1
|
Wilson C, Giaquinto L, Santoro M, Di Tullio G, Morra V, Kukulski W, Venditti R, Navone F, Borgese N, De Matteis MA. A role for mitochondria-ER crosstalk in amyotrophic lateral sclerosis 8 pathogenesis. Life Sci Alliance 2025; 8:e202402907. [PMID: 39870504 PMCID: PMC11772500 DOI: 10.26508/lsa.202402907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 01/29/2025] Open
Abstract
Protein aggregates in motoneurons, a pathological hallmark of amyotrophic lateral sclerosis, have been suggested to play a key pathogenetic role. ALS8, characterized by ER-associated inclusions, is caused by a heterozygous mutation in VAPB, which acts at multiple membrane contact sites between the ER and almost all other organelles. The link between protein aggregation and cellular dysfunction is unclear. A yeast model, expressing human mutant and WT-VAPB under the control of the orthologous yeast promoter in haploid and diploid cells, was developed to mimic the disease situation. Inclusion formation was found to be a developmentally regulated process linked to mitochondrial damage that could be attenuated by reducing ER-mitochondrial contacts. The co-expression of the WT protein retarded P56S-VAPB inclusion formation. Importantly, we validated these results in mammalian motoneuron cells. Our findings indicate that (age-related) damage to mitochondria influences the propensity of the mutant VAPB to form aggregates via ER-mitochondrial contacts, initiating a series of events leading to disease progression.
Collapse
Affiliation(s)
- Cathal Wilson
- Telethon Institute of Genetics and Medicine, TIGEM, Pozzuoli, Italy
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Laura Giaquinto
- Telethon Institute of Genetics and Medicine, TIGEM, Pozzuoli, Italy
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Michele Santoro
- Telethon Institute of Genetics and Medicine, TIGEM, Pozzuoli, Italy
| | | | - Valentina Morra
- Telethon Institute of Genetics and Medicine, TIGEM, Pozzuoli, Italy
| | - Wanda Kukulski
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Rossella Venditti
- Telethon Institute of Genetics and Medicine, TIGEM, Pozzuoli, Italy
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | | | - Nica Borgese
- CNR Neuroscience Institute, Vedano al Lambro, Italy
| | - Maria Antonietta De Matteis
- Telethon Institute of Genetics and Medicine, TIGEM, Pozzuoli, Italy
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| |
Collapse
|
2
|
Stringer RN, Weiss N. Pathophysiology of ion channels in amyotrophic lateral sclerosis. Mol Brain 2023; 16:82. [PMID: 38102715 PMCID: PMC10722804 DOI: 10.1186/s13041-023-01070-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 12/11/2023] [Indexed: 12/17/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) stands as the most prevalent and severe form of motor neuron disease, affecting an estimated 2 in 100,000 individuals worldwide. It is characterized by the progressive loss of cortical, brainstem, and spinal motor neurons, ultimately resulting in muscle weakness and death. Although the etiology of ALS remains poorly understood in most cases, the remodelling of ion channels and alteration in neuronal excitability represent a hallmark of the disease, manifesting not only during the symptomatic period but also in the early pre-symptomatic stages. In this review, we delve into these alterations observed in ALS patients and preclinical disease models, and explore their consequences on neuronal activities. Furthermore, we discuss the potential of ion channels as therapeutic targets in the context of ALS.
Collapse
Affiliation(s)
- Robin N Stringer
- Department of Pathophysiology, Third Faculty of Medicine, Charles University, Prague, Czech Republic
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Norbert Weiss
- Department of Pathophysiology, Third Faculty of Medicine, Charles University, Prague, Czech Republic.
- Center of Biosciences, Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences, Bratislava, Slovakia.
| |
Collapse
|
3
|
Zaino D, Serchi V, Giannini F, Pucci B, Veneri G, Pretegiani E, Rosini F, Monti L, Rufa A. Different saccadic profile in bulbar versus spinal-onset amyotrophic lateral sclerosis. Brain 2023; 146:266-277. [PMID: 35136957 DOI: 10.1093/brain/awac050] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/21/2021] [Accepted: 01/16/2022] [Indexed: 01/11/2023] Open
Abstract
Two clinical phenotypes characterize the onset of amyotrophic lateral sclerosis (ALS): the spinal variant, with symptoms beginning in the limbs, and the bulbar variant, affecting firstly speech and swallowing. The two variants show some distinct features in the histopathology, localization and prognosis, but to which extent they really differ clinically and pathologically remains to be clarified. Recent neuropathological and neuroimaging studies have suggested a broader spreading of the neurodegenerative process in ALS, extending beyond the motor areas, toward other cortical and deep grey matter regions, many of which are involved in visual processing and saccadic control. Indeed, a wide range of eye movement deficits have been reported in ALS, but they have never been used to distinguish the two ALS variants. Since quantifying eye movements is a very sensitive and specific method for the study of brain networks, we compared different saccadic and visual search behaviours across spinal ALS patients (n = 12), bulbar ALS patients (n = 6) and healthy control subjects (n = 13), along with cognitive and MRI measures, with the aim to define more accurately the two patients subgroups and possibly clarify a different underlying neural impairment. We found separate profiles of visually-guided saccades between spinal (short saccades) and bulbar (slow saccades) ALS, which could result from the pathologic involvement of different pathways. We suggest an early involvement of the parieto-collicular-cerebellar network in spinal ALS and the fronto-brainstem circuit in bulbar ALS. Overall, our data confirm the diagnostic value of the eye movements analysis in ALS and add new insight on the involved neural networks.
Collapse
Affiliation(s)
- Domenica Zaino
- Eye tracking and Visual Application Lab (EVA Lab), Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy.,Neurology and Neurometabolic Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy
| | - Valeria Serchi
- Eye tracking and Visual Application Lab (EVA Lab), Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy
| | - Fabio Giannini
- Centre for Motor Neuron Diseases, Neurology and Neurophysiology Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy
| | - Barbara Pucci
- Neurology and Neurophysiology Unit, Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy
| | - Giacomo Veneri
- Eye tracking and Visual Application Lab (EVA Lab), Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy
| | - Elena Pretegiani
- Eye tracking and Visual Application Lab (EVA Lab), Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy
| | - Francesca Rosini
- Eye tracking and Visual Application Lab (EVA Lab), Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy
| | - Lucia Monti
- Unit of Neuroimaging and Neurointervention, Department of Neurological and Neurosensorial Sciences, AOUS, 53100, Siena, Italy
| | - Alessandra Rufa
- Eye tracking and Visual Application Lab (EVA Lab), Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy
| |
Collapse
|
4
|
Interaction of Mitochondrial Calcium and ROS in Neurodegeneration. Cells 2022; 11:cells11040706. [PMID: 35203354 PMCID: PMC8869783 DOI: 10.3390/cells11040706] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/05/2022] [Accepted: 02/14/2022] [Indexed: 02/06/2023] Open
Abstract
Neurodegenerative disorders are currently incurable devastating diseases which are characterized by the slow and progressive loss of neurons in specific brain regions. Progress in the investigation of the mechanisms of these disorders helped to identify a number of genes associated with familial forms of these diseases and a number of toxins and risk factors which trigger sporadic and toxic forms of these diseases. Recently, some similarities in the mechanisms of neurodegenerative diseases were identified, including the involvement of mitochondria, oxidative stress, and the abnormality of Ca2+ signaling in neurons and astrocytes. Thus, mitochondria produce reactive oxygen species during metabolism which play a further role in redox signaling, but this may also act as an additional trigger for abnormal mitochondrial calcium handling, resulting in mitochondrial calcium overload. Combinations of these factors can be the trigger of neuronal cell death in some pathologies. Here, we review the latest literature on the crosstalk of reactive oxygen species and Ca2+ in brain mitochondria in physiology and beyond, considering how changes in mitochondrial metabolism or redox signaling can convert this interaction into a pathological event.
Collapse
|
5
|
Hess S, Pouzat C, Paeger L, Pippow A, Kloppenburg P. Analysis of neuronal Ca 2+ handling properties by combining perforated patch clamp recordings and the added buffer approach. Cell Calcium 2021; 97:102411. [PMID: 34082340 DOI: 10.1016/j.ceca.2021.102411] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 03/25/2021] [Accepted: 04/15/2021] [Indexed: 12/11/2022]
Abstract
Ca2+ functions as an important intracellular signal for a wide range of cellular processes. These processes are selectively activated by controlled spatiotemporal dynamics of the free cytosolic Ca2+. Intracellular Ca2+ dynamics are regulated by numerous cellular parameters. Here, we established a new way to determine neuronal Ca2+ handling properties by combining the 'added buffer' approach [1] with perforated patch-clamp recordings [2]. Since the added buffer approach typically employs the standard whole-cell configuration for concentration-controlled Ca2+ indicator loading, it only allows for the reliable estimation of the immobile fraction of intracellular Ca2+ buffers. Furthermore, crucial components of intracellular signaling pathways are being washed out during prolonged whole-cell recordings, leading to cellular deterioration. By combining the added buffer approach with perforated patch-clamp recordings, these issues are circumvented, allowing the precise quantification of the cellular Ca2+ handling properties, including immobile as well as mobile Ca2+ buffers.
Collapse
Affiliation(s)
- Simon Hess
- Institute for Zoology, Biocenter, Cologne Excellence Cluster in Aging Associated Diseases (CECAD), and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Christophe Pouzat
- Université de Paris, CNRS, MAP5 UMR 8145, 45, rue des Saints-Pères, 75006 Paris, France
| | - Lars Paeger
- Institute for Zoology, Biocenter, Cologne Excellence Cluster in Aging Associated Diseases (CECAD), and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Andreas Pippow
- Institute for Zoology, Biocenter, Cologne Excellence Cluster in Aging Associated Diseases (CECAD), and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Peter Kloppenburg
- Institute for Zoology, Biocenter, Cologne Excellence Cluster in Aging Associated Diseases (CECAD), and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.
| |
Collapse
|
6
|
Neuroprotective Effect of Vascular Endothelial Growth Factor on Motoneurons of the Oculomotor System. Int J Mol Sci 2021; 22:ijms22020814. [PMID: 33467517 PMCID: PMC7830098 DOI: 10.3390/ijms22020814] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 01/04/2023] Open
Abstract
Vascular endothelial growth factor (VEGF) was initially characterized as a potent angiogenic factor based on its activity on the vascular system. However, it is now well established that VEGF also plays a crucial role as a neuroprotective factor in the nervous system. A deficit of VEGF has been related to motoneuronal degeneration, such as that occurring in amyotrophic lateral sclerosis (ALS). Strikingly, motoneurons of the oculomotor system show lesser vulnerability to neurodegeneration in ALS compared to other motoneurons. These motoneurons presented higher amounts of VEGF and its receptor Flk-1 than other brainstem pools. That higher VEGF level could be due to an enhanced retrograde input from their target muscles, but it can also be produced by the motoneurons themselves and act in an autocrine way. By contrast, VEGF’s paracrine supply from the vicinity cells, such as glial cells, seems to represent a minor source of VEGF for brainstem motoneurons. In addition, ocular motoneurons experiment an increase in VEGF and Flk-1 level in response to axotomy, not observed in facial or hypoglossal motoneurons. Therefore, in this review, we summarize the differences in VEGF availability that could contribute to the higher resistance of extraocular motoneurons to injury and neurodegenerative diseases.
