1
|
Ruiz-García M, Jaramillo MF, López JB, Rivillas Y, Bello A, Leguizamon N, Shostell JM. Mitochondrial and karyotypic evidence reveals a lack of support for the genus Nasuella (Procyonidae, Carnivora). JOURNAL OF VERTEBRATE BIOLOGY 2021. [DOI: 10.25225/jvb.21040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Manuel Ruiz-García
- Laboratorio de Genética de Poblaciones Molecular-Biología Evolutiva, Departamento de Biología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá DC, Colombia; e-mail: ,
| | - María F. Jaramillo
- Laboratorio de Genética de Poblaciones Molecular-Biología Evolutiva, Departamento de Biología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá DC, Colombia; e-mail: ,
| | - Juan B. López
- Laboratorio de Genética y Citogenética, Universidad Nacional de Colombia, Sede Medellín, Medellín, Colombia; e-mail: ,
| | - Yudrum Rivillas
- Laboratorio de Genética y Citogenética, Universidad Nacional de Colombia, Sede Medellín, Medellín, Colombia; e-mail: ,
| | - Aurita Bello
- Secretaria Distrital del Ambiente (SDA), Bogotá DC, Colombia; e-mail: ,
| | | | - Joseph M. Shostell
- Math, Science and Technology Department, University of Minnesota Crookston, Crookston, USA; e-mail:
| |
Collapse
|
3
|
McDonough MM, Ferguson AW, Dowler RC, Gompper ME, Maldonado JE. Phylogenomic systematics of the spotted skunks (Carnivora, Mephitidae, Spilogale): Additional species diversity and Pleistocene climate change as a major driver of diversification. Mol Phylogenet Evol 2021; 167:107266. [PMID: 34302947 DOI: 10.1016/j.ympev.2021.107266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 05/28/2021] [Accepted: 07/15/2021] [Indexed: 10/20/2022]
Abstract
Four species of spotted skunks (Carnivora, Mephitidae, Spilogale) are currently recognized: Spilogale angustifrons, S. gracilis, S. putorius, and S. pygmaea. Understanding species boundaries within this group is critical for effective conservation given that regional populations or subspecies (e.g., S. p. interrupta) have experienced significant population declines. Further, there may be currently unrecognized diversity within this genus as some taxa (e.g., S. angustifrons) and geographic regions (e.g., Central America) never have been assessed using DNA sequence data. We analyzed species limits and diversification patterns in spotted skunks using multilocus nuclear (ultraconserved elements) and mitochondrial (whole mitogenomes and single gene analysis) data sets from broad geographic sampling representing all currently recognized species and subspecies. We found a high degree of genetic divergence among Spilogale that reflects seven distinct species and eight unique mitochondrial lineages. Initial divergence between S. pygmaea and all other Spilogale occurred in the Early Pliocene (∼ 5.0 million years ago). Subsequent diversification of the remaining Spilogale into an "eastern" and a "western" lineage occurred during the Early Pleistocene (∼1.5 million years ago). These two lineages experienced temporally coincident patterns of diversification at ∼0.66 and ∼0.35 million years ago into two and ultimately three distinct evolutionary units, respectively. Diversification was confined almost entirely within the Pleistocene during a timeframe characterized by alternating glacial-interglacial cycles, with the origin of this diversity occurring in northeastern Mexico and the southwestern United States of America. Mitochondrial-nuclear discordance was recovered across three lineages in geographic regions consistent with secondary contact, including a distinct mitochondrial lineage confined to the Sonoran Desert. Our results have direct consequences for conservation of threatened populations, or species, as well as for our understanding of the evolution of delayed implantation in this enigmatic group of small carnivores.
Collapse
Affiliation(s)
- Molly M McDonough
- Chicago State University Department of Biological Sciences 9501 S. King Drive, WSC 290 Chicago, IL 60628-1598.
