1
|
Shanebeck KM, Besson AA, Lagrue C, Green SJ. The energetic costs of sub-lethal helminth parasites in mammals: a meta-analysis. Biol Rev Camb Philos Soc 2022; 97:1886-1907. [PMID: 35678252 DOI: 10.1111/brv.12867] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 05/02/2022] [Accepted: 05/05/2022] [Indexed: 01/07/2023]
Abstract
Parasites, by definition, have a negative effect on their host. However, in wild mammal health and conservation research, sub-lethal infections are commonly assumed to have negligible health effects unless parasites are present in overwhelming numbers. Here, we propose a definition for host health in mammals that includes sub-lethal effects of parasites on the host's capacity to adapt to the environment and maintain homeostasis. We synthesized the growing number of studies on helminth parasites in mammals to assess evidence for the relative magnitude of sub-lethal effects of infection across mammal taxa based on this expanded definition. Specifically, we develop and apply a framework for organizing disparate metrics of parasite effects on host health and body condition according to their impact on an animal's energetic condition, defined as the energetic burden of pathogens on host physiological and behavioural functions that relate directly to fitness. Applying this framework within a global meta-analysis of helminth parasites in wild, laboratory and domestic mammal hosts produced 142 peer-reviewed studies documenting 599 infection-condition effects. Analysing these data within a multiple working hypotheses framework allowed us to evaluate the relative weighted contribution of methodological (study design, sampling protocol, parasite quantification methods) and biological (phylogenetic relationships and host/parasite life history) moderators to variation in the magnitude of health effects. We found consistently strong negative effects of infection on host energetic condition across taxonomic groups, with unusually low heterogeneity in effect sizes when compared with other ecological meta-analyses. Observed effect size was significantly lower within cross-sectional studies (i.e. observational studies that investigated a sub-set of a population at a single point in time), the most prevalent methodology. Furthermore, opportunistic sampling led to a weaker negative effect compared to proactive sampling. In the model of host taxonomic group, the effect of infection on energetic condition in carnivores was not significant. However, when sampling method was included, it explained substantial inter-study variance; proactive sampling showing a strongly significant negative effect while opportunistic sampling detected only a weak, non-significant effect. This may partly underlie previous assumptions that sub-lethal parasites do not have significant effects on host health. We recommend future studies adopt energetic condition as the framework for assessing parasite effects on wildlife health and provide guidelines for the selection of research protocols, health proxies, and relating infection to fitness.
Collapse
Affiliation(s)
- Kyle M Shanebeck
- Department of Biological Sciences, University of Alberta, 11455 Saskatchewan Drive, Edmonton, Alberta, Canada
| | - Anne A Besson
- Department of Zoology, University of Otago, 340 Great King Street, Dunedin, 9016, New Zealand
| | - Clement Lagrue
- Department of Biological Sciences, University of Alberta, 11455 Saskatchewan Drive, Edmonton, Alberta, Canada.,Department of Zoology, University of Otago, 340 Great King Street, Dunedin, 9016, New Zealand.,Department of Conservation, 265 Princes Street, Dunedin, 9016, New Zealand
| | - Stephanie J Green
- Department of Biological Sciences, University of Alberta, 11455 Saskatchewan Drive, Edmonton, Alberta, Canada
| |
Collapse
|
2
|
Defolie C, Merkling T, Fichtel C. Patterns and variation in the mammal parasite-glucocorticoid relationship. Biol Rev Camb Philos Soc 2020; 95:74-93. [PMID: 31608587 DOI: 10.1111/brv.12555] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 08/23/2019] [Accepted: 09/03/2019] [Indexed: 01/24/2023]
Abstract