Collapse
|
7
|
Meszlényi V, Patai R, Polgár TF, Nógrádi B, Körmöczy L, Kristóf R, Spisák K, Tripolszki K, Széll M, Obál I, Engelhardt JI, Siklós L. Passive Transfer of Sera from ALS Patients with Identified Mutations Evokes an Increased Synaptic Vesicle Number and Elevation of Calcium Levels in Motor Axon Terminals, Similar to Sera from Sporadic Patients. Int J Mol Sci 2020; 21:ijms21155566. [PMID: 32756522 PMCID: PMC7432249 DOI: 10.3390/ijms21155566] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 07/31/2020] [Indexed: 12/28/2022] Open
Abstract
Previously, we demonstrated increased calcium levels and synaptic vesicle densities in the motor axon terminals (MATs) of sporadic amyotrophic lateral sclerosis (ALS) patients. Such alterations could be conferred to mice with an intraperitoneal injection of sera from these patients or with purified immunoglobulin G. Later, we confirmed the presence of similar alterations in the superoxide dismutase 1 G93A transgenic mouse strain model of familial ALS. These consistent observations suggested that calcium plays a central role in the pathomechanism of ALS. This may be further reinforced by completing a similar analytical study of the MATs of ALS patients with identified mutations. However, due to the low yield of muscle biopsy samples containing MATs, and the low incidence of ALS patients with the identified mutations, these examinations are not technically feasible. Alternatively, a passive transfer of sera from ALS patients with known mutations was used, and the MATs of the inoculated mice were tested for alterations in their calcium homeostasis and synaptic activity. Patients with 11 different ALS-related mutations participated in the study. Intraperitoneal injection of sera from these patients on two consecutive days resulted in elevated intracellular calcium levels and increased vesicle densities in the MATs of mice, which is comparable to the effect of the passive transfer from sporadic patients. Our results support the idea that the pathomechanism underlying the identical manifestation of the disease with or without identified mutations is based on a common final pathway, in which increasing calcium levels play a central role.
Collapse
Affiliation(s)
- Valéria Meszlényi
- Biological Research Centre, Institute of Biophysics, 62 Temesvári krt., H-6726 Szeged, Hungary; (V.M.); (R.P.); (T.F.P.); (B.N.); (L.K.); (R.K.); (K.S.)
- Foundation for the Future of Biomedical Sciences in Szeged, Szeged Scientists Academy, 15 Lechner tér, H-6721 Szeged, Hungary
| | - Roland Patai
- Biological Research Centre, Institute of Biophysics, 62 Temesvári krt., H-6726 Szeged, Hungary; (V.M.); (R.P.); (T.F.P.); (B.N.); (L.K.); (R.K.); (K.S.)
| | - Tamás F. Polgár
- Biological Research Centre, Institute of Biophysics, 62 Temesvári krt., H-6726 Szeged, Hungary; (V.M.); (R.P.); (T.F.P.); (B.N.); (L.K.); (R.K.); (K.S.)
| | - Bernát Nógrádi
- Biological Research Centre, Institute of Biophysics, 62 Temesvári krt., H-6726 Szeged, Hungary; (V.M.); (R.P.); (T.F.P.); (B.N.); (L.K.); (R.K.); (K.S.)
- Foundation for the Future of Biomedical Sciences in Szeged, Szeged Scientists Academy, 15 Lechner tér, H-6721 Szeged, Hungary
| | - Laura Körmöczy
- Biological Research Centre, Institute of Biophysics, 62 Temesvári krt., H-6726 Szeged, Hungary; (V.M.); (R.P.); (T.F.P.); (B.N.); (L.K.); (R.K.); (K.S.)
| | - Rebeka Kristóf
- Biological Research Centre, Institute of Biophysics, 62 Temesvári krt., H-6726 Szeged, Hungary; (V.M.); (R.P.); (T.F.P.); (B.N.); (L.K.); (R.K.); (K.S.)
| | - Krisztina Spisák
- Biological Research Centre, Institute of Biophysics, 62 Temesvári krt., H-6726 Szeged, Hungary; (V.M.); (R.P.); (T.F.P.); (B.N.); (L.K.); (R.K.); (K.S.)
| | - Kornélia Tripolszki
- Department of Medical Genetics, University of Szeged, 4/B Szőkefalvi-Nagy Béla u., H-6720 Szeged, Hungary; (K.T.); (M.S.)
| | - Márta Széll
- Department of Medical Genetics, University of Szeged, 4/B Szőkefalvi-Nagy Béla u., H-6720 Szeged, Hungary; (K.T.); (M.S.)
- Dermatological Research Group, University of Szeged, Hungarian Academy of Sciences, 4/B Szőkefalvi-Nagy Béla u., H-6720 Szeged, Hungary
| | - Izabella Obál
- Department of Neurology, Aalborg University Hospital, 15 Skovvej Sdr., DK-9000 Aalborg, Denmark;
- Department of Neurology, University of Szeged, 6 Semmelweis u., H-6725 Szeged, Hungary;
| | - József I. Engelhardt
- Department of Neurology, University of Szeged, 6 Semmelweis u., H-6725 Szeged, Hungary;
| | - László Siklós
- Biological Research Centre, Institute of Biophysics, 62 Temesvári krt., H-6726 Szeged, Hungary; (V.M.); (R.P.); (T.F.P.); (B.N.); (L.K.); (R.K.); (K.S.)
- Correspondence: ; Tel.: +36-62-599-611
| |
Collapse
|
8
|
Diazoxide blocks or reduces microgliosis when applied prior or subsequent to motor neuron injury in mice. Brain Res 2020; 1741:146875. [PMID: 32389588 DOI: 10.1016/j.brainres.2020.146875] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 04/23/2020] [Accepted: 05/04/2020] [Indexed: 12/11/2022]
Abstract
Diazoxide (DZX), an anti-hypertonic and anti-hypoglycemic drug, was shown to have anti-inflammatory effects in several injured cell types outside the central nervous system. In the brain, the neuroprotective potential of DZX is well described, however, its anticipated anti-inflammatory effect after acute injury has not been systematically analyzed. To disclose the anti-inflammatory effect of DZX in the central nervous system, an injury was induced in the hypoglossal and facial nuclei and in the oculomotor nucleus by unilateral axonal transection and unilateral target deprivation (enucleation), respectively. On the fourth day after surgery, microglial analysis was performed on tissue in which microglia were DAB-labeled and motoneurons were labeled with immunofluorescence. DZX treatment was given either prophylactically, starting 7 days prior to the injury and continuing until the animals were sacrificed, or postoperatively only, with daily intraperitoneal injections (1.25 mg/kg; in 10 mg/ml dimethyl sulfoxide in distilled water). Prophylactically + postoperatively applied DZX completely eliminated the microglial reaction in each motor nuclei. If DZX was applied only postoperatively, some microglial activation could be detected, but its magnitude was still significantly smaller than the non-DZX-treated controls. The effect of DZX could also be demonstrated through an extended period, as tested in the hypoglossal nucleus on day 7 after the operation. Neuronal counts, determined at day 4 after the operation in the hypoglossal nucleus, demonstrated no loss of motor neurons, however, an increased Feret's diameter of mitochondria could be measured, suggesting increased oxidative stress in the injured cells. The increase of mitochondrial Feret's diameter could also be prevented with DZX treatment.
Collapse
|
9
|
Synaptic Actions of Amyotrophic Lateral Sclerosis-Associated G85R-SOD1 in the Squid Giant Synapse. eNeuro 2020; 7:ENEURO.0369-19.2020. [PMID: 32188708 PMCID: PMC7177748 DOI: 10.1523/eneuro.0369-19.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 01/22/2020] [Accepted: 01/27/2020] [Indexed: 12/13/2022] Open
Abstract
Altered synaptic function is thought to play a role in many neurodegenerative diseases, but little is known about the underlying mechanisms for synaptic dysfunction. The squid giant synapse (SGS) is a classical model for studying synaptic electrophysiology and ultrastructure, as well as molecular mechanisms of neurotransmission. Here, we conduct a multidisciplinary study of synaptic actions of misfolded human G85R-SOD1 causing familial amyotrophic lateral sclerosis (ALS). G85R-SOD1, but not WT-SOD1, inhibited synaptic transmission, altered presynaptic ultrastructure, and reduced both the size of the readily releasable pool (RRP) of synaptic vesicles and mobility from the reserved pool (RP) to the RRP. Unexpectedly, intermittent high-frequency stimulation (iHFS) blocked inhibitory effects of G85R-SOD1 on synaptic transmission, suggesting aberrant Ca2+ signaling may underlie G85R-SOD1 toxicity. Ratiometric Ca2+ imaging showed significantly increased presynaptic Ca2+ induced by G85R-SOD1 that preceded synaptic dysfunction. Chelating Ca2+ using EGTA prevented synaptic inhibition by G85R-SOD1, confirming the role of aberrant Ca2+ in mediating G85R-SOD1 toxicity. These results extended earlier findings in mammalian motor neurons and advanced our understanding by providing possible molecular mechanisms and therapeutic targets for synaptic dysfunctions in ALS as well as a unique model for further studies.
Collapse
|
10
|
Silva-Hucha S, Carrero-Rojas G, Fernández de Sevilla ME, Benítez-Temiño B, Davis-López de Carrizosa MA, Pastor AM, Morcuende S. Sources and lesion-induced changes of VEGF expression in brainstem motoneurons. Brain Struct Funct 2020; 225:1033-1053. [PMID: 32189115 DOI: 10.1007/s00429-020-02057-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 03/06/2020] [Indexed: 12/31/2022]
Abstract
Motoneurons of the oculomotor system show lesser vulnerability to neurodegeneration compared to other cranial motoneurons, as seen in amyotrophic lateral sclerosis (ALS). The overexpression of vascular endothelial growth factor (VEGF) is involved in motoneuronal protection. As previously shown, motoneurons innervating extraocular muscles present a higher amount of VEGF and its receptor Flk-1 compared to facial or hypoglossal motoneurons. Therefore, we aimed to study the possible sources of VEGF to brainstem motoneurons, such as glial cells and target muscles. We also studied the regulation of VEGF in response to axotomy in ocular, facial, and hypoglossal motor nuclei. Basal VEGF expression in astrocytes and microglial cells of the cranial motor nuclei was low. Although the presence of VEGF in the different target muscles for brainstem motoneurons was similar, the presynaptic element of the ocular neuromuscular junction showed higher amounts of Flk-1, which could result in greater efficiency in the capture of the factor by oculomotor neurons. Seven days after axotomy, a clear glial reaction was observed in all the brainstem nuclei, but the levels of the neurotrophic factor remained low in glial cells. Only the injured motoneurons of the oculomotor system showed an increase in VEGF and Flk-1, but such an increase was not detected in axotomized facial or hypoglossal motoneurons. Taken together, our findings suggest that the ocular motoneurons themselves upregulate VEGF expression in response to lesion. In conclusion, the low VEGF expression observed in glial cells suggests that these cells are not the main source of VEGF for brainstem motoneurons. Therefore, the higher VEGF expression observed in motoneurons innervating extraocular muscles is likely due either to the fact that this factor is more avidly taken up from the target muscles, in basal conditions, or is produced by these motoneurons themselves, and acts in an autocrine manner after axotomy.