| | - Adam W Ferguson
- Gantz Family Collection Center Field Museum 1400 South Lake Shore Drive Chicago, IL 60605
| | - Robert C Dowler
- Department of Biology Angelo State University ASU Station 10890 San Angelo, TX 76909
| | - Matthew E Gompper
- Department of Fish, Wildlife, and Conservation Ecology New Mexico State University Las Cruces, NM 88003
| | - Jesús E Maldonado
- Center for Conservation Genomics Smithsonian Conservation Biology Institute National Zoological Park PO Box 37012 MRC 5503 Washington, DC 20013
| |
Collapse
|
5
|
Nigenda-Morales SF, Gompper ME, Valenzuela-Galván D, Lay AR, Kapheim KM, Hass C, Booth-Binczik SD, Binczik GA, Hirsch BT, McColgin M, Koprowski JL, McFadden K, Wayne RK, Koepfli KP. Phylogeographic and diversification patterns of the white-nosed coati (Nasua narica): Evidence for south-to-north colonization of North America. Mol Phylogenet Evol 2018; 131:149-163. [PMID: 30468940 DOI: 10.1016/j.ympev.2018.11.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 11/12/2018] [Accepted: 11/16/2018] [Indexed: 11/30/2022]
Abstract
White-nosed coatis (Nasua narica) are widely distributed throughout North, Central, and South America, but the patterns of temporal and spatial diversification that have contributed to this distribution are unknown. In addition, the biogeographic history of procyonid species in the Americas remains contentious. Using sequences from three mitochondrial loci (Cytochrome b, NAHD5 and 16S rRNA; 2201 bp) and genotypes from 11 microsatellite loci, we analyzed genetic diversity to determine phylogeographic patterns, genetic structure, divergence times, and gene flow among Nasua narica populations throughout the majority of the species' range. We also estimated the ancestral geographic range of N. narica and other procyonid species. We found a high degree of genetic structure and divergence among populations that conform to five evolutionarily significant units. The most southerly distributed population (Panama) branched off much earlier (∼3.8 million years ago) than the northern populations (<1.2 million years ago). Estimated gene flow among populations was low and mostly northwards and westwards. The phylogeographic patterns within N. narica are associated with geographic barriers and habitat shifts likely caused by Pliocene-Pleistocene climate oscillations. Significantly, our findings suggest the dispersal of N. narica was south-to-north beginning in the Pliocene, not in the opposite direction during the Pleistocene as suggested by the fossil record, and that the most recent common ancestor for coati species was most likely distributed in South or Central America six million years ago. Our study implies the possibility that the diversification of Nasua species, and other extant procyonid lineages, may have occurred in South America.
Collapse
Affiliation(s)
- Sergio F Nigenda-Morales
- Department of Ecology & Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Matthew E Gompper
- School of Natural Resources, University of Missouri, Columbia, MO 65211, USA
| | - David Valenzuela-Galván
- Departamento de Ecología Evolutiva, Centro de Investigación en Biodiversidad y Conservación, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos 62209, Mexico
| | - Anna R Lay
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Karen M Kapheim
- Department of Biology, Utah State University, Logan, UT 84322, USA
| | | | | | | | - Ben T Hirsch
- Zoology and Ecology, College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia
| | - Maureen McColgin
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - John L Koprowski
- School of Natural Resources and the Environment, The University of Arizona, Tucson, AZ 85721, USA
| | - Katherine McFadden
- College of Agriculture, Forestry and Life Sciences, Clemson University, Clemson, SC 29634, USA
| | - Robert K Wayne
- Department of Ecology & Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Klaus-Peter Koepfli
- Smithsonian Conservation Biology Institute, National Zoological Park, Washington, D.C. 20008, USA; Theodosius Dobzhansky Center for Genome Bioinformatics, Saint Petersburg State University, Saint Petersburg 199034, Russian Federation.
| |
Collapse
|
6
|
O’Dea A, Lessios HA, Coates AG, Eytan RI, Restrepo-Moreno SA, Cione AL, Collins LS, de Queiroz A, Farris DW, Norris RD, Stallard RF, Woodburne MO, Aguilera O, Aubry MP, Berggren WA, Budd AF, Cozzuol MA, Coppard SE, Duque-Caro H, Finnegan S, Gasparini GM, Grossman EL, Johnson KG, Keigwin LD, Knowlton N, Leigh EG, Leonard-Pingel JS, Marko PB, Pyenson ND, Rachello-Dolmen PG, Soibelzon E, Soibelzon L, Todd JA, Vermeij GJ, Jackson JBC. Formation of the Isthmus of Panama. SCIENCE ADVANCES 2016; 2:e1600883. [PMID: 27540590 PMCID: PMC4988774 DOI: 10.1126/sciadv.1600883] [Citation(s) in RCA: 287] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Accepted: 07/18/2016] [Indexed: 05/22/2023]
Abstract
The formation of the Isthmus of Panama stands as one of the greatest natural events of the Cenozoic, driving profound biotic transformations on land and in the oceans. Some recent studies suggest that the Isthmus formed many millions of years earlier than the widely recognized age of approximately 3 million years ago (Ma), a result that if true would revolutionize our understanding of environmental, ecological, and evolutionary change across the Americas. To bring clarity to the question of when the Isthmus of Panama formed, we provide an exhaustive review and reanalysis of geological, paleontological, and molecular records. These independent lines of evidence converge upon a cohesive narrative of gradually emerging land and constricting seaways, with formation of the Isthmus of Panama sensu stricto around 2.8 Ma. The evidence used to support an older isthmus is inconclusive, and we caution against the uncritical acceptance of an isthmus before the Pliocene.