Parasites are ubiquitous and can strongly affect their hosts through mechanisms such as behavioural changes, increased energetic costs and/or immunomodulation. When parasites are detrimental to their hosts, they should act as physiological stressors and elicit the release of glucocorticoids. Alternatively, previously elevated glucocorticoid levels could facilitate parasite infection due to neuroimmunomodulation. However, results are equivocal, with studies showing either positive, negative or no relationship between parasite infection and glucocorticoid levels. Since factors such as parasite type, infection severity or host age and sex can influence the parasite-glucocorticoid relationship, we review the main mechanisms driving this relationship. We then perform a phylogenetic meta-analysis of 110 records from 65 studies in mammalian hosts from experimental and observational studies to quantify the general direction of this relationship and to identify ecological and methodological drivers of the observed variability. Our review produced equivocal results concerning the direction of the relationship, but there was stronger support for a positive relationship, although causality remained unclear. Mechanisms such as host manipulation for parasite survival, host response to infection, cumulative effects of multiple stressors, and neuro-immunomodulatory effects of glucocorticoids could explain the positive relationship. Our meta-analysis results revealed an overall positive relationship between glucocorticoids and parasitism among both experimental and observational studies. Because all experimental studies included were parasite manipulations, we conclude that parasites caused in general an increase in glucocorticoid levels. To obtain a better understanding of the directionality of this link, experimental manipulation of glucocorticoid levels is now required to assess the causal effects of high glucocorticoid levels on parasite infection. Neither parasite type, the method used to assess parasite infection nor phylogeny influenced the relationship, and there was no evidence for publication bias. Future studies should attempt to be as comprehensive as possible, including moderators potentially influencing the parasite-glucocorticoid relationship. We particularly emphasise the importance of testing hosts of a broad age range, concomitantly measuring sex hormone levels or at least reproductive status, and for observational studies, also considering food availability, host body condition and social stressors to obtain a better understanding of the parasite-glucocorticoid relationship.
Collapse
Affiliation(s)
- Charlotte Defolie
- Sociobiology/Anthropology Department, University of Göttingen, Kellnerweg 6, 37077, Göttingen, Germany.,Behavioral Ecology & Sociobiology Unit, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077, Göttingen, Germany.,Leibniz ScienceCampus "Primate Cognition", German Primate Center, Kellnerweg 4, 37077, Göttingen, Germany
| | - Thomas Merkling
- Department of Natural Resource Sciences, McGill University, Macdonald-Stewart Building, 21111 Lakeshore Road, Ste. Anne de Bellevue, Québec, H9X 3V9, Canada
| | - Claudia Fichtel
- Behavioral Ecology & Sociobiology Unit, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077, Göttingen, Germany.,Leibniz ScienceCampus "Primate Cognition", German Primate Center, Kellnerweg 4, 37077, Göttingen, Germany
| |
Collapse
|
3
|
Akinyi MY, Jansen D, Habig B, Gesquiere LR, Alberts SC, Archie EA. Costs and drivers of helminth parasite infection in wild female baboons. J Anim Ecol 2019; 88:1029-1043. [PMID: 30972751 DOI: 10.1111/1365-2656.12994] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 03/08/2019] [Indexed: 11/30/2022]
Abstract
Helminth parasites can have wide-ranging, detrimental effects on host reproduction and survival. These effects are best documented in humans and domestic animals, while only a few studies in wild mammals have identified both the forces that drive helminth infection risk and their costs to individual fitness. Working in a well-studied population of wild baboons (Papio cynocephalus) in the Amboseli ecosystem in Kenya, we pursued two goals, to (a) examine the costs of helminth infections in terms of female fertility and glucocorticoid hormone levels and (b) test how processes operating at multiple scales-from individual hosts to social groups and the population at large-work together to predict variation in female infection risk. To accomplish these goals, we measured helminth parasite burdens in 745 faecal samples collected over 5 years from 122 female baboons. We combine these data with detailed observations of host environments, social behaviours, hormone levels and interbirth intervals (IBIs). We found that helminths are costly to female fertility: females infected with more diverse parasite communities (i.e., higher parasite richness) exhibited longer IBIs than females infected by fewer parasite taxa. We also found that females exhibiting high Trichuris trichiura egg counts also had high glucocorticoid levels. Female infection risk was best predicted by factors at the host, social group and population level: females facing the highest risk were old, socially isolated, living in dry conditions and infected with other helminths. Our results provide an unusually holistic understanding of the factors that contribute to inter-individual differences in parasite infection, and they contribute to just a handful of studies linking helminths to host fitness in wild mammals.