Collapse
Affiliation(s)
- Silvia Silva-Hucha
- Departamento de Fisiología, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - Génova Carrero-Rojas
- Departamento de Fisiología, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | | | - Beatriz Benítez-Temiño
- Departamento de Fisiología, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | | | - Angel M Pastor
- Departamento de Fisiología, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - Sara Morcuende
- Departamento de Fisiología, Facultad de Biología, Universidad de Sevilla, Seville, Spain.
| |
Collapse
|
11
|
Gabrych DR, Lau VZ, Niwa S, Silverman MA. Going Too Far Is the Same as Falling Short †: Kinesin-3 Family Members in Hereditary Spastic Paraplegia. Front Cell Neurosci 2019; 13:419. [PMID: 31616253 PMCID: PMC6775250 DOI: 10.3389/fncel.2019.00419] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 09/02/2019] [Indexed: 01/18/2023] Open
Abstract
Proper intracellular trafficking is essential for neuronal development and function, and when any aspect of this process is dysregulated, the resulting "transportopathy" causes neurological disorders. Hereditary spastic paraplegias (HSPs) are a family of such diseases attributed to over 80 spastic gait genes (SPG), specifically characterized by lower extremity spasticity and weakness. Multiple genes in the trafficking pathway such as those relating to microtubule structure and function and organelle biogenesis are representative disease loci. Microtubule motor proteins, or kinesins, are also causal in HSP, specifically mutations in Kinesin-I/KIF5A (SPG10) and two kinesin-3 family members; KIF1A (SPG30) and KIF1C (SPG58). KIF1A is a motor enriched in neurons, and involved in the anterograde transport of a variety of vesicles that contribute to pre- and post-synaptic assembly, autophagic processes, and neuron survival. KIF1C is ubiquitously expressed and, in addition to anterograde cargo transport, also functions in retrograde transport between the Golgi and the endoplasmic reticulum. Only a handful of KIF1C cargos have been identified; however, many have crucial roles such as neuronal differentiation, outgrowth, plasticity and survival. HSP-related kinesin-3 mutants are characterized mainly as loss-of-function resulting in deficits in motility, regulation, and cargo binding. Gain-of-function mutants are also seen, and are characterized by increased microtubule-on rates and hypermotility. Both sets of mutations ultimately result in misdelivery of critical cargos within the neuron. This likely leads to deleterious cell biological cascades that likely underlie or contribute to HSP clinical pathology and ultimately, symptomology. Due to the paucity of histopathological or cell biological data assessing perturbations in cargo localization, it has been difficult to positively link these mutations to the outcomes seen in HSPs. Ultimately, the goal of this review is to encourage future academic and clinical efforts to focus on "transportopathies" through a cargo-centric lens.
Collapse
Affiliation(s)
- Dominik R Gabrych
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Victor Z Lau
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Shinsuke Niwa
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, Japan
| | - Michael A Silverman
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada.,Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
12
|
Ragagnin AMG, Shadfar S, Vidal M, Jamali MS, Atkin JD. Motor Neuron Susceptibility in ALS/FTD. Front Neurosci 2019; 13:532. [PMID: 31316328 PMCID: PMC6610326 DOI: 10.3389/fnins.2019.00532] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 05/08/2019] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by the death of both upper and lower motor neurons (MNs) in the brain, brainstem and spinal cord. The neurodegenerative mechanisms leading to MN loss in ALS are not fully understood. Importantly, the reasons why MNs are specifically targeted in this disorder are unclear, when the proteins associated genetically or pathologically with ALS are expressed ubiquitously. Furthermore, MNs themselves are not affected equally; specific MNs subpopulations are more susceptible than others in both animal models and human patients. Corticospinal MNs and lower somatic MNs, which innervate voluntary muscles, degenerate more readily than specific subgroups of lower MNs, which remain resistant to degeneration, reflecting the clinical manifestations of ALS. In this review, we discuss the possible factors intrinsic to MNs that render them uniquely susceptible to neurodegeneration in ALS. We also speculate why some MN subpopulations are more vulnerable than others, focusing on both their molecular and physiological properties. Finally, we review the anatomical network and neuronal microenvironment as determinants of MN subtype vulnerability and hence the progression of ALS.
Collapse
Affiliation(s)
- Audrey M G Ragagnin
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Sina Shadfar
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Marta Vidal
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Md Shafi Jamali
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Julie D Atkin
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia.,Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| |
Collapse
|
13
|
Kotian V, Sarmah D, Kaur H, Kesharwani R, Verma G, Mounica L, Veeresh P, Kalia K, Borah A, Wang X, Dave KR, Yavagal DR, Bhattacharya P. Evolving Evidence of Calreticulin as a Pharmacological Target in Neurological Disorders. ACS Chem Neurosci 2019; 10:2629-2646. [PMID: 31017385 DOI: 10.1021/acschemneuro.9b00158] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Calreticulin (CALR), a lectin-like ER chaperone, was initially known only for its housekeeping function, but today it is recognized for many versatile roles in different compartments of a cell. Apart from canonical roles in protein folding and calcium homeostasis, it performs a variety of noncanonical roles, mostly in CNS development. In the past, studies have linked Calreticulin with various other biological components which are detrimental in deciding the fate of neurons. Many neurological disorders that differ in their etiology are commonly associated with aberrant levels of Calreticulin, that lead to modulation of apoptosis and phagocytosis, and impact on transcriptional pathways, impairment in proteostatis, and calcium imbalances. Such multifaceted properties of Calreticulin are the reason why it has been implicated in vital roles of the nervous system in recent years. Hence, understanding its role in the physiology of neurons would help to unearth its involvement in the spectrum of neurological disorders. This Review aims toward exploring the interplay of Calreticulin in neurological disorders which would aid in targeting Calreticulin for developing novel neurotherapeutics.
Collapse
Affiliation(s)
- Vignesh Kotian
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Deepaneeta Sarmah
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Harpreet Kaur
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Radhika Kesharwani
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Geetesh Verma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Leela Mounica
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Pabbala Veeresh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Kiran Kalia
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Anupom Borah
- Cellular and Molecular Neurobiology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, Assam 788011, India
| | - Xin Wang
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Kunjan R. Dave
- Department of Neurology, University of Miami Miller School of Medicine, Miami, Florida 33136, United States
| | - Dileep R. Yavagal
- Department of Neurology and Neurosurgery, University of Miami Miller School of Medicine, Miami, Florida 33136, United States
| | - Pallab Bhattacharya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382355, India
| |
Collapse
|
14
|
Allodi I, Nijssen J, Benitez JA, Schweingruber C, Fuchs A, Bonvicini G, Cao M, Kiehn O, Hedlund E. Modeling Motor Neuron Resilience in ALS Using Stem Cells. Stem Cell Reports 2019; 12:1329-1341. [PMID: 31080111 PMCID: PMC6565614 DOI: 10.1016/j.stemcr.2019.04.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 04/05/2019] [Accepted: 04/08/2019] [Indexed: 12/17/2022] Open
Abstract
Oculomotor neurons, which regulate eye movement, are resilient to degeneration in the lethal motor neuron disease amyotrophic lateral sclerosis (ALS). It would be highly advantageous if motor neuron resilience could be modeled in vitro. Toward this goal, we generated a high proportion of oculomotor neurons from mouse embryonic stem cells through temporal overexpression of PHOX2A in neuronal progenitors. We demonstrate, using electrophysiology, immunocytochemistry, and RNA sequencing, that in vitro-generated neurons are bona fide oculomotor neurons based on their cellular properties and similarity to their in vivo counterpart in rodent and man. We also show that in vitro-generated oculomotor neurons display a robust activation of survival-promoting Akt signaling and are more resilient to the ALS-like toxicity of kainic acid than spinal motor neurons. Thus, we can generate bona fide oculomotor neurons in vitro that display a resilience similar to that seen in vivo. Bona fide oculomotor neurons can be derived from stem cells by PHOX2A overexpression In vitro- and in vivo-generated oculomotor neurons are transcriptionally similar Stem cell-derived oculomotor neurons display a robust activation of Akt signaling In vitro-generated oculomotor neurons are relatively resilient to ALS-like toxicity
Collapse
Affiliation(s)
- Ilary Allodi
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Jik Nijssen
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | | | | - Andrea Fuchs
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Gillian Bonvicini
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Ming Cao
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Ole Kiehn
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden; Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - Eva Hedlund
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
15
|
Jensen TP, Zheng K, Tyurikova O, Reynolds JP, Rusakov DA. Monitoring single-synapse glutamate release and presynaptic calcium concentration in organised brain tissue. Cell Calcium 2017; 64:102-108. [PMID: 28465084 DOI: 10.1016/j.ceca.2017.03.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Brain function relies in large part on Ca2+-dependent release of the excitatory neurotransmitter glutamate from neuronal axons. Establishing the causal relationship between presynaptic Ca2+ dynamics and probabilistic glutamate release is therefore a fundamental quest across neurosciences. Its progress, however, has hitherto depended primarily on the exploration of either cultured nerve cells or giant central synapses accessible to direct experimental probing in situ. Here we show that combining patch-clamp with time-resolved imaging of Ca2+ -sensitive fluorescence lifetime of Oregon Green BAPTA-1 (Tornado-FLIM) enables readout of single spike-evoked presynaptic Ca2+ concentration dynamics, with nanomolar sensitivity, in individual neuronal axons in acute brain slices. In parallel, intensity Tornado imaging of a locally expressed extracellular optical glutamate sensor iGluSnFr provides direct monitoring of single-quantum, single-synapse glutamate releases in situ. These two methods pave the way for simultaneous registration of presynaptic Ca2+ dynamics and transmitter release in an intact brain at the level of individual synapses.
Collapse
Affiliation(s)
- Thomas P Jensen
- UCL Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK.
| | - Kaiyu Zheng
- UCL Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK
| | - Olga Tyurikova
- UCL Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK; Institute of Neuroscience, University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia
| | - James P Reynolds
- UCL Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK
| | - Dmitri A Rusakov
- UCL Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK.
| |
Collapse
|
16
|
Takagi S, Kono Y, Nagase M, Mochio S, Kato F. Facilitation of distinct inhibitory synaptic inputs by chemical anoxia in neurons in the oculomotor, facial and hypoglossal motor nuclei of the rat. Exp Neurol 2017; 290:95-105. [PMID: 28110076 DOI: 10.1016/j.expneurol.2017.01.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 12/19/2016] [Accepted: 01/17/2017] [Indexed: 11/17/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder characterized by the selective loss of motor neurons in the brainstem and spinal cord. Clinical studies have indicated that there is a distinct region-dependent difference in the vulnerability of motor neurons. For example, the motor neurons in the facial and hypoglossal nuclei are more susceptible to neuronal death than those in the oculomotor nucleus. To understand the mechanism underlying the differential susceptibility to cell death of the neurons in different motor nuclei, we compared the effects of chemical anoxia on the membrane currents and postsynaptic currents in different motor nuclei. The membrane currents were recorded from neurons in the oculomotor, facial and hypoglossal nuclei in brain slices of juvenile Wistar rats by using whole-cell recording in the presence of tetrodotoxin that prevents action potential-dependent synaptic transmission. NaCN consistently induced an inward current and a significant increase in the frequency of spontaneous synaptic inputs in neurons from these three nuclei. However, this increase in the synaptic input frequency was abolished by strychnine, a glycine receptor antagonist, but not by picrotoxin in neurons from the hypoglossal and facial nuclei, whereas that in neurons from the oculomotor nucleus was abolished by picrotoxin, but not by strychnine. Blocking ionotropic glutamate receptors did not significantly affect the NaCN-induced release facilitation in any of the three motor nuclei. These results suggest that anoxia selectively facilitates glycine release in the hypoglossal and facial nuclei and GABA release in the oculomotor nucleus. The region-dependent differences in the neurotransmitters involved in the anoxia-triggered release facilitation might provide a basis for the selective vulnerability of motor neurons in the neurodegeneration associated with ALS.
