMC4369340 DOI: 10.7717/peerj.844] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 02/27/2015] [Indexed: 11/20/2022] Open
Abstract
The mammalian order Lagomorpha has been the subject of many morphometric studies aimed at understanding the relationship between form and function as it relates to locomotion, primarily in postcranial morphology. The leporid cranial skeleton, however, may also reveal information about their ecology, particularly locomotion and vision. Here we investigate the relationship between cranial shape and the degree of facial tilt with locomotion (cursoriality, saltation, and burrowing) within crown leporids. Our results suggest that facial tilt is more pronounced in cursors and saltators compared to generalists, and that increasing facial tilt may be driven by a need for expanded visual fields. Our phylogenetically informed analyses indicate that burrowing behavior, facial tilt, and locomotor behavior do not predict cranial shape. However, we find that variables such as bullae size, size of the splenius capitus fossa, and overall rostral dimensions are important components for understanding the cranial variation in leporids.
Collapse
Affiliation(s)
- Brian P Kraatz
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences , Pomona, CA , USA
| | - Emma Sherratt
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University , Ames, IA , USA
| | - Nicholas Bumacod
- College of Dental Medicine, Western University of Health Sciences , Pomona, CA , USA
| | - Mathew J Wedel
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences , Pomona, CA , USA ; College of Podiatric Medicine, Western University of Health Sciences , Pomona, CA , USA
| |
Collapse
|
14
|
Schutz H, Jamniczky HA, Hallgrímsson B, Garland T. Shape-shift: semicircular canal morphology responds to selective breeding for increased locomotor activity. Evolution 2014; 68:3184-98. [PMID: 25130322 DOI: 10.1111/evo.12501] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 07/06/2014] [Indexed: 02/05/2023]
Abstract
Variation in semicircular canal morphology correlates with locomotor agility among species of mammals. An experimental evolutionary mouse model was used to test the hypotheses that semicircular canal morphology (1) evolves in response to selective breeding for increased locomotor activity, (2) exhibits phenotypic plasticity in response to early-onset chronic exercise, and (3) is unique in individuals possessing the minimuscle phenotype. We examined responses in canal morphology to prolonged wheel access and selection in laboratory mice from four replicate lines bred for high voluntary wheel-running (HR) and four nonselected control (C) lines. Linear measurements and a suite of 3D landmarks were obtained from 3D reconstructions of μCT-scanned mouse crania (μCT is microcomputed tomography). Body mass was smaller in HR than C mice and was a significant predictor of both radius of curvature and 3D canal shape. Controlling for body mass, radius of curvature did not differ statistically between HR and C mice, but semicircular canal shape did. Neither chronic wheel access nor minimuscle affected radius of curvature or canal shape These findings suggest that semicircular canal morphology is responsive to evolutionary changes in locomotor behavior, but the pattern of response is potentially different in small- versus large-bodied species.
Collapse
Affiliation(s)
- Heidi Schutz
- Biology Department, Pacific Lutheran University, Tacoma, Washington, 98477; Department of Biology, University of California, Riverside, California, 92521.
| | | | | | | |
Collapse
|
15
|
Functional implications of ubiquitous semicircular canal non-orthogonality in mammals. PLoS One 2013; 8:e79585. [PMID: 24260256 PMCID: PMC3834179 DOI: 10.1371/journal.pone.0079585] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 10/02/2013] [Indexed: 12/20/2022] Open
Abstract
The 'canonical model' of semicircular canal orientation in mammals assumes that 1) the three ipsilateral canals of an inner ear exist in orthogonal planes (i.e., orthogonality), 2) corresponding left and right canal pairs have equivalent angles (i.e., angle symmetry), and 3) contralateral synergistic canals occupy parallel planes (i.e., coplanarity). However, descriptions of vestibular anatomy that quantify semicircular canal orientation in single species often diverge substantially from this model. Data for primates further suggest that semicircular canal orthogonality varies predictably with the angular head velocities encountered in locomotion. These observations raise the possibility that orthogonality, symmetry, and coplanarity are misleading descriptors of semicircular canal orientation in mammals, and that deviations from these norms could have significant functional consequences. Here we critically assess the canonical model of semicircular canal orientation using high-resolution X-ray computed tomography scans of 39 mammal species. We find that substantial deviations from orthogonality, angle symmetry, and coplanarity are the rule for the mammals in our comparative sample. Furthermore, the degree to which the semicircular canals of a given species deviate from orthogonality is negatively correlated with estimated vestibular sensitivity. We conclude that the available comparative morphometric data do not support the canonical model and that its overemphasis as a heuristic generalization obscures a large amount of functionally relevant variation in semicircular canal orientation between species.