Collapse
Affiliation(s)
- Mercy Y Akinyi
- Department of Biology, Duke University, Durham, North Carolina.,Institute of Primate Research, National Museums of Kenya, Nairobi, Kenya
| | - David Jansen
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana
| | - Bobby Habig
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana.,Department of Biology, Queens college, City University of New York, Flushing, New York
| | | | - Susan C Alberts
- Department of Biology, Duke University, Durham, North Carolina.,Institute of Primate Research, National Museums of Kenya, Nairobi, Kenya.,Department of Evolutionary Anthropology, Duke University, Durham, North Carolina
| | - Elizabeth A Archie
- Institute of Primate Research, National Museums of Kenya, Nairobi, Kenya.,Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana
| |
Collapse
|
4
|
Hammond TT, Hendrickson CI, Maxwell TL, Petrosky AL, Palme R, Pigage JC, Pigage HK. Host biology and environmental variables differentially predict flea abundances for two rodent hosts in a plague-relevant system. INTERNATIONAL JOURNAL FOR PARASITOLOGY-PARASITES AND WILDLIFE 2019; 9:174-183. [PMID: 31193431 PMCID: PMC6531842 DOI: 10.1016/j.ijppaw.2019.04.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/12/2019] [Accepted: 04/26/2019] [Indexed: 11/18/2022]
Abstract
While rodents frequently host ectoparasites that can vector zoonotic diseases, often little is known about their ectoparasite communities, even in places where hosts frequently interact with humans. Yosemite National Park is an area of high human-wildlife interaction and high potential zoonotic disease transfer. Nonetheless, relatively few studies have surveyed the flea communities on mammalian hosts in this area, and even fewer have characterized the environmental and host factors that predict infestation. We focused on two species, the alpine chipmunk (Tamias alpinus) and the lodgepole chipmunk (T. speciosus), which inhabit Yosemite and surrounding areas and can host fleas that vector plague. Because these hosts are exhibiting differential responses to environmental change, it is valuable to establish baselines for their flea communities before further changes occur. We surveyed fleas on these chipmunk hosts during three years (2013–2015), including in the year of a plague epizootic (2015), and documented significant inter-host differences in flea communities and changes across years. Flea abundance was associated with host traits including sex and fecal glucocorticoid metabolite levels. The average number of fleas per individual and the proportion of individuals carrying fleas increased across years for T. speciosus but not for T. alpinus. To better understand these patterns, we constructed models to identify environmental predictors of flea abundance for the two most common flea species, Ceratophyllus ciliatus mononis and Eumolpianus eumolpi. Results showed host-dependent differences in environmental predictors of flea abundance for E. eumolpi and C. ciliatus mononis, with notable ties to ambient temperature variation and elevation. These results provide insight into factors affecting flea abundance on two chipmunk species, which may be linked to changing climate and possible future plague epizootics. Tamias alpinus and T. speciosus host different numbers and communities of fleas. In both chipmunk species, male hosts carry more fleas. Glucocorticoids were negatively correlated with flea abundances in female hosts. Flea abundances on T. speciosus increased preceding a plague epizootic. Environmental and host traits predict flea abundances in species dependent manners.
Collapse
Affiliation(s)
- Talisin T. Hammond
- Museum of Vertebrate Zoology, 3101 Valley Life Sciences Building, University of California Berkeley, Berkeley, CA 94720-3160, USA
- Institute for Conservation Research, 15600 San Pasqual Valley Rd., Escondido, CA, 92027, USA
- Corresponding author. Institute for Conservation Research, 15600 San Pasqual Valley Rd, Escondido, CA, 92027, USA.