Collapse
Affiliation(s)
- Aaron O’Dea
- Smithsonian Tropical Research Institute, Box 0843-03092, Balboa, Republic of Panama
| | - Harilaos A. Lessios
- Smithsonian Tropical Research Institute, Box 0843-03092, Balboa, Republic of Panama
| | - Anthony G. Coates
- Smithsonian Tropical Research Institute, Box 0843-03092, Balboa, Republic of Panama
| | - Ron I. Eytan
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, TX 77553, USA
| | - Sergio A. Restrepo-Moreno
- Departamento de Geociencias y Medio Ambiente Universidad Nacional de Colombia, Bogotá, Colombia
- Department of Geological Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Alberto L. Cione
- División Paleontología Vertebrados, Museo de La Plata, B1900FWA La Plata, Buenos Aires, Argentina
| | - Laurel S. Collins
- Smithsonian Tropical Research Institute, Box 0843-03092, Balboa, Republic of Panama
- Department of Earth and Environment, and Department of Biological Sciences, Florida International University, Miami, FL 33199, USA
| | - Alan de Queiroz
- Department of Biology, University of Nevada, Reno, NV 89557–0314, USA
| | - David W. Farris
- Department of Earth, Ocean and Atmospheric Sciences, Florida State University, Tallahassee, FL 32306, USA
| | | | - Robert F. Stallard
- Smithsonian Tropical Research Institute, Box 0843-03092, Balboa, Republic of Panama
- U.S. Geological Survey, 3215 Marine Street (Suite E127), Boulder, CO 80303, USA
| | - Michael O. Woodburne
- Department of Geological Sciences, University of California, Riverside, Riverside, CA 92507, USA
| | - Orangel Aguilera
- Universidade Federal Fluminense, Instituto de Biologia, Campus do Valonguinho, Outeiro São João Batista, s/n°, cep. 24020-141, Niterói, Rio de Janeiro, Brazil
| | - Marie-Pierre Aubry
- Department of Earth and Planetary Sciences, Rutgers University, 610 Taylor Road, Piscataway, NJ 08854–8066, USA
| | - William A. Berggren
- Department of Earth and Planetary Sciences, Rutgers University, 610 Taylor Road, Piscataway, NJ 08854–8066, USA
| | - Ann F. Budd
- Department of Earth and Environmental Sciences, University of Iowa, Iowa City, IA 52242, USA
| | - Mario A. Cozzuol
- Laboratório de Paleozoologia, Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, cep. 31270 010, Belo Horizonte, MG, Brazil
| | - Simon E. Coppard
- Department of Biology, Hamilton College, 198 College Hill Road, Clinton, NY 13323, USA
| | - Herman Duque-Caro
- Academia Colombiana de Ciencias Exactas, Físicas y Naturales, Bogotá, Colombia
| | - Seth Finnegan
- Department of Integrative Biology, University of California, Berkeley, 3040 Valley Life Science Building #3140, Berkeley, CA 94720–3140, USA
| | - Germán M. Gasparini
- División Paleontología Vertebrados, Museo de La Plata, B1900FWA La Plata, Buenos Aires, Argentina
| | - Ethan L. Grossman
- Department of Geology and Geophysics, Texas A&M University, College Station, TX 77843, USA
| | - Kenneth G. Johnson
- Department of Earth Sciences, Natural History Museum, London SW7 5BD, UK
| | | | - Nancy Knowlton
- Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20013, USA
| | - Egbert G. Leigh
- Smithsonian Tropical Research Institute, Box 0843-03092, Balboa, Republic of Panama
| | - Jill S. Leonard-Pingel
- Department of Geology, Washington and Lee University, 204 West Washington Street, Lexington, VA 24450, USA
| | - Peter B. Marko
- Department of Biology, University of Hawai’i at Mānoa, 2538 McCarthy Mall, Honolulu, HI 96822, USA
| | - Nicholas D. Pyenson
- Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20013, USA
| | - Paola G. Rachello-Dolmen
- Smithsonian Tropical Research Institute, Box 0843-03092, Balboa, Republic of Panama
- Department of Geology and Geophysics, Texas A&M University, College Station, TX 77843, USA
| | - Esteban Soibelzon
- División Paleontología Vertebrados, Museo de La Plata, B1900FWA La Plata, Buenos Aires, Argentina
| | - Leopoldo Soibelzon
- División Paleontología Vertebrados, Museo de La Plata, B1900FWA La Plata, Buenos Aires, Argentina
| | - Jonathan A. Todd
- Department of Earth Sciences, Natural History Museum, London SW7 5BD, UK
| | - Geerat J. Vermeij
- Department of Earth and Planetary Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Jeremy B. C. Jackson
- Smithsonian Tropical Research Institute, Box 0843-03092, Balboa, Republic of Panama
- Scripps Institution of Oceanography, La Jolla, CA 92093–0244, USA
- Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20013, USA
| |
Collapse
|