Collapse
|
16
|
Ekdale EG. Comparative Anatomy of the Bony Labyrinth (Inner Ear) of Placental Mammals. PLoS One 2013; 8:e66624. [PMID: 23805251 PMCID: PMC3689836 DOI: 10.1371/journal.pone.0066624] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 05/07/2013] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Variation is a naturally occurring phenomenon that is observable at all levels of morphology, from anatomical variations of DNA molecules to gross variations between whole organisms. The structure of the otic region is no exception. The present paper documents the broad morphological diversity exhibited by the inner ear region of placental mammals using digital endocasts constructed from high-resolution X-ray computed tomography (CT). Descriptions cover the major placental clades, and linear, angular, and volumetric dimensions are reported. PRINCIPAL FINDINGS The size of the labyrinth is correlated to the overall body mass of individuals, such that large bodied mammals have absolutely larger labyrinths. The ratio between the average arc radius of curvature of the three semicircular canals and body mass of aquatic species is substantially lower than the ratios of related terrestrial taxa, and the volume percentage of the vestibular apparatus of aquatic mammals tends to be less than that calculated for terrestrial species. Aspects of the bony labyrinth are phylogenetically informative, including vestibular reduction in Cetacea, a tall cochlear spiral in caviomorph rodents, a low position of the plane of the lateral semicircular canal compared to the posterior canal in Cetacea and Carnivora, and a low cochlear aspect ratio in Primatomorpha. SIGNIFICANCE The morphological descriptions that are presented add a broad baseline of anatomy of the inner ear across many placental mammal clades, for many of which the structure of the bony labyrinth is largely unknown. The data included here complement the growing body of literature on the physiological and phylogenetic significance of bony labyrinth structures in mammals, and they serve as a source of data for future studies on the evolution and function of the vertebrate ear.
Collapse
Affiliation(s)
- Eric G. Ekdale
- Department of Biology, San Diego State University, San Diego, California, United States of America
- Department of Paleontology, San Diego Natural History Museum, San Diego, California, United States of America
| |
Collapse
|
17
|
Davies KTJ, Bates PJJ, Maryanto I, Cotton JA, Rossiter SJ. The evolution of bat vestibular systems in the face of potential antagonistic selection pressures for flight and echolocation. PLoS One 2013; 8:e61998. [PMID: 23637943 PMCID: PMC3634842 DOI: 10.1371/journal.pone.0061998] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 03/18/2013] [Indexed: 01/29/2023] Open
Abstract
The vestibular system maintains the body's sense of balance and, therefore, was probably subject to strong selection during evolutionary transitions in locomotion. Among mammals, bats possess unique traits that place unusual demands on their vestibular systems. First, bats are capable of powered flight, which in birds is associated with enlarged semicircular canals. Second, many bats have enlarged cochleae associated with echolocation, and both cochleae and semicircular canals share a space within the petrosal bone. To determine how bat vestibular systems have evolved in the face of these pressures, we used micro-CT scans to compare canal morphology across species with contrasting flight and echolocation capabilities. We found no increase in canal radius in bats associated with the acquisition of powered flight, but canal radius did correlate with body mass in bat species from the suborder Yangochiroptera, and also in non-echolocating Old World fruit bats from the suborder Yinpterochiroptera. No such trend was seen in members of the Yinpterochiroptera that use laryngeal echolocation, although canal radius was associated with wing-tip roundedness in this group. We also found that the vestibular system scaled with cochlea size, although the relationship differed in species that use constant frequency echolocation. Across all bats, the shape of the anterior and lateral canals was associated with large cochlea size and small body size respectively, suggesting differential spatial constraints on each canal depending on its orientation within the skull. Thus in many echolocating bats, it seems that the combination of small body size and enlarged cochlea together act as a principal force on the vestibular system. The two main groups of echolocating bats displayed different canal morphologies, in terms of size and shape in relation to body mass and cochlear size, thus suggesting independent evolutionary pathways and offering tentative support for multiple acquisitions of echolocation.
Collapse
Affiliation(s)
- Kalina T J Davies
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom.
| | | | | | | | | |
Collapse
|
18
|
Billet G, Hautier L, Asher RJ, Schwarz C, Crumpton N, Martin T, Ruf I. High morphological variation of vestibular system accompanies slow and infrequent locomotion in three-toed sloths. Proc Biol Sci 2012; 279:3932-9. [PMID: 22859594 DOI: 10.1098/rspb.2012.1212] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The semicircular canals (SCs), part of the vestibular apparatus of the inner ear, are directly involved in the detection of angular motion of the head for maintaining balance, and exhibit adaptive patterns for locomotor behaviour. Consequently, they are generally believed to show low levels of intraspecific morphological variation, but few studies have investigated this assumption. On the basis of high-resolution computed tomography, we present here, to our knowledge, the first comprehensive study of the pattern of variation of the inner ear with a focus on Xenarthra. Our study demonstrates that extant three-toed sloths show a high level of morphological variation of the bony labyrinth of the inner ear. Especially, the variation in shape, relative size and angles of their SCs greatly differ from those of other, faster-moving taxa within Xenarthra and Placentalia in general. The unique pattern of variation in three-toed sloths suggests that a release of selection and/or constraints on their organ of balance is associated with the observed wide range of phenotypes. This release is coincident with their slow and infrequent locomotion and may be related, among other possible factors, to a reduced functional demand for a precise sensitivity to movement.