| | - Courtney I. Hendrickson
- Museum of Vertebrate Zoology, 3101 Valley Life Sciences Building, University of California Berkeley, Berkeley, CA 94720-3160, USA
| | - Tania L. Maxwell
- Museum of Vertebrate Zoology, 3101 Valley Life Sciences Building, University of California Berkeley, Berkeley, CA 94720-3160, USA
| | - Anna L. Petrosky
- Museum of Vertebrate Zoology, 3101 Valley Life Sciences Building, University of California Berkeley, Berkeley, CA 94720-3160, USA
| | - Rupert Palme
- Department of Biomedical Sciences, University of Veterinary Medicine, Veterinärplatz 1, 1210, Vienna, Austria
| | - Jon C. Pigage
- Biology Department, University of Colorado Colorado Springs, 1420 Austin Bluffs Parkway, Colorado Springs, CO 80918-3733, USA
| | - Helen K. Pigage
- Biology Department, University of Colorado Colorado Springs, 1420 Austin Bluffs Parkway, Colorado Springs, CO 80918-3733, USA
| |
Collapse
|
5
|
Effects of mate separation in female and social isolation in male free-living Greylag geese on behavioural and physiological measures. Behav Processes 2017; 138:134-141. [DOI: 10.1016/j.beproc.2017.03.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 03/04/2017] [Accepted: 03/04/2017] [Indexed: 12/24/2022]
|
6
|
Martínez-Mota R, Garber PA, Palme R, Gillespie TR. The relative effects of reproductive condition, stress, and seasonality on patterns of parasitism in wild female black howler monkeys (Alouatta pigra). Am J Primatol 2017; 79. [PMID: 28407272 DOI: 10.1002/ajp.22669] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 02/25/2017] [Accepted: 03/20/2017] [Indexed: 01/22/2023]
Abstract
Parasitic infections in wildlife are shaped by host-related traits including individual reproductive condition. It has been argued that female primates are more susceptible to infectious diseases during pregnancy due to short-term changes in immune function that result in reduced ability to combat infections. Likewise, lactation, which is the most energetically expensive state, may affect immunity and infection risk due to tradeoffs between milk production and maintenance of immune function. Here, we examine the degree to which parasite prevalence and parasite richness are affected by female reproductive condition and stress levels in wild female black howler monkeys (Alouatta pigra). Over the course of one year, we collected fresh fecal samples from 15 adult females belonging to seven black howler groups living in Escárcega, Mexico. Fecal samples were used for parasitological analysis and for measuring fecal glucocorticoid metabolites (i.e., stress biomarker). We found that the prevalence of intestinal parasites and parasite richness did not differ among non-pregnant, pregnant, and lactating females. Fecal glucocorticoid metabolite levels increased significantly during pregnancy and during the first month of lactation, and positively predicted the probability of Controrchis biliophilus infection. Parasite prevalence and richness decreased during the months of increased rainfall. We conclude that reproductive physiology has limited consequences on intestinal parasitic infection risk in female black howler monkeys and that seasonal environmental fluctuations have greater effects.
Collapse
Affiliation(s)
- Rodolfo Martínez-Mota
- Department of Biology, University of Utah, Salt Lake City, Utah.,Department of Anthropology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Paul A Garber
- Department of Anthropology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Rupert Palme
- Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Thomas R Gillespie
- Program in Population Biology, Ecology, and Evolution and Department of Environmental Sciences, Emory University, Atlanta, Georgia.,Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia
| |
Collapse
|
7
|
Carlsson AM, Mastromonaco G, Vandervalk E, Kutz S. Parasites, stress and reindeer: infection with abomasal nematodes is not associated with elevated glucocorticoid levels in hair or faeces. CONSERVATION PHYSIOLOGY 2016; 4:cow058. [PMID: 27957334 PMCID: PMC5147723 DOI: 10.1093/conphys/cow058] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 10/28/2016] [Accepted: 11/13/2016] [Indexed: 05/30/2023]
Abstract
Stress hormones (glucocorticoids), incorporated into hair/fur and faeces, have been proposed as biomarkers of overall health in wildlife. Although such biomarkers may be helpful for wildlife conservation and management, their use has rarely been validated. There is a paucity of studies examining the variation of stress hormones in mammals and how they relate to other health measures, such as parasitism. Parasites are ubiquitous in wildlife and can influence the fitness of individual animals and populations. Through a longitudinal experiment using captive reindeer (Rangifer tarandus tarandus), we tested whether animals infected with Ostertagia gruehneri, a gastrointestinal nematode with negative impacts on fitness of the host, had higher stress levels compared with those that had been treated to remove infection. Faecal samples were collected weekly for 12 weeks (June-September) and hair was collected at the start and end of the study; glucocorticoids were quantified using enzyme immunoassays. Contrary to what was expected, infected reindeer had similar levels of cortisol in hair and slightly lower glucocorticoid metabolites in faeces compared with uninfected reindeer. Faecal corticosterone levels were higher than faecal cortisol levels, and only corticosterone increased significantly after a handling event. These results suggest that reindeer may use a tolerance strategy to cope with gastrointestinal nematodes and raise the question as to whether moderate infection intensities with nematodes are beneficial to the host. By removing nematodes we may have altered the gut microbiota, leading to the observed elevated faecal glucocorticoid metabolite levels in the treated reindeer. These findings demonstrate the importance of considering both cortisol and corticosterone in physiological studies, as there is mounting evidence that they may have different functionalities.