Collapse
Affiliation(s)
- Satoshi Takagi
- Department of Neurology, The Jikei University School of Medicine, Japan; Department of Neuroscience, The Jikei University School of Medicine, Japan
| | - Yu Kono
- Department of Neurology, The Jikei University School of Medicine, Japan.
| | - Masashi Nagase
- Department of Neuroscience, The Jikei University School of Medicine, Japan; Center for Neuroscience of Pain, The Jikei University School of Medicine, Japan
| | - Soichiro Mochio
- Department of Neurology, The Jikei University School of Medicine, Japan
| | - Fusao Kato
- Department of Neuroscience, The Jikei University School of Medicine, Japan; Center for Neuroscience of Pain, The Jikei University School of Medicine, Japan
| |
Collapse
|
17
|
Patai R, Nógrádi B, Engelhardt JI, Siklós L. Calcium in the pathomechanism of amyotrophic lateral sclerosis - Taking center stage? Biochem Biophys Res Commun 2016; 483:1031-1039. [PMID: 27545602 DOI: 10.1016/j.bbrc.2016.08.089] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 07/26/2016] [Accepted: 08/15/2016] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis is an incurable, relentlessly progressive disease primarily affecting motor neurons. The cause of the disease, except for the mutations identified in a small fraction of patients, is unknown. The major mechanisms contributing to the degeneration of motor neurons have already been disclosed and characterized, including excitotoxicity, oxidative stress, mitochondrial dysfunction, and immune/inflammatory processes. During the progression of the disease these toxic processes are not discrete, but each facilitates the deleterious effect of the other. However, due to their common reciprocal calcium dependence, calcium ions may act as a common denominator and through a positive feedback loop may combine the individual pathological processes into a unified escalating mechanism of neuronal destruction. This mini-review provides an overview of the mutual calcium dependence of the major toxic mechanisms associated with amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Roland Patai
- Institute of Biophysics, Biological Research Center, Temesvári krt. 62, 6726 Szeged, Hungary
| | - Bernát Nógrádi
- Foundation for the Future of Biomedical Sciences in Szeged, Pálfy u. 52/d, 6725 Szeged, Hungary
| | - József I Engelhardt
- Department of Neurology, University of Szeged, Semmelweis u. 6, 6725 Szeged, Hungary
| | - László Siklós
- Institute of Biophysics, Biological Research Center, Temesvári krt. 62, 6726 Szeged, Hungary.
| |
Collapse
|
18
|
Edens BM, Miller N, Ma YC. Impaired Autophagy and Defective Mitochondrial Function: Converging Paths on the Road to Motor Neuron Degeneration. Front Cell Neurosci 2016; 10:44. [PMID: 26973461 PMCID: PMC4776126 DOI: 10.3389/fncel.2016.00044] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 02/08/2016] [Indexed: 12/12/2022] Open
Abstract
Selective motor neuron degeneration is a hallmark of amyotrophic lateral sclerosis (ALS). Around 10% of all cases present as familial ALS (FALS), while sporadic ALS (SALS) accounts for the remaining 90%. Diverse genetic mutations leading to FALS have been identified, but the underlying causes of SALS remain largely unknown. Despite the heterogeneous and incompletely understood etiology, different types of ALS exhibit overlapping pathology and common phenotypes, including protein aggregation and mitochondrial deficiencies. Here, we review the current understanding of mechanisms leading to motor neuron degeneration in ALS as they pertain to disrupted cellular clearance pathways, ATP biogenesis, calcium buffering and mitochondrial dynamics. Through focusing on impaired autophagic and mitochondrial functions, we highlight how the convergence of diverse cellular processes and pathways contributes to common pathology in motor neuron degeneration.
Collapse
Affiliation(s)
- Brittany M. Edens
- Departments of Pediatrics, Neurology, and Physiology, Northwestern University Feinberg School of MedicineChicago, IL, USA
- Lurie Children’s Hospital of ChicagoChicago, IL, USA
| | - Nimrod Miller
- Departments of Pediatrics, Neurology, and Physiology, Northwestern University Feinberg School of MedicineChicago, IL, USA
- Lurie Children’s Hospital of ChicagoChicago, IL, USA
| | - Yong-Chao Ma
- Departments of Pediatrics, Neurology, and Physiology, Northwestern University Feinberg School of MedicineChicago, IL, USA
- Lurie Children’s Hospital of ChicagoChicago, IL, USA
| |
Collapse
|
19
|
Abstract
Calcium influx during action potentials triggers neurotransmitter release at presynaptic active zones. Calcium buffers limit the spread of calcium and restrict neurotransmitter release to the vicinity of calcium channels. To sustain synchronous release during repetitive activity, rapid removal of calcium from the active zone is essential, but the underlying mechanisms are unclear. Therefore, we focused on cerebellar mossy fiber synapses, which are among the fastest synapses in the mammalian brain and found very weak presynaptic calcium buffering. One might assume that strong calcium buffering has the potential to efficiently remove calcium from active zones. In contrast, our results show that weak calcium buffering speeds active zone calcium clearance. Thus, the strength of presynaptic buffering limits the rate of synaptic transmission. Fast synchronous neurotransmitter release at the presynaptic active zone is triggered by local Ca2+ signals, which are confined in their spatiotemporal extent by endogenous Ca2+ buffers. However, it remains elusive how rapid and reliable Ca2+ signaling can be sustained during repetitive release. Here, we established quantitative two-photon Ca2+ imaging in cerebellar mossy fiber boutons, which fire at exceptionally high rates. We show that endogenous fixed buffers have a surprisingly low Ca2+-binding ratio (∼15) and low affinity, whereas mobile buffers have high affinity. Experimentally constrained modeling revealed that the low endogenous buffering promotes fast clearance of Ca2+ from the active zone during repetitive firing. Measuring Ca2+ signals at different distances from active zones with ultra-high-resolution confirmed our model predictions. Our results lead to the concept that reduced Ca2+ buffering enables fast active zone Ca2+ signaling, suggesting that the strength of endogenous Ca2+ buffering limits the rate of synchronous synaptic transmission.
Collapse
|
20
|
TDP-43 toxicity proceeds via calcium dysregulation and necrosis in aging Caenorhabditis elegans motor neurons. J Neurosci 2014; 34:12093-103. [PMID: 25186754 DOI: 10.1523/jneurosci.2495-13.2014] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a heterogeneous disease with either sporadic or genetic origins characterized by the progressive degeneration of motor neurons. At the cellular level, ALS neurons show protein misfolding and aggregation phenotypes. Transactive response DNA-binding protein 43 (TDP-43) has recently been shown to be associated with ALS, but the early pathophysiological deficits causing impairment in motor function are unknown. Here we used Caenorhabditis elegans expressing mutant TDP-43(A315T) in motor neurons and explored the potential influences of calcium (Ca(2+)). Using chemical and genetic approaches to manipulate the release of endoplasmic reticulum (ER) Ca(2+)stores, we observed that the reduction of intracellular Ca(2+) ([Ca(2+)]i) rescued age-dependent paralysis and prevented the neurodegeneration of GABAergic motor neurons. Our data implicate elevated [Ca(2+)]i as a driver of TDP-43-mediated neuronal toxicity. Furthermore, we discovered that neuronal degeneration is independent of the executioner caspase CED-3, but instead requires the activity of the Ca(2+)-regulated calpain protease TRA-3, and the aspartyl protease ASP-4. Finally, chemically blocking protease activity protected against mutant TDP-43(A315T)-associated neuronal toxicity. This work both underscores the potential of the C. elegans system to identify key targets for therapeutic intervention and suggests that a focused effort to regulate ER Ca(2+) release and necrosis-like degeneration consequent to neuronal injury may be of clinical importance.
Collapse
|
21
|
Swinnen B, Robberecht W. The phenotypic variability of amyotrophic lateral sclerosis. Nat Rev Neurol 2014; 10:661-70. [PMID: 25311585 DOI: 10.1038/nrneurol.2014.184] [Citation(s) in RCA: 415] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Classic textbook neurology teaches that amyotrophic lateral sclerosis (ALS) is a degenerative disease that selectively affects upper and lower motor neurons and is fatal 3-5 years after onset--a description which suggests that the clinical presentation of ALS is very homogenous. However, clinical and postmortem observations, as well as genetic studies, demonstrate that there is considerable variability in the phenotypic expression of ALS. Here, we review the phenotypic variability of ALS and how it is reflected in familial and sporadic ALS, in the degree of upper and lower motor neuron involvement, in motor and extramotor involvement, and in the spectrum of ALS and frontotemporal dementia. Furthermore, we discuss some unusual clinical characteristics regarding presentation, age at onset and disease progression. Finally, we address the importance of this variability for understanding the pathogenesis of ALS and for the development of therapeutic strategies.
Collapse
Affiliation(s)
- Bart Swinnen
- University of Leuven, Department of Neurosciences, Laboratory for Neurobiology, Vesalius Research Center, Box 912, B-3000 Leuven, Belgium
| | - Wim Robberecht
- University of Leuven, Department of Neurosciences, Laboratory for Neurobiology, Vesalius Research Center, Box 912, B-3000 Leuven, Belgium
| |
Collapse
|
22
|
Jaiswal MK. Selective vulnerability of motoneuron and perturbed mitochondrial calcium homeostasis in amyotrophic lateral sclerosis: implications for motoneurons specific calcium dysregulation. MOLECULAR AND CELLULAR THERAPIES 2014; 2:26. [PMID: 26056593 PMCID: PMC4452055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 07/23/2014] [Indexed: 11/21/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a lethal neurodegenerative disorder characterized by the selective degeneration of defined subgroups of motoneuron in the brainstem, spinal cord and motor cortex with signature hallmarks of mitochondrial Ca(2+) overload, free radical damage, excitotoxicity and impaired axonal transport. Although intracellular disruptions of cytosolic and mitochondrial calcium, and in particular low cytosolic calcium ([Ca(2+)]c) buffering and a strong interaction between metabolic mechanisms and [Ca(2+)]i have been identified predominantly in motoneuron impairment, the causes of these disruptions are unknown. The existing evidence suggests that the mutant superoxide dismutase1 (mtSOD1)-mediated toxicity in ALS acts through mitochondria, and that alteration in cytosolic and mitochondria-ER microdomain calcium accumulation are critical to the neurodegenerative process. Furthermore, chronic excitotoxcity mediated by Ca(2+)-permeable AMPA and NMDA receptors seems to initiate vicious cycle of intracellular calcium dysregulation which leads to toxic Ca(2+) overload and thereby selective neurodegeneration. Recent advancement in the experimental analysis of calcium signals with high spatiotemporal precision has allowed investigations of calcium regulation in-vivo and in-vitro in different cell types, in particular selectively vulnerable/resistant cell types in different animal models of this motoneuron disease. This review provides an overview of latest advances in this field, and focuses on details of what has been learned about disrupted Ca(2+) homeostasis and mitochondrial degeneration. It further emphasizes the critical role of mitochondria in preventing apoptosis by acting as a Ca(2+) buffers, especially in motoneurons, in pathophysiological conditions such as ALS.
