1
|
Hodge JR, Song Y, Wightman MA, Milkey A, Tran B, Štajner A, Roberts AS, Hemingson CR, Wainwright PC, Price SA. Constraints on the Ecomorphological Convergence of Zooplanktivorous Butterflyfishes. Integr Org Biol 2021; 3:obab014. [PMID: 34377941 PMCID: PMC8341894 DOI: 10.1093/iob/obab014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Whether distantly related organisms evolve similar strategies to meet the demands of a shared ecological niche depends on their evolutionary history and the nature of form-function relationships. In fishes, the visual identification and consumption of microscopic zooplankters, selective zooplanktivory, is a distinct type of foraging often associated with a suite of morphological specializations. Previous work has identified inconsistencies in the trajectory and magnitude of morphological change following transitions to selective zooplanktivory, alluding to the diversity and importance of ancestral effects. Here we investigate whether transitions to selective zooplanktivory have influenced the morphological evolution of marine butterflyfishes (family Chaetodontidae), a group of small-prey specialists well known for several types of high-precision benthivory. Using Bayesian ancestral state estimation, we inferred the recent evolution of zooplanktivory among benthivorous ancestors that hunted small invertebrates and browsed by picking or scraping coral polyps. Traits related to the capture of prey appear to be functionally versatile, with little morphological distinction between species with benthivorous and planktivorous foraging modes. In contrast, multiple traits related to prey detection or swimming performance are evolving toward novel, zooplanktivore-specific optima. Despite a relatively short evolutionary history, general morphological indistinctiveness, and evidence of constraint on the evolution of body size, convergent evolution has closed a near significant amount of the morphological distance between zooplanktivorous species. Overall, our findings describe the extent to which the functional demands associated with selective zooplanktivory have led to generalizable morphological features among butterflyfishes and highlight the importance of ancestral effects in shaping patterns of morphological convergence.
Collapse
Affiliation(s)
- J R Hodge
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
- Department of Evolution and Ecology, University of California, Davis, Davis, CA 95616, USA
| | - Y Song
- Department of Evolution and Ecology, University of California, Davis, Davis, CA 95616, USA
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong
| | - M A Wightman
- Department of Evolution and Ecology, University of California, Davis, Davis, CA 95616, USA
- Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, FL 34946, USA
| | - A Milkey
- Department of Evolution and Ecology, University of California, Davis, Davis, CA 95616, USA
| | - B Tran
- Department of Evolution and Ecology, University of California, Davis, Davis, CA 95616, USA
| | - A Štajner
- Department of Evolution and Ecology, University of California, Davis, Davis, CA 95616, USA
| | - A S Roberts
- Department of Evolution and Ecology, University of California, Davis, Davis, CA 95616, USA
| | - C R Hemingson
- College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia
| | - P C Wainwright
- Department of Evolution and Ecology, University of California, Davis, Davis, CA 95616, USA
| | - S A Price
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
3
|
Leysen H, Jouk P, Brunain M, Christiaens J, Adriaens D. Cranial architecture of tube-snouted gasterosteiformes (Syngnathus rostellatus and Hippocampus capensis). J Morphol 2010; 271:255-70. [PMID: 19798732 DOI: 10.1002/jmor.10795] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The long snout of pipefishes and seahorses (Syngnathidae, Gasterosteiformes) is formed as an elongation of the ethmoid region. This is in contrast to many other teleosts with elongate snouts (e.g., butterflyfishes) in which the snout is formed as an extension of the jaws. Syngnathid fishes perform very fast suction feeding, accomplished by powerful neurocranial elevation and hyoid retraction. Clearly, suction through a long and narrow tube and its hydrodynamic implications can be expected to require certain adaptations in the cranium, especially in musculoskeletal elements of the feeding apparatus. Not much is known about which skeletal elements actually support the snout and what the effect of elongation is on related structures. Here, we give a detailed morphological description of the cartilaginous and bony feeding apparatus in both juvenile and adult Syngnathus rostellatus and Hippocampus capensis. Our results are compared with previous morphological studies of a generalized teleost, Gasterosteus aculeatus. We found that the ethmoid region is elongated early during development, with the ethmoid plate, the hyosymplectic, and the basihyal cartilage being extended in the chondrocranium. In the juveniles of both species almost all bones are forming, although only as a very thin layer. The elongation of the vomeral, mesethmoid, quadrate, metapterygoid, symplectic, and preopercular bones is already present. Probably, because of the long and specialized parental care which releases advanced developmental stages from the brooding pouch, morphology of the feeding apparatus of juveniles is already very similar to that of the adults. We describe morphological features related to snout elongation that may be considered adaptations for suction feeding; e.g. the peculiar shape of the interhyal bone and its saddle-shaped articulation with the posterior ceratohyal bone might aid in explosive hyoid retraction by reducing the risk of hyoid dislocation.