Collapse
Affiliation(s)
- Guillaume Billet
- Steinmann-Institut für Geologie, Mineralogie und Paläontologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Nussallee 8, 53115 Bonn, Germany.
| | | | | | | | | | | | | |
Collapse
|
19
|
Gunz P, Ramsier M, Kuhrig M, Hublin JJ, Spoor F. The mammalian bony labyrinth reconsidered, introducing a comprehensive geometric morphometric approach. J Anat 2012; 220:529-43. [PMID: 22404255 PMCID: PMC3390507 DOI: 10.1111/j.1469-7580.2012.01493.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2012] [Indexed: 11/29/2022] Open
Abstract
The bony labyrinth in the temporal bone houses the sensory systems of balance and hearing. While the overall structure of the semicircular canals and cochlea is similar across therian mammals, their detailed morphology varies even among closely related groups. As such, the shape of the labyrinth carries valuable functional and phylogenetic information. Here we introduce a new, semilandmark-based three-dimensional geometric morphometric approach to shape analysis of the labyrinth, as a major improvement upon previous metric studies based on linear measurements and angles. We first provide a detailed, step-by-step description of the measurement protocol. Subsequently, we test our approach using a geographically diverse sample of 50 recent modern humans and 30 chimpanzee specimens belonging to Pan troglodytes troglodytes and P. t. verus. Our measurement protocol can be applied to CT scans of different spatial resolutions because it primarily quantifies the midline skeleton of the bony labyrinth. Accurately locating the lumen centre of the semicircular canals and the cochlea is not affected by the partial volume and thresholding effects that can make the comparison of the outer border problematic. After virtually extracting the bony labyrinth from CT scans of the temporal bone, we computed its midline skeleton by thinning the encased volume. On the resulting medial axes of the semicircular canals and cochlea we placed a sequence of semilandmarks. After Procrustes superimposition, the shape coordinates were analysed using multivariate statistics. We found statistically significant shape differences between humans and chimpanzees which corroborate previous analyses of the labyrinth based on traditional measurements. As the geometric relationship among the semilandmark coordinates was preserved throughout the analysis, we were able to quantify and visualize even small-scale shape differences. Notably, our approach made it possible to detect and visualize subtle, yet statistically significant (P = 0.009), differences between two chimpanzee subspecies in the shape of their semicircular canals. The ability to discriminate labyrinth shape at the subspecies level demonstrates that the approach presented here has great potential in future taxonomic studies of fossil specimens.
Collapse
Affiliation(s)
- Philipp Gunz
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
| | | | | | | | | |
Collapse
|
20
|
Jeffery N, Cox PG. Do agility and skull architecture influence the geometry of the mammalian vestibulo-ocular reflex? J Anat 2010; 216:496-509. [PMID: 20210819 DOI: 10.1111/j.1469-7580.2010.01211.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
The spatial arrangement of the semicircular canals and extraocular muscles of the eye has been of considerable interest, particularly to researchers working on adaptations of the vestibulo-ocular reflex. Here we offer the first, extensive comparative analysis of the spatial relationships between each extraocular muscle and the canal providing its primary excitatory stimulus. The sample consisted of 113 specimens, representing 51 extant mammalian species. Hypotheses tested included that variations in the spatial alignments are linked with differences of skull morphology and with differences of agility during locomotion. Internal morphologies were visualized with magnetic resonance imaging and were measured with landmark-based vectors and planes. Values for body mass and agility were taken from the existing literature. Data were investigated for trends and associations with standard bivariate and multivariate statistical methods as well as with phylogenetically adjusted bivariate methods. The findings clearly show that species differences in the alignment of each extraocular muscle relative to the canal providing its primary excitatory stimulus are closely associated with changes of orbit morphology. The results also indicate that the actions of the oblique muscles interchange with those of the superior and inferior recti muscles when comparing lateral-eyed (rabbit) with frontal-eyed species (cat). There was only weak evidence to support the notion that canal-muscle alignments differ significantly among species according to how agile they are. The results suggest that semicircular canal morphology is arranged primarily for detecting head movements and then secondarily, if at all, for diminishing the burden of transforming vestibulo-ocular reflex signals in the most agile species.
Collapse
Affiliation(s)
- Nathan Jeffery
- Division of Human Anatomy and Cell Biology, School of Biomedical Sciences, University of Liverpool, Liverpool, UK.
| | | |
Collapse
|