Collapse
Affiliation(s)
- Manoj Kumar Jaiswal
- />Center for Neuroscience and Regenerative Medicine, 4301 Jones Bridge Road, 20814 Bethesda, MD USA
- />Department of Anatomy, Physiology and Genetics, School of Medicine, USUHS, 4301 Jones Bridge Road, 20814 Bethesda, MD USA
| |
Collapse
|
23
|
Jaiswal MK. Selective vulnerability of motoneuron and perturbed mitochondrial calcium homeostasis in amyotrophic lateral sclerosis: implications for motoneurons specific calcium dysregulation. MOLECULAR AND CELLULAR THERAPIES 2014; 2:26. [PMID: 26056593 PMCID: PMC4452055 DOI: 10.1186/2052-8426-2-26] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 07/23/2014] [Indexed: 02/07/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a lethal neurodegenerative disorder characterized by the selective degeneration of defined subgroups of motoneuron in the brainstem, spinal cord and motor cortex with signature hallmarks of mitochondrial Ca2+ overload, free radical damage, excitotoxicity and impaired axonal transport. Although intracellular disruptions of cytosolic and mitochondrial calcium, and in particular low cytosolic calcium ([Ca2+]c) buffering and a strong interaction between metabolic mechanisms and [Ca2+]i have been identified predominantly in motoneuron impairment, the causes of these disruptions are unknown. The existing evidence suggests that the mutant superoxide dismutase1 (mtSOD1)-mediated toxicity in ALS acts through mitochondria, and that alteration in cytosolic and mitochondria-ER microdomain calcium accumulation are critical to the neurodegenerative process. Furthermore, chronic excitotoxcity mediated by Ca2+-permeable AMPA and NMDA receptors seems to initiate vicious cycle of intracellular calcium dysregulation which leads to toxic Ca2+ overload and thereby selective neurodegeneration. Recent advancement in the experimental analysis of calcium signals with high spatiotemporal precision has allowed investigations of calcium regulation in-vivo and in-vitro in different cell types, in particular selectively vulnerable/resistant cell types in different animal models of this motoneuron disease. This review provides an overview of latest advances in this field, and focuses on details of what has been learned about disrupted Ca2+ homeostasis and mitochondrial degeneration. It further emphasizes the critical role of mitochondria in preventing apoptosis by acting as a Ca2+ buffers, especially in motoneurons, in pathophysiological conditions such as ALS.
Collapse
Affiliation(s)
- Manoj Kumar Jaiswal
- Center for Neuroscience and Regenerative Medicine, 4301 Jones Bridge Road, 20814 Bethesda, MD USA ; Department of Anatomy, Physiology and Genetics, School of Medicine, USUHS, 4301 Jones Bridge Road, 20814 Bethesda, MD USA
| |
Collapse
|
24
|
Shoenfeld L, Westenbroek RE, Fisher E, Quinlan KA, Tysseling VM, Powers RK, Heckman CJ, Binder MD. Soma size and Cav1.3 channel expression in vulnerable and resistant motoneuron populations of the SOD1G93A mouse model of ALS. Physiol Rep 2014; 2:2/8/e12113. [PMID: 25107988 PMCID: PMC4246589 DOI: 10.14814/phy2.12113] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Although the loss of motoneurons is an undisputed feature of amyotrophic lateral sclerosis (ALS) in man and in its animal models (SOD1 mutant mice), how the disease affects the size and excitability of motoneurons prior to their degeneration is not well understood. This study was designed to test the hypothesis that motoneurons in mutant SOD1G93A mice exhibit an enlargement of soma size (i.e., cross‐sectional area) and an increase in Cav1.3 channel expression at postnatal day 30, well before the manifestation of physiological symptoms that typically occur at p90 (Chiu et al. 1995). We made measurements of spinal and hypoglossal motoneurons vulnerable to degeneration, as well as motoneurons in the oculomotor nucleus that are resistant to degeneration. Overall, we found that the somata of motoneurons in male SOD1G93A mutants were larger than those in wild‐type transgenic males. When females were included in the two groups, significance was lost. Expression levels of the Cav1.3 channels were not differentiated by genotype, sex, or any interaction of the two. These results raise the intriguing possibility of an interaction between male sex steroid hormones and the SOD1 mutation in the etiopathogenesis of ALS. This study was designed to test the hypothesis that motoneurons in mutant SOD1G93A mice exhibit an enlargement of soma size (i.e., cross‐sectional area) and an increase in Cav1.3 channel expression at postnatal day 30, well before the manifestation of physiological symptoms that typically occur at p90 (Chiu et al. 1995). We made measurements of spinal and hypoglossal motoneurons vulnerable to degeneration, as well as motoneurons in the oculomotor nucleus that are resistant to degeneration. Overall, we found that the somata of motoneurons in male SOD1G93A mutants were larger than those in wild‐type transgenic males. When females were included in the two groups, significance was lost. These results raise the intriguing possibility of an interaction between male sex steroid hormones and the SOD1 mutation in the etiopathogenesis of ALS.
Collapse
Affiliation(s)
- Liza Shoenfeld
- Graduate Program in Neurobiology & Behavior, University of Washington, Seattle, Washington, USA
| | - Ruth E Westenbroek
- Department of Pharmacology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Erika Fisher
- Department of Physiology & Biophysics, University of Washington School of Medicine, Seattle, Washington, USA
| | - Katharina A Quinlan
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Vicki M Tysseling
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA Department of Physical Therapy and Human Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Randall K Powers
- Department of Physiology & Biophysics, University of Washington School of Medicine, Seattle, Washington, USA
| | - Charles J Heckman
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA Department of Physical Therapy and Human Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA Department of Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Marc D Binder
- Graduate Program in Neurobiology & Behavior, University of Washington, Seattle, Washington, USA Department of Physiology & Biophysics, University of Washington School of Medicine, Seattle, Washington, USA
| |
Collapse
|
25
|
Metabolomics of Human Brain Aging and Age-Related Neurodegenerative Diseases. J Neuropathol Exp Neurol 2014; 73:640-57. [DOI: 10.1097/nen.0000000000000091] [Citation(s) in RCA: 138] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
26
|
Yin HZ, Yu S, Hsu CI, Liu J, Acab A, Wu R, Tao A, Chiang BJ, Weiss JH. Intrathecal infusion of BMAA induces selective motor neuron damage and astrogliosis in the ventral horn of the spinal cord. Exp Neurol 2014; 261:1-9. [PMID: 24918341 DOI: 10.1016/j.expneurol.2014.06.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 05/16/2014] [Accepted: 06/03/2014] [Indexed: 10/25/2022]
Abstract
The neurotoxin beta-N-methylamino-l-alanine (BMAA) was first identified as a "toxin of interest" in regard to the amyotrophic lateral sclerosis-Parkinsonism Dementia Complex of Guam (ALS/PDC); studies in recent years highlighting widespread environmental sources of BMAA exposure and providing new clues to toxic mechanisms have suggested possible relevance to sporadic ALS as well. However, despite clear evidence of uptake into tissues and a range of toxic effects in cells and animals, an animal model in which BMAA induces a neurodegenerative picture resembling ALS is lacking, possibly in part reflecting limited understanding of critical factors pertaining to its absorption, biodistribution and metabolism. To bypass some of these issues and ensure delivery to a key site of disease pathology, we examined effects of prolonged (30day) intrathecal infusion in wild type (WT) rats, and rats harboring the familial ALS associated G93A SOD1 mutation, over an age range (80±2 to 110±2days) during which the G93A rats are developing disease pathology yet remain asymptomatic. The BMAA exposures induced changes that in many ways resemble those seen in the G93A rats, with degenerative changes in ventral horn motor neurons (MNs) with relatively little dorsal horn pathology, marked ventral horn astrogliosis and increased 3-nitrotyrosine labeling in and surrounding MNs, a loss of labeling for the astrocytic glutamate transporter, GLT-1, surrounding MNs, and mild accumulation and aggregation of TDP-43 in the cytosol of some injured and degenerating MNs. Thus, prolonged intrathecal infusion of BMAA can reproduce a picture in spinal cord incorporating many of the pathological hallmarks of diverse forms of human ALS, including substantial restriction of overt pathological changes to the ventral horn, consistent with the possibility that environmental BMAA exposure could be a risk factor and/or contributor to some human disease.
Collapse
Affiliation(s)
- Hong Z Yin
- Department of Neurology, University of CA, Irvine, USA
| | - Stephen Yu
- Department of Neurology, University of CA, Irvine, USA
| | - Cheng-I Hsu
- Department of Neurology, University of CA, Irvine, USA
| | - Joe Liu
- Department of Neurology, University of CA, Irvine, USA
| | - Allan Acab
- Department of Neurology, University of CA, Irvine, USA
| | - Richard Wu
- Department of Neurology, University of CA, Irvine, USA
| | - Anna Tao
- Department of Neurology, University of CA, Irvine, USA
| | | | - John H Weiss
- Department of Neurology, University of CA, Irvine, USA; Department of Anatomy & Neurobiology, University of CA, Irvine, USA.
| |
Collapse
|
27
|
Li Y, Davey RA, Sivaramakrishnan S, Lynch WP. Postinhibitory rebound neurons and networks are disrupted in retrovirus-induced spongiform neurodegeneration. J Neurophysiol 2014; 112:683-704. [PMID: 25252336 DOI: 10.1152/jn.00227.2014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Certain retroviruses induce progressive spongiform motor neuron disease with features resembling prion diseases and amyotrophic lateral sclerosis. With the neurovirulent murine leukemia virus (MLV) FrCasE, Env protein expression within glia leads to postsynaptic vacuolation, cellular effacement, and neuronal loss in the absence of neuroinflammation. To understand the physiological changes associated with MLV-induced spongiosis, and its neuronal specificity, we employed patch-clamp recordings and voltage-sensitive dye imaging in brain slices of the mouse inferior colliculus (IC), a midbrain nucleus that undergoes extensive spongiosis. IC neurons characterized by postinhibitory rebound firing (PIR) were selectively affected in FrCasE-infected mice. Coincident with Env expression in microglia and in glia characterized by NG2 proteoglycan expression (NG2 cells), rebound neurons (RNs) lost PIR, became hyperexcitable, and were reduced in number. PIR loss and hyperexcitability were reversed by raising internal calcium buffer concentrations in RNs. PIR-initiated rhythmic circuits were disrupted, and spontaneous synchronized bursting and prolonged depolarizations were widespread. Other IC neuron cell types and circuits within the same degenerative environment were unaffected. Antagonists of NMDA and/or AMPA receptors reduced burst firing in the IC but did not affect prolonged depolarizations. Antagonists of L-type calcium channels abolished both bursts and slow depolarizations. IC infection by the nonneurovirulent isogenic virus Friend 57E (Fr57E), whose Env protein is structurally similar to FrCasE, showed no RN hyperactivity or cell loss; however, PIR latency increased. These findings suggest that spongiform neurodegeneration arises from the unique excitability of RNs, their local regulation by glia, and the disruption of this relationship by glial expression of abnormal protein.
