2
|
Felts B, Pramod AB, Sandtner W, Burbach N, Bulling S, Sitte HH, Henry LK. The two Na+ sites in the human serotonin transporter play distinct roles in the ion coupling and electrogenicity of transport. J Biol Chem 2013; 289:1825-40. [PMID: 24293367 DOI: 10.1074/jbc.m113.504654] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Neurotransmitter transporters of the SLC6 family of proteins, including the human serotonin transporter (hSERT), utilize Na(+), Cl(-), and K(+) gradients to induce conformational changes necessary for substrate translocation. Dysregulation of ion movement through monoamine transporters has been shown to impact neuronal firing potentials and could play a role in pathophysiologies, such as depression and anxiety. Despite multiple crystal structures of prokaryotic and eukaryotic SLC transporters indicating the location of both (or one) conserved Na(+)-binding sites (termed Na1 and Na2), much remains uncertain in regard to the movements and contributions of these cation-binding sites in the transport process. In this study, we utilize the unique properties of a mutation of hSERT at a single, highly conserved asparagine on TM1 (Asn-101) to provide several lines of evidence demonstrating mechanistically distinct roles for Na1 and Na2. Mutations at Asn-101 alter the cation dependence of the transporter, allowing Ca(2+) (but not other cations) to functionally replace Na(+) for driving transport and promoting 5-hydroxytryptamine (5-HT)-dependent conformational changes. Furthermore, in two-electrode voltage clamp studies in Xenopus oocytes, both Ca(2+) and Na(+) illicit 5-HT-induced currents in the Asn-101 mutants and reveal that, although Ca(2+) promotes substrate-induced current, it does not appear to be the charge carrier during 5-HT transport. These findings, in addition to functional evaluation of Na1 and Na2 site mutants, reveal separate roles for Na1 and Na2 and provide insight into initiation of the translocation process as well as a mechanism whereby the reported SERT stoichiometry can be obtained despite the presence of two putative Na(+)-binding sites.
Collapse
Affiliation(s)
- Bruce Felts
- From the Department of Basic Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota 58203 and
| | | | | | | | | | | | | |
Collapse
|
3
|
Henry LK, Iwamoto H, Field JR, Kaufmann K, Dawson ES, Jacobs MT, Adams C, Felts B, Zdravkovic I, Armstrong V, Combs S, Solis E, Rudnick G, Noskov SY, DeFelice LJ, Meiler J, Blakely RD. A conserved asparagine residue in transmembrane segment 1 (TM1) of serotonin transporter dictates chloride-coupled neurotransmitter transport. J Biol Chem 2011; 286:30823-30836. [PMID: 21730057 DOI: 10.1074/jbc.m111.250308] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Na(+)- and Cl(-)-dependent uptake of neurotransmitters via transporters of the SLC6 family, including the human serotonin transporter (SLC6A4), is critical for efficient synaptic transmission. Although residues in the human serotonin transporter involved in direct Cl(-) coordination of human serotonin transport have been identified, the role of Cl(-) in the transport mechanism remains unclear. Through a combination of mutagenesis, chemical modification, substrate and charge flux measurements, and molecular modeling studies, we reveal an unexpected role for the highly conserved transmembrane segment 1 residue Asn-101 in coupling Cl(-) binding to concentrative neurotransmitter uptake.
Collapse
Affiliation(s)
- L Keith Henry
- Departments of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-8548; Center for Structural Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-8548; Department of Pharmacology, Physiology, and Therapeutics, University of North Dakota, Grand Forks, North Dakota 58203.
| | - Hideki Iwamoto
- Departments of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-8548
| | - Julie R Field
- Departments of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-8548
| | - Kristian Kaufmann
- Chemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-8548
| | - Eric S Dawson
- Center for Structural Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-8548; Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-8548; Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-8548
| | - Miriam T Jacobs
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520-8066
| | - Chelsea Adams
- Department of Pharmacology, Physiology, and Therapeutics, University of North Dakota, Grand Forks, North Dakota 58203
| | - Bruce Felts
- Department of Pharmacology, Physiology, and Therapeutics, University of North Dakota, Grand Forks, North Dakota 58203
| | - Igor Zdravkovic
- Institute for Biocomplexity and Informatics, Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Vanessa Armstrong
- Department of Pharmacology, Physiology, and Therapeutics, University of North Dakota, Grand Forks, North Dakota 58203
| | - Steven Combs
- Chemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-8548
| | - Ernesto Solis
- Departments of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-8548
| | - Gary Rudnick
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520-8066
| | - Sergei Y Noskov
- Institute for Biocomplexity and Informatics, Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Louis J DeFelice
- Departments of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-8548; Center for Molecular Neuroscience, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-8548
| | - Jens Meiler
- Departments of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-8548; Center for Structural Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-8548; Chemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-8548
| | - Randy D Blakely
- Departments of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-8548; Center for Molecular Neuroscience, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-8548; Psychiatry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-8548.