Collapse
Affiliation(s)
- A. M. Carlsson
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, 3280 Hospital Drive NW, Calgary, Alberta, CanadaT2N 4Z6
| | - G. Mastromonaco
- Reproductive Physiology Unit, Toronto Zoo, 361A Old Finch Avenue, Scarborough, Ontario,CanadaM1B 5K7
| | - E. Vandervalk
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, 3280 Hospital Drive NW, Calgary, Alberta, CanadaT2N 4Z6
| | - S. Kutz
- Canadian Cooperative Wildlife Health Centre Alberta, 3280 Hospital Drive NW, Calgary, AB T2N4Z6, Canada
| |
Collapse
|
8
|
Scheiber IBR, Sterenborg M, Komdeur J. Stress assessment in captive greylag geese (Anser anser). J Anim Sci 2016; 93:2124-33. [PMID: 26020308 DOI: 10.2527/jas.2014-8523] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Chronic stress--or, more appropriately, "allostatic overload"--may be physiologically harmful and can cause death in the most severe cases. Animals in captivity are thought to be particularly vulnerable to allostatic overload due to artificial housing and group makeup. Here we attempted to determine if captive greylag geese (Anser anser), housed lifelong in captivity, showed elevated levels of immunoreactive corticosterone metabolites (CORT) and ectoparasites in dropping samples as well as some hematological parameters (hematocrit, packed cell volume, total white blood cell count [TWBC], and heterophil:lymphocyte ratio [H:L]). All of these have been measured as indicators of chronic stress. Furthermore, we correlated the various stress parameters within individuals. Captive geese showed elevated values of CORT and ectoparasites relative to a wild population sampled in the vicinity of the area where the captive flock is held. The elevated levels, however, were by no means at a pathological level and fall well into the range of other published values in wild greylag geese. We found no correlations between any of the variables measured from droppings with any of the ones collected from blood. Among the blood parameters, only the H:L negatively correlated with TWBC. We examine the problem of inferring allostatic overload when measuring only 1 stress parameter, as there is no consistency between various measurements taken. We discuss the different aspects of each of the parameters measured and the extensive individual variation in response to stress as well as the timing at which different systems respond to a stressor and what is actually measured at the time of data collection. We conclude that measuring only 1 stress parameter often is insufficient to evaluate the well-being of both wild and captively housed animals and that collecting behavioral data on stress might be a suitable addition.
Collapse
|
9
|
Hing S, Narayan EJ, Thompson RCA, Godfrey SS. The relationship between physiological stress and wildlife disease: consequences for health and conservation. WILDLIFE RESEARCH 2016. [DOI: 10.1071/wr15183] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Wildlife populations are under increasing pressure from a variety of threatening processes, ranging from climate change to habitat loss, that can incite a physiological stress response. The stress response influences immune function, with potential consequences for patterns of infection and transmission of disease among and within wildlife, domesticated animals and humans. This is concerning because stress may exacerbate the impact of disease on species vulnerable to extinction, with consequences for biodiversity conservation globally. Furthermore, stress may shape the role of wildlife in the spread of emerging infectious diseases (EID) such as Hendra virus (HeV) and Ebola virus. However, we still have a limited understanding of the influence of physiological stress on infectious disease in wildlife. We highlight key reasons why an improved understanding of the relationship between stress and wildlife disease could benefit conservation, and animal and public health, and discuss approaches for future investigation. In particular, we recommend that increased attention be given to the influence of anthropogenic stressors including climate change, habitat loss and management interventions on disease dynamics in wildlife populations.