Collapse
Affiliation(s)
- Ying Li
- Department of Integrated Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio
| | - Robert A Davey
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, Texas; and
| | | | - William P Lynch
- Department of Integrated Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio
| |
Collapse
|
28
|
Pollari E, Goldsteins G, Bart G, Koistinaho J, Giniatullin R. The role of oxidative stress in degeneration of the neuromuscular junction in amyotrophic lateral sclerosis. Front Cell Neurosci 2014; 8:131. [PMID: 24860432 PMCID: PMC4026683 DOI: 10.3389/fncel.2014.00131] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 04/27/2014] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is characterized by the progressive loss of motoneurons and degradation of the neuromuscular junctions (NMJ). Consistent with the dying-back hypothesis of motoneuron degeneration the decline in synaptic function initiates from the presynaptic terminals in ALS. Oxidative stress is a major contributory factor to ALS pathology and affects the presynaptic transmitter releasing machinery. Indeed, in ALS mouse models nerve terminals are sensitive to reactive oxygen species (ROS) suggesting that oxidative stress, along with compromised mitochondria and increased intracellular Ca(2+) amplifies the presynaptic decline in NMJ. This initial dysfunction is followed by a neurodegeneration induced by inflammatory agents and loss of trophic support. To develop effective therapeutic approaches against ALS, it is important to identify the mechanisms underlying the initial pathological events. Given the role of oxidative stress in ALS, targeted antioxidant treatments could be a promising therapeutic approach. However, the complex nature of ALS and failure of monotherapies suggest that an antioxidant therapy should be accompanied by anti-inflammatory interventions to enhance the restoration of the redox balance.
Collapse
Affiliation(s)
- Eveliina Pollari
- Molecular Brain Research Laboratory, Department of Neurobiology, A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland Kuopio, Finland ; Experimental Neurology - Laboratory of Neurobiology, Department of Neurosciences, Vesalius Research Center, KULeuven - University of Leuven Leuven, Belgium
| | - Gundars Goldsteins
- Molecular Brain Research Laboratory, Department of Neurobiology, A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland Kuopio, Finland
| | - Geneviève Bart
- Cell Biology Laboratory, Department of Neurobiology, A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland Kuopio, Finland
| | - Jari Koistinaho
- Molecular Brain Research Laboratory, Department of Neurobiology, A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland Kuopio, Finland
| | - Rashid Giniatullin
- Cell Biology Laboratory, Department of Neurobiology, A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland Kuopio, Finland ; Laboratory of Neurobiology, Department of Physiology, Kazan Federal University Kazan, Russia
| |
Collapse
|
29
|
Karam C, Barrett MJ, Imperato T, MacGowan DJ, Scelsa S. Vitamin D deficiency and its supplementation in patients with amyotrophic lateral sclerosis. J Clin Neurosci 2013; 20:1550-3. [DOI: 10.1016/j.jocn.2013.01.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 12/19/2012] [Accepted: 01/03/2013] [Indexed: 10/26/2022]
|
30
|
Prell T, Lautenschläger J, Grosskreutz J. Calcium-dependent protein folding in amyotrophic lateral sclerosis. Cell Calcium 2013; 54:132-43. [DOI: 10.1016/j.ceca.2013.05.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 05/16/2013] [Accepted: 05/18/2013] [Indexed: 12/25/2022]
|
31
|
Leal SS, Cardoso I, Valentine JS, Gomes CM. Calcium ions promote superoxide dismutase 1 (SOD1) aggregation into non-fibrillar amyloid: a link to toxic effects of calcium overload in amyotrophic lateral sclerosis (ALS)? J Biol Chem 2013; 288:25219-25228. [PMID: 23861388 DOI: 10.1074/jbc.m113.470740] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Imbalance in metal ion homeostasis is a hallmark in neurodegenerative conditions involving protein deposition, and amyotrophic lateral sclerosis (ALS) is no exception. In particular, Ca(2+) dysregulation has been shown to correlate with superoxide dismutase-1 (SOD1) aggregation in a cellular model of ALS. Here we present evidence that SOD1 aggregation is enhanced and modulated by Ca(2+). We show that at physiological pH, Ca(2+) induces conformational changes that increase SOD1 β-sheet content, as probed by far UV CD and attenuated total reflectance-FTIR, and enhances SOD1 hydrophobicity, as probed by ANS fluorescence emission. Moreover, dynamic light scattering analysis showed that Ca(2+) boosts the onset of SOD1 aggregation. In agreement, Ca(2+) decreases SOD1 critical concentration and nucleation time during aggregation kinetics, as evidenced by thioflavin T fluorescence emission. Attenuated total reflectance FTIR analysis showed that Ca(2+) induced aggregates consisting preferentially of antiparallel β-sheets, thus suggesting a modulation effect on the aggregation pathway. Transmission electron microscopy and analysis with conformational anti-fibril and anti-oligomer antibodies showed that oligomers and amyloidogenic aggregates constitute the prevalent morphology of Ca(2+)-induced aggregates, thus indicating that Ca(2+) diverts SOD1 aggregation from fibrils toward amorphous aggregates. Interestingly, the same heterogeneity of conformations is found in ALS-derived protein inclusions. We thus hypothesize that transient variations and dysregulation of cellular Ca(2+) levels contribute to the formation of SOD1 aggregates in ALS patients. In this scenario, Ca(2+) may be considered as a pathogenic effector in the formation of ALS proteinaceous inclusions.
Collapse
Affiliation(s)
- Sónia S Leal
- From the Instituto Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. República 127, 2780-756 Oeiras, Portugal
| | - Isabel Cardoso
- the Molecular Neurobiology Unit, Instituto Biologia Molecular e Celular, 4150-180 Porto, Portugal, and
| | - Joan S Valentine
- the Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095
| | - Cláudio M Gomes
- From the Instituto Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. República 127, 2780-756 Oeiras, Portugal,.
| |
Collapse
|
32
|
Fuchs A, Kutterer S, Mühling T, Duda J, Schütz B, Liss B, Keller BU, Roeper J. Selective mitochondrial Ca2+ uptake deficit in disease endstage vulnerable motoneurons of the SOD1G93A mouse model of amyotrophic lateral sclerosis. J Physiol 2013; 591:2723-45. [PMID: 23401612 PMCID: PMC3678052 DOI: 10.1113/jphysiol.2012.247981] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 02/04/2013] [Indexed: 12/13/2022] Open
Abstract
Amyotrophic lateral sclerosis is a progressive neurodegenerative disease that targets some somatic motoneuron populations, while others, e.g. those of the oculomotor system, are spared. The pathophysiological basis of this pattern of differential vulnerability, which is preserved in a transgenic mouse model of amyotrophic lateral sclerosis (SOD1(G93A)), and the mechanism of neurodegeneration in general are unknown. Hyperexcitability and calcium dysregulation have been proposed by others on the basis of data from juvenile mice that are, however, asymptomatic. No studies have been done with symptomatic mice following disease progression to the disease endstage. Here, we developed a new brainstem slice preparation for whole-cell patch-clamp recordings and single cell fura-2 calcium imaging to study motoneurons in adult wild-type and SOD1(G93A) mice up to disease endstage. We analysed disease-stage-dependent electrophysiological properties and intracellular Ca(2+) handling of vulnerable hypoglossal motoneurons in comparison to resistant oculomotor neurons. Thereby, we identified a transient hyperexcitability in presymptomatic but not in endstage vulnerable motoneurons. Additionally, we revealed a remodelling of intracellular Ca(2+) clearance within vulnerable but not resistant motoneurons at disease endstage characterised by a reduction of uniporter-dependent mitochondrial Ca(2+) uptake and enhanced Ca(2+) extrusion across the plasma membrane. Our study challenged the notion that hyperexcitability is a direct cause of neurodegeneration in SOD1(G93A) mice, but molecularly identified a Ca(2+) clearance deficit in motoneurons and an adaptive Ca(2+) handling strategy that might be targeted by future therapeutic strategies.
Collapse
Affiliation(s)
- Andrea Fuchs
- Mammalian Locomotor Laboratory, Department of Neuroscience, Karolinska Institutet, Retzius Väg 8, 17177 Stockholm, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
The differential effects of acute vs. chronic stress and their combination on hippocampal parvalbumin and inducible heat shock protein 70 expression. Neuroscience 2013; 236:47-54. [DOI: 10.1016/j.neuroscience.2013.01.033] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2012] [Revised: 01/09/2013] [Accepted: 01/10/2013] [Indexed: 11/20/2022]
|
34
|
Robberecht W, Philips T. The changing scene of amyotrophic lateral sclerosis. Nat Rev Neurosci 2013; 14:248-64. [PMID: 23463272 DOI: 10.1038/nrn3430] [Citation(s) in RCA: 754] [Impact Index Per Article: 62.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Several recent breakthroughs have provided notable insights into the pathogenesis of amyotrophic lateral sclerosis (ALS), with some even shifting our thinking about this neurodegenerative disease and raising the question as to whether this disorder is a proteinopathy, a ribonucleopathy or both. In addition, these breakthroughs have revealed mechanistic links between ALS and frontotemporal dementia, as well as between ALS and other neurodegenerative diseases, such as the cerebellar atrophies, myotonic dystrophy and inclusion body myositis. Here, we summarize the new findings in ALS research, discuss what they have taught us about this disease and examine issues that are still outstanding.
Collapse
Affiliation(s)
- Wim Robberecht
- Laboratory of Neurobiology, VIB Vesalius Research Center, 3000 Leuven, Belgium.
| | | |
Collapse
|
35
|
Gellerich FN, Gizatullina Z, Gainutdinov T, Muth K, Seppet E, Orynbayeva Z, Vielhaber S. The control of brain mitochondrial energization by cytosolic calcium: the mitochondrial gas pedal. IUBMB Life 2013; 65:180-90. [PMID: 23401251 DOI: 10.1002/iub.1131] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 12/08/2012] [Indexed: 11/05/2022]
Abstract
This review focuses on problems of the intracellular regulation of mitochondrial function in the brain via the (i) supply of mitochondria with ADP by means of ADP shuttles and channels and (ii) the Ca(2+) control of mitochondrial substrate supply. The permeability of the mitochondrial outer membrane for adenine nucleotides is low. Therefore rate dependent concentration gradients exist between the mitochondrial intermembrane space and the cytosol. The existence of dynamic ADP gradients is an important precondition for the functioning of ADP shuttles, for example CrP-shuttle. Cr at mM concentrations instead of ADP diffuses from the cytosol through the porin pores into the intermembrane space. The CrP-shuttle isoenzymes work in different directions which requires different metabolite concentrations mainly caused by dynamic ADP compartmentation. The ADP shuttle mechanisms alone cannot explain the load dependent changes in mitochondrial energization, and a complete model of mitochondrial regulation have to account the Ca(2+) -dependent substrate supply too. According to the old paradigmatic view, Ca(2+) (cyt) taken up by the mitochondrial Ca(2+) uniporter activates dehydrogenases within the matrix. However, recently it was found that Ca(2+) (cyt) at low nM concentrations exclusively activates the state 3 respiration via aralar, the mitochondrial glutamate/aspartate carrier. At higher Ca(2+) (cyt) (> 500 nM), brain mitochondria take up Ca(2+) for activation of substrate oxidation rates. Since brain mitochondrial pyruvate oxidation is only slightly influenced by Ca(2+) (cyt) , it was proposed that the cytosolic formation of pyruvate from its precursors is tightly controlled by the Ca(2+) dependent malate/aspartate shuttle. At low (50-100 nM) Ca(2+) (cyt) the pyruvate formation is suppressed, providing a substrate limitation control in neurons. This so called "gas pedal" mechanism explains why the energy metabolism of neurons in the nucleus suprachiasmaticus could be down-regulated at night but activated at day as a basis for the circadian changes in Ca(2+) (cyt) . It also could explain the energetic disadvantages caused by altered Ca(2+) (cyt) at mitochondrial diseases and neurodegeneration.