Collapse
Affiliation(s)
- Heleen Leysen
- Research Group Evolutionary Morphology of Vertebrates, Ghent University, B-9000 Gent, Belgium.
| | | | | | | | | |
Collapse
|
6
|
Hernandez LP, Ferry-Graham LA, Gibb AC. Morphology of a picky eater: A novel mechanism underlies premaxillary protrusion and retraction within cyprinodontiforms. ZOOLOGY 2008; 111:442-54. [DOI: 10.1016/j.zool.2007.12.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2007] [Revised: 12/04/2007] [Accepted: 12/05/2007] [Indexed: 12/01/2022]
|
7
|
Ferry-Graham LA, Gibb AC, Hernandez LP. Premaxillary movements in cyprinodontiform fishes: An unusual protrusion mechanism facilitates “picking” prey capture. ZOOLOGY 2008; 111:455-66. [DOI: 10.1016/j.zool.2007.11.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2007] [Revised: 11/16/2007] [Accepted: 11/17/2007] [Indexed: 10/21/2022]
|
10
|
Drucker EG, Jensen JS. Functional analysis of a specialized prey processing behavior: winnowing by surfperches (Teleostei: Embiotocidae). J Morphol 1991; 210:267-87. [PMID: 1791628 DOI: 10.1002/jmor.1052100306] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Several surfperches (Embiotocidae), including the black surfperch, Embiotoca jacksoni, exhibit a specialized prey handling behavior known as winnowing, in which ingested food and non-nutritive debris are separated within the oropharyngeal cavity. Prey items are swallowed, and unpalatable material is ejected from the mouth. Winnowing is believed to play an important role in the partitioning of food resources among sympatric embiotocids. We present a mechanistic model for this separative prey processing based on high-speed video analysis, cineradiography, electromyography, and buccal and opercular cavity pressure transducer recording. Winnowing by embiotocids is characterized by premaxillary protrusions repeated cyclically with reduced oral gape. Protrusion is accompanied by depression of the hyoid apparatus and adduction of the opercula. Alternating expansion and contraction of the buccal and opercular cavities generate regular pressure waveforms that indicate bidirectional water flow during processing. Separation of food from debris by Embiotoca jacksoni occurs in three phases. The prey-debris bolus is transported anteriorly and posteriorly within the oropharyngeal cavity and is then sheared by the pharyngeal jaws. Mechanical processing is complemented by the rinsing action of water currents during hydraulic prey transport. The feeding apparatus of Embiotoca jacksoni is functionally versatile, although not obviously specialized relative to that of nonwinnowing surfperches. Protrusion of the premaxillae and depression of the hyoid apparatus are critical to both prey capture and subsequent prey processing. The pharyngeal jaws exhibit kinematic patterns during separation of food from debris distinct from those observed during mastication of uncontaminated prey. This behavioral flexibility facilitates resource partitioning and the coexistence of E. jacksoni in sympatric embiotocid assemblages.
Collapse
Affiliation(s)
- E G Drucker
- Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts 02138
| | | |
Collapse
|