| |
Collapse
|
4
|
Wagner S, Sagiv N, Yarom Y. GABA-induced current and circadian regulation of chloride in neurones of the rat suprachiasmatic nucleus. J Physiol 2001; 537:853-69. [PMID: 11744760 PMCID: PMC2279012 DOI: 10.1111/j.1469-7793.2001.00853.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
1. We have shown previously that GABA, the main neurotransmitter in the suprachiasmatic nucleus (SCN), has dual effects on SCN neurones, excitatory during the day and inhibitory at night. This duality has been attributed to changes in [Cl(-)](i) during the circadian cycle. To unravel the processes underlying these changes we investigated the biophysical properties of the GABAergic receptors and the regulation of [Cl(-)](i) in SCN neurones. 2. We used voltage-clamp methodology in conjunction with local application of GABA to characterise the current induced by GABA in SCN neurones within acute brain slices. This current, mediated via GABA(A) receptors, shows moderate voltage dependence, does not desensitise and can significantly alter [Cl(-)](i). 3. Loading or depletion of intracellular Cl(-) was induced by a train of GABA pulses. The recovery of intracellular Cl(-) was deduced from the change in [Cl(-)](i) calculated from the response to a test GABA pulse presented at different intervals after the conditioning train of GABA application. The time course of recovery was described by an exponential curve. Recovery following Cl(-) depletion was slower than recovery from Cl(-) loading and was further delayed during the subjective night. 4. We concluded that: (a) SCN neurones express a large number of somatic GABA(A) receptors, which give rise to a modifiable, tonic Cl(-) conductance that modulates cell excitability; (b) two Cl(-) transport mechanisms operate in SCN neurones, one that replenishes the cell with Cl(-) following Cl(-) depletion and another that removes Cl(-) after Cl(-) loading; (c) the efficiency of the replenishing mechanism is reduced during the subjective night; and (d) this reduction explains a lower [Cl(-)](i) during the night phase of the circadian cycle.
Collapse
Affiliation(s)
- S Wagner
- Department of Neurobiology, Institute of Life Sciences and Center for Neural Computation, Hebrew University, Jerusalem, Israel
| | | | | |
Collapse
|
5
|
Olivier B, Soudijn W, van Wijngaarden I. Serotonin, dopamine and norepinephrine transporters in the central nervous system and their inhibitors. PROGRESS IN DRUG RESEARCH. FORTSCHRITTE DER ARZNEIMITTELFORSCHUNG. PROGRES DES RECHERCHES PHARMACEUTIQUES 2000; 54:59-119. [PMID: 10857386 DOI: 10.1007/978-3-0348-8391-7_3] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
An overview is presented on progress made in the research on neuronal transporters of serotonin, dopamine and norepinephrine in the central nervous system. Tools developed by molecular biology, such as expression of cloned transporters, their mutants and chimera in non-neuronal cells offered the opportunity to study the putative domains for binding of substrates and uptake inhibitors and discover factors in the regulation of the transporter function. The study of the distribution of monoamine transporters in human brain became possible by the development of selective radiolabelled transport inhibitors. The relationships between the chemical structure of the uptake inhibitors and the affinity for the monoamine transporters is reported, and the (potential) therapeutic applications of the compounds are discussed.
Collapse
Affiliation(s)
- B Olivier
- Dept. of Psychopharmacology, Faculty of Pharmacy, Utrecht University, The Netherlands
| | | | | |
Collapse
|
6
|
Percy E, Kaye DM, Lambert GW, Gruskin S, Esler MD, Du XJ. Catechol-O-methyltransferase activity in CHO cells expressing norepinephrine transporter. Br J Pharmacol 1999; 128:774-80. [PMID: 10516661 PMCID: PMC1571673 DOI: 10.1038/sj.bjp.0702831] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. We examined the existence of catecholamine metabolizing enzymes (catechol-O-methyltransferase, COMT, and monoamine oxidase, MAO) in CHO cells transfected with norepinephrine (NE) transporter (NET) cDNA. 2. NET activity was studied by incubating cells with [3H]-NE (0. 5 microCi ml-1, 20 min) in a Na+ containing medium. Incubation with [3H]-NE lead to [3H] accumulation at 47797+/-4864 d.p.m. per well. Specific inhibitors of NET abolished this uptake. 3. During post-uptake incubation, [3H] leaked rapidly from cells and the extracellular phase comprised 89% of total radioactivity within 40 min. Both [3H] retention and [3H] 'leakage' were largely unaffected by inhibitors for MAO. In contrast, COMT inhibitors, U-0521 and Ro 41-0960, dose-dependently increased intracellular [3H]-NE retention with a maximal increase of 4.5 fold. The EC50 for Ro 41-0960 was 139-times lower than that of U-0521. U-0521 largely inhibited [3H] 'leakage' and doubled the apparent Vmax for [3H]-NE uptake. 4. Addition of U-0521 during uptake incubation increased intracellular NE content by 8 fold. Normetanephrine, the COMT-dependent metabolite of NE, was formed in large quantities during post-uptake incubation. U-0521 significantly inhibited the formation of NMN with an equal preservation of intracellular NE. 5. CHO cells expressing NET possess COMT activity, which is responsible for the metabolism of NE to form lipophilic metabolite normetanephrine. The apparent 'properties' of the NET function expressed in CHO cells changed, after inhibition of COMT, in such a way closer to that described in the native neuronal preparations.
Collapse
Affiliation(s)
- Elodie Percy
- Alfred and Baker Medical Unit, Baker Medical Research Institute, St Kilda Road Central, PO Box 6492, Melbourne 8008, Victoria, Australia
| | - David M Kaye
- Alfred and Baker Medical Unit, Baker Medical Research Institute, St Kilda Road Central, PO Box 6492, Melbourne 8008, Victoria, Australia
| | - Gavin W Lambert
- Alfred and Baker Medical Unit, Baker Medical Research Institute, St Kilda Road Central, PO Box 6492, Melbourne 8008, Victoria, Australia
| | - Sara Gruskin
- Alfred and Baker Medical Unit, Baker Medical Research Institute, St Kilda Road Central, PO Box 6492, Melbourne 8008, Victoria, Australia
| | - Murray D Esler
- Alfred and Baker Medical Unit, Baker Medical Research Institute, St Kilda Road Central, PO Box 6492, Melbourne 8008, Victoria, Australia
| | - Xiao-Jun Du
- Alfred and Baker Medical Unit, Baker Medical Research Institute, St Kilda Road Central, PO Box 6492, Melbourne 8008, Victoria, Australia
- Author for correspondence:
| |
Collapse
|