Collapse
Affiliation(s)
- Frank Norbert Gellerich
- Leibniz Institute for Neurobiology Magdeburg, Department of Behavioral Neurology, 39118 Magdeburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
36
|
Yin HZ, Hsu CI, Yu S, Rao SD, Sorkin LS, Weiss JH. TNF-α triggers rapid membrane insertion of Ca(2+) permeable AMPA receptors into adult motor neurons and enhances their susceptibility to slow excitotoxic injury. Exp Neurol 2012; 238:93-102. [PMID: 22921461 DOI: 10.1016/j.expneurol.2012.08.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2012] [Revised: 07/25/2012] [Accepted: 08/03/2012] [Indexed: 01/03/2023]
Abstract
Excitotoxicity (caused by over-activation of glutamate receptors) and inflammation both contribute to motor neuron (MN) damage in amyotrophic lateral sclerosis (ALS) and other diseases of the spinal cord. Microglial and astrocytic activation in these conditions results in release of inflammatory mediators, including the cytokine, tumor necrosis factor-alpha (TNF-α). TNF-α has complex effects on neurons, one of which is to trigger rapid membrane insertion of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) type glutamate receptors, and in some cases, specific insertion of GluA2 lacking, Ca(2+) permeable AMPA receptors (Ca-perm AMPAr). In the present study, we use a histochemical stain based upon kainate stimulated uptake of cobalt ions ("Co(2+) labeling") to provide the first direct demonstration of the presence of substantial numbers of Ca-perm AMPAr in ventral horn MNs of adult rats under basal conditions. We further find that TNF-α exposure causes a rapid increase in the numbers of these receptors, via a phosphatidylinositol 3 kinase (PI3K) and protein kinase A (PKA) dependent mechanism. Finally, to assess the relevance of TNF-α to slow excitotoxic MN injury, we made use of organotypic spinal cord slice cultures. Co(2+) labeling revealed that MNs in these cultures possess Ca-perm AMPAr. Addition of either a low level of TNF-α, or of the glutamate uptake blocker, trans-pyrrolidine-2,4-dicarboxylic acid (PDC) to the cultures for 48 h resulted in little MN injury. However, when combined, TNF-α+PDC caused considerable MN degeneration, which was blocked by the AMPA/kainate receptor blocker, 2,3-Dihydroxy-6-nitro-7-sulfamoylbenzo (F) quinoxaline (NBQX), or the Ca-perm AMPAr selective blocker, 1-naphthyl acetylspermine (NASPM). Thus, these data support the idea that prolonged TNF-α elevation, as may be induced by glial activation, acts in part by increasing the numbers of Ca-perm AMPAr on MNs to enhance injurious excitotoxic effects of deficient astrocytic glutamate transport.
Collapse
Affiliation(s)
- Hong Z Yin
- Department of Neurology, University of California, Irvine, CA 92697‐4292, USA
| | | | | | | | | | | |
Collapse
|
37
|
Yin HZ, Nalbandian A, Hsu CI, Li S, Llewellyn KJ, Mozaffar T, Kimonis VE, Weiss JH. Slow development of ALS-like spinal cord pathology in mutant valosin-containing protein gene knock-in mice. Cell Death Dis 2012; 3:e374. [PMID: 22898872 PMCID: PMC3434652 DOI: 10.1038/cddis.2012.115] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Pathological features of amyotrophic lateral sclerosis (ALS) include, in addition to selective motor neuron (MN) degeneration, the occurrence of protein aggregates, mitochondrial dysfunction and astrogliosis. SOD1 mutations cause rare familial forms of ALS and have provided the most widely studied animal models. Relatively recent studies implicating another protein, TDP-43, in familial and sporadic forms of ALS have led to the development of new animal models. More recently, mutations in the valosin-containing protein (VCP) gene linked to the human genetic disease, Inclusion Body Myopathy associated with Paget's disease of bone and frontotemporal dementia (IBMPFD), were found also to be associated with ALS in some patients. A heterozygous knock-in VCP mouse model of IBMPFD (VCPR155H/+) exhibited muscle, bone and brain pathology characteristic of the human disease. We have undertaken studies of spinal cord pathology in VCPR155H/+ mice and find age-dependent degeneration of ventral horn MNs, TDP-43-positive cytosolic inclusions, mitochondrial aggregation and progressive astrogliosis. Aged animals (∼24–27 months) show electromyography evidence of denervation consistent with the observed MN loss. Although these animals do not develop rapidly progressive fatal ALS-like disease during their lifespans, they recapitulate key pathological features of both human disease and other animal models of ALS, and may provide a valuable new model for studying events preceding onset of catastrophic disease.
Collapse
Affiliation(s)
- H Z Yin
- Department of Neurology, University of California, Irvine, CA 92697-4292, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Reduced calreticulin levels link endoplasmic reticulum stress and Fas-triggered cell death in motoneurons vulnerable to ALS. J Neurosci 2012; 32:4901-12. [PMID: 22492046 DOI: 10.1523/jneurosci.5431-11.2012] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cellular responses to protein misfolding are thought to play key roles in triggering neurodegeneration. In the mutant superoxide dismutase (mSOD1) model of amyotrophic lateral sclerosis (ALS), subsets of motoneurons are selectively vulnerable to degeneration. Fast fatigable motoneurons selectively activate an endoplasmic reticulum (ER) stress response that drives their early degeneration while a subset of mSOD1 motoneurons show exacerbated sensitivity to activation of the motoneuron-specific Fas/NO pathway. However, the links between the two mechanisms and the molecular basis of their cellular specificity remained unclear. We show that Fas activation leads, specifically in mSOD1 motoneurons, to reductions in levels of calreticulin (CRT), a calcium-binding ER chaperone. Decreased expression of CRT is both necessary and sufficient to trigger SOD1(G93A) motoneuron death through the Fas/NO pathway. In SOD1(G93A) mice in vivo, reductions in CRT precede muscle denervation and are restricted to vulnerable motor pools. In vitro, both reduced CRT and Fas activation trigger an ER stress response that is restricted to, and required for death of, vulnerable SOD1(G93A) motoneurons. Our data reveal CRT as a critical link between a motoneuron-specific death pathway and the ER stress response and point to a role of CRT levels in modulating motoneuron vulnerability to ALS.
Collapse
|
39
|
Schmitz J, Höger U, Torkkeli PH, French AS. Calcium buffering and clearance in spider mechanosensory neurons. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2012; 198:477-83. [PMID: 22399232 DOI: 10.1007/s00359-012-0717-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 02/25/2012] [Accepted: 02/26/2012] [Indexed: 11/25/2022]
Abstract
Spider VS-3 mechanoreceptor neurons have a low-voltage-activated Ca2+ current that raises intracellular calcium concentration [Ca2+] when they are depolarized by agonists of GABAA receptors or fire action potentials. The Ca2+ rise produces negative feedback by modulating the mechanoreceptor current and regulates Ca2+- and voltage-activated K+ currents. However, nothing is known about Ca2+ buffering in VS-3 neurons. Dynamic changes in VS-3 neuron intracellular [Ca2+] were measured using the fluorescent Ca2+ indicator Oregon Green BAPTA-1 (OG488) to understand Ca2+ buffering and clearance. Intracellular OG488 concentration increased slowly over more than 2 h as it diffused through a sharp intracellular microelectrode and spread through the cell. This slow increase was used to measure endogenous Ca2+ buffering and clearance by the added buffer technique, with OG488 acting as both added exogenous buffer and Ca2+ indicator. [Ca2+] was raised for brief periods by regular action potential firing, produced by pulsed electric current injection through the microelectrode. The resulting rise and fall of [Ca2+] were well fitted by the single compartment model of Ca2+ dynamics. With earlier ratiometric [Ca2+] estimates, these data gave an endogenous Ca2+ binding ratio of 684. Strong Ca2+ buffering may assist these neurons to deal with rapid changes in mechanical inputs.
Collapse
Affiliation(s)
- Joscha Schmitz
- Department of Physiology and Biophysics, Dalhousie University, PO BOX 15000, Halifax, NS, B3H 4R2, Canada
| | | | | | | |
Collapse
|
40
|
Marked synergism between mutant SOD1 and glutamate transport inhibition in the induction of motor neuronal degeneration in spinal cord slice cultures. Brain Res 2012; 1448:153-62. [PMID: 22370146 DOI: 10.1016/j.brainres.2012.02.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Revised: 01/31/2012] [Accepted: 02/02/2012] [Indexed: 01/14/2023]
Abstract
Loss of astrocytic glutamate transport capacity in ALS spinal cord supports an excitotoxic contribution to motor neuron (MN) damage in the disease, and dominant gain of function mutations in Cu/Zn superoxide dismutase (SOD1) cause certain familial forms of ALS. We have used organotypic slice cultures from wild type and G93A SOD1 mutant rat spinal cords to examine interactions between excitotoxicity and the presence of mutant SOD1 in the induction of MN degeneration. Slice cultures were prepared from 1 week old pups, and after an additional week in vitro, some were exposed to either a low level (30 μM) of the glutamate uptake inhibitor, trans-pyrrolidine-2,4-dicarboxylic acid (PDC) for 3 weeks, or a higher level (50 μM) for 48 h, followed by histochemical labeling to assess MN injury. In wild type animals these exposures caused relatively little MN degeneration. Similarly, little MN degeneration was seen in slices from SOD1 mutant animals that were not exposed to PDC. However, addition of PDC to SOD1 mutant slices resulted in substantial MN injury, which was markedly attenuated by a Ca2+ permeable AMPA-type (Ca-AMPA) glutamate channel blocker, or by a nitric oxide synthase antagonist. These observations illustrate the utility of the organotypic culture model for the investigation of intracellular interactions underlying MN degeneration in ALS, and support the hypothesis that activation of Ca-AMPA channels on MNs provides a metabolic burden that synergizes with deleterious effects of mutant SOD1 in the induction of MN injury.
Collapse
|
41
|
Weiss JH. Ca permeable AMPA channels in diseases of the nervous system. Front Mol Neurosci 2011; 4:42. [PMID: 22102834 PMCID: PMC3214733 DOI: 10.3389/fnmol.2011.00042] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 10/27/2011] [Indexed: 12/30/2022] Open
Abstract
Since the discovery and molecular characterization of Ca(2+)-permeable AMPA channels just over two decades ago, a large body of evidence has accumulated implicating contributions of these unusual glutamate activated channels to selective neurodegeneration in certain conditions, including ischemia and amyotrophic lateral sclerosis. Factors likely involved in their contributions to disease include their distinct patterns of expression in certain neuronal populations, their upregulation via various mechanisms in response to disease associated stresses, and their high permeability to Zn(2+) as well as to Ca(2+). However, full characterization of their contributions to certain diseases as well as development of therapeutics has been limited by the lack of selective and bioavailable blockers of these channels that can be employed in animals or humans. This review summarizes some of the clues that have emerged over recent years to the contributions of these channels in disease.
Collapse
Affiliation(s)
- John H Weiss
- Department of Neurology, University of California Irvine Irvine, CA, USA
| |
Collapse
|
42
|
Quinlan KA. Links between electrophysiological and molecular pathology of amyotrophic lateral sclerosis. Integr Comp Biol 2011; 51:913-25. [PMID: 21989221 DOI: 10.1093/icb/icr116] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Multiple deficits have been described in amyotrophic lateral sclerosis (ALS), from the first changes in normal functioning of the motoneurons and glia to the eventual loss of spinal and cortical motoneurons. In this review, current results, including changes in size, and electrical properties of motoneurons, glutamate excitotoxicity, calcium buffering, deficits in mitochondrial and cellular transport, impediments to proteostasis which lead to stress of the endoplasmic reticulum (ER), and glial contributions to motoneuronal vulnerability are recapitulated. Results are mainly drawn from the mutant SOD1 mouse model of ALS, and emphasis is placed on early changes that precede the onset of symptoms and the interplay between molecular and electrical processes.
Collapse
Affiliation(s)
- Katharina A Quinlan
- Department of Physiology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
43
|
Saxena S, Caroni P. Selective neuronal vulnerability in neurodegenerative diseases: from stressor thresholds to degeneration. Neuron 2011; 71:35-48. [PMID: 21745636 DOI: 10.1016/j.neuron.2011.06.031] [Citation(s) in RCA: 402] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2011] [Indexed: 12/12/2022]
Abstract
Neurodegenerative diseases selectively target subpopulations of neurons, leading to the progressive failure of defined brain systems, but the basis of such selective neuronal vulnerability has remained elusive. Here, we discuss how a stressor-threshold model of how particular neurons and circuits are selectively vulnerable to disease may underly the etiology of familial and sporadic forms of diseases such as Alzheimer's, Parkinson's, Huntington's, and ALS. According to this model, the intrinsic vulnerabilities of neuronal subpopulations to stressors and specific disease-related misfolding proteins determine neuronal morbidity. Neurodegenerative diseases then involve specific combinations of genetic predispositions and environmental stressors, triggering increasing age-related stress and proteostasis dysfunction in affected vulnerable neurons. Damage to vasculature, immune system, and local glial cells mediates environmental stress, which could drive disease at all stages.
Collapse
Affiliation(s)
- Smita Saxena
- Friedrich Miescher Institut, Novartis Research Foundation, CH-4058 Basel, Switzerland
| | | |
Collapse
|
44
|
Cozzolino M, Carrì MT. Mitochondrial dysfunction in ALS. Prog Neurobiol 2011; 97:54-66. [PMID: 21827820 DOI: 10.1016/j.pneurobio.2011.06.003] [Citation(s) in RCA: 173] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 06/13/2011] [Accepted: 06/14/2011] [Indexed: 12/11/2022]
Abstract
In the present article, we review the many facets of mitochondrial dysfunction in amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative disease due to loss of upper motor neurons in cerebral cortex and lower motor neurons in brainstem and spinal cord. Accumulating evidence from recent studies suggests that the many, interconnected facets of mitochondrial dysfunction may play a more significant role in the etiopathogenesis of this disorder than previously thought. This notion stems from our expanding knowledge of the complex physiology of mitochondria and of alteration of their properties that might confer an intrinsic susceptibility to long-lived, post-mitotic motor neurons to energy deficit, calcium mishandling and oxidative stress. The wealth of evidence implicating mitochondrial dysfunction as a major event in the pathology of ALS has prompted new studies aimed to the development of new mitochondria-targeted therapies. However, it is now clear that drugs targeting more than one aspect of mitochondrial dysfunction are needed to fight this devastating disease.
Collapse
Affiliation(s)
- Mauro Cozzolino
- Fondazione Santa Lucia IRCCS, c/o CERC, Via del Fosso di Fiorano 64, 00143 Rome, Italy
| | | |
Collapse
|
45
|
Manuel M, Heckman CJ. Stronger is not always better: could a bodybuilding dietary supplement lead to ALS? Exp Neurol 2010; 228:5-8. [PMID: 21167830 DOI: 10.1016/j.expneurol.2010.12.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Revised: 12/07/2010] [Accepted: 12/08/2010] [Indexed: 12/11/2022]
Affiliation(s)
- Marin Manuel
- Northwestern University, Department of Physiology, 303 E Chicago Ave, Chicago, IL 60611, USA.
| | | |
Collapse
|
46
|
Meehan CF, Moldovan M, Marklund SL, Graffmo KS, Nielsen JB, Hultborn H. Intrinsic properties of lumbar motor neurones in the adult G127insTGGG superoxide dismutase-1 mutant mouse in vivo: evidence for increased persistent inward currents. Acta Physiol (Oxf) 2010; 200:361-76. [PMID: 20874803 DOI: 10.1111/j.1748-1716.2010.02188.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
AIM Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease characterized by a preferential loss of motor neurones. Previous publications using in vitro neonatal preparations suggest an increased excitability of motor neurones in various superoxide dismutase-1 (SOD1) mutant mice models of ALS which may contribute to excitotoxicity of the motor neurones. METHODS Using intracellular recording, we tested this hypothesis in vivo in the adult presymptomatic G127insTGGG (G127X) SOD1 mutant mouse model of ALS. RESULTS At resting membrane potentials the basic intrinsic properties of lumbar motor neurones in the adult presymptomatic G127X mutant are not significantly different from those of wild type. However, at more depolarized membrane potentials, motor neurones in the G127X SOD1 mutants can sustain higher frequency firing, showing less spike frequency adaption (SFA) and with persistent inward currents (PICs) being activated at lower firing frequencies and being more pronounced. CONCLUSION We demonstrated that, in vivo, at resting membrane potential, spinal motor neurones of the adult G127X mice do not show an increased excitability. However, when depolarized they show evidence of an increased PIC and less SFA which may contribute to excitotoxicity of these neurones as the disease progresses.
Collapse
Affiliation(s)
- C F Meehan
- Department of Neuroscience and Pharmacology, Panum Institute, University of Copenhagen, Denmark.
| | | | | | | | | | | |
Collapse
|
47
|
Paizs M, Engelhardt JI, Katarova Z, Siklós L. Hypoglossal motor neurons display a reduced calcium increase after axotomy in mice with upregulated parvalbumin. J Comp Neurol 2010; 518:1946-61. [PMID: 20394052 DOI: 10.1002/cne.22312] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Motor neurons that exhibit differences in vulnerability to degeneration have been identified in motor neuron disease and in its animal models. The oculomotor and hypoglossal neurons are regarded as the prototypes of the resistant and susceptible cell types, respectively. Because an increase in the level of intracellular calcium has been proposed as a feature amplifying degenerative processes, we earlier studied the calcium increase in these motor neurons after axotomy in Balb/c mice and demonstrated a correlation between the susceptibility to degeneration and the intracellular calcium increase, with an inverse relation with the calcium buffering capacity, characterized by the parvalbumin or calbindin-D(28k) content. Because the differential susceptibility of the cells might also be attributed to their different cellular environments, in the present experiments, with the aim of verifying directly that a higher calcium buffering capacity is indeed responsible for the enhanced resistance, motor neurons were studied in their original milieu in mice with a genetically increased parvalbumin level. The changes in intracellular calcium level of the hypoglossal and oculomotor neurons after axotomy were studied electron microscopically at a 21-day interval after axotomy, during which time no significant calcium increase was detected in the hypoglossal motor neurons, the response being similar to that of the oculomotor neurons. The hypoglossal motor neurons of the parental mice, used as positive controls, exhibited a transient, significant elevation of calcium. These data provide more direct evidence of the protective role of parvalbumin against the degeneration mediated by a calcium increase in the acute injury of motor neurons.
Collapse
Affiliation(s)
- Melinda Paizs
- Institute of Biophysics, Biological Research Center, Szeged, H-6701, Hungary
| | | | | | | |
Collapse
|
48
|
Bento-Abreu A, Van Damme P, Van Den Bosch L, Robberecht W. The neurobiology of amyotrophic lateral sclerosis. Eur J Neurosci 2010; 31:2247-65. [PMID: 20529130 DOI: 10.1111/j.1460-9568.2010.07260.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Amyotrophic lateral sclerosis is a degenerative disease affecting the motor neurons. In spite of our growing insights into its biology, it remains a lethal condition. The identification of the cause of several of the familial forms of ALS allowed generation of models to study this disease both in vitro and in vivo. Here, we summarize what is known about the pathogenic mechanisms of ALS induced by hereditary mutations, and attempt to identify the relevance of these findings for understanding the pathogenic mechanisms of the sporadic form of this disease.
Collapse
Affiliation(s)
- André Bento-Abreu
- Laboratory for Neurobiology, Experimental Neurology, K.U.Leuven, Herestraat, 3000 Leuven, Belgium.
| | | | | | | |
Collapse
|
49
|
Langou K, Moumen A, Pellegrino C, Aebischer J, Medina I, Aebischer P, Raoul C. AAV-mediated expression of wild-type and ALS-linked mutant VAPB selectively triggers death of motoneurons through a Ca2+-dependent ER-associated pathway. J Neurochem 2010; 114:795-809. [PMID: 20477942 DOI: 10.1111/j.1471-4159.2010.06806.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A dominant mutation in the gene coding for the vesicle-associated membrane protein-associated protein B (VAPB) was associated with amyotrophic lateral sclerosis, a fatal paralytic disorder characterized by the selective loss of motoneurons in the brain and spinal cord. Adeno-associated viral vectors that we show to transduce up to 90% of motoneurons in vitro were used to model VAPB-associated neurodegenerative process. We observed that Adeno-associated viral-mediated over-expression of both wild-type and mutated form of human VAPB selectively induces death of primary motoneurons, albeit with different kinetics. We provide evidence that ER stress and impaired homeostatic regulation of calcium (Ca(2+)) are implicated in the death process. Finally, we found that completion of the motoneuron death program triggered by the over-expression of wild-type and mutant VAPB implicates calpains, caspase 12 and 3. Our viral-based in vitro model, which recapitulates the selective vulnerability of motoneurons to the presence of mutant VAPB and also to VAPB gene dosage effect, identifies aberrant Ca(2+) signals and ER-derived death pathways as important events in the motoneuron degenerative process.
Collapse
Affiliation(s)
- Karine Langou
- Inserm-Avenir team, The Mediterranean Institute of Neurobiology, Marseille, France
| | | | | | | | | | | | | |
Collapse
|
50
|
Murray LM, Talbot K, Gillingwater TH. Review: Neuromuscular synaptic vulnerability in motor neurone disease: amyotrophic lateral sclerosis and spinal muscular atrophy. Neuropathol Appl Neurobiol 2010; 36:133-56. [DOI: 10.1111/j.1365-2990.2010.01061.x] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|