Collapse
|
10
|
Cizauskas CA, Turner WC, Pitts N, Getz WM. Seasonal patterns of hormones, macroparasites, and microparasites in wild African ungulates: the interplay among stress, reproduction, and disease. PLoS One 2015; 10:e0120800. [PMID: 25875647 PMCID: PMC4398380 DOI: 10.1371/journal.pone.0120800] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 02/06/2015] [Indexed: 01/19/2023] Open
Abstract
Sex hormones, reproductive status, and pathogen load all affect stress. Together with stress, these factors can modulate the immune system and affect disease incidence. Thus, it is important to concurrently measure these factors, along with their seasonal fluctuations, to better understand their complex interactions. Using steroid hormone metabolites from fecal samples, we examined seasonal correlations among zebra and springbok stress, reproduction, gastrointestinal (GI) parasite infections, and anthrax infection signatures in zebra and springbok in Etosha National Park (ENP), Namibia, and found strong seasonal effects. Infection intensities of all three GI macroparasites examined (strongyle helminths, Strongyloides helminths, and Eimeria coccidia) were highest in the wet season, concurrent with the timing of anthrax outbreaks. Parasites also declined with increased acquired immune responses. We found hormonal evidence that both mares and ewes are overwhelmingly seasonal breeders in ENP, and that reproductive hormones are correlated with immunosuppression and higher susceptibility to GI parasite infections. Stress hormones largely peak in the dry season, particularly in zebra, when parasite infection intensities are lowest, and are most strongly correlated with host mid-gestation rather than with parasite infection intensity. Given the evidence that GI parasites can cause host pathology, immunomodulation, and immunosuppression, their persistence in ENP hosts without inducing chronic stress responses supports the hypothesis that hosts are tolerant of their parasites. Such tolerance would help to explain the ubiquity of these organisms in ENP herbivores, even in the face of their potential immunomodulatory trade-offs with anti-anthrax immunity.
Collapse
Affiliation(s)
- Carrie A. Cizauskas
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA, United States of America
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, United States of America
| | - Wendy C. Turner
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA, United States of America
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Neville Pitts
- School of Physiology, University of the Witwatersrand, Johannesburg, South Africa
| | - Wayne M. Getz
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA, United States of America
- School of Mathematical Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
11
|
St. Juliana JR, Khokhlova IS, Wielebnowski N, Kotler BP, Krasnov BR. Ectoparasitism and stress hormones: strategy of host exploitation, common host-parasite history and energetics matter. J Anim Ecol 2014; 83:1113-23. [DOI: 10.1111/1365-2656.12217] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2013] [Accepted: 03/06/2014] [Indexed: 12/14/2022]
Affiliation(s)
- Justin R. St. Juliana
- Department of Biology; Indiana State University; 200 N. 7th St. Terre Haute IN 47809 USA
- Mitrani Department of Desert Ecology; Swiss Institute for Dryland Environmental and Energy Research; Jacob Blaustein Institutes for Desert Research; Ben-Gurion University of the Negev; Midreshet Ben-Gurion Israel
- Department of Life and Physical Science; Ivy Tech Community College Wabash Valley; 8000 S. Education Drive Terre Haute IN 47802 USA
| | - Irina S. Khokhlova
- Wyler Department of Dryland Agriculture; French Associates Institute for Agriculture and Biotechnology of Drylands Jacob Blaustein Institutes for Desert Research; Ben-Gurion University of the Negev; Midreshet Ben-Gurion Israel
| | - Nadja Wielebnowski
- Department of Conservation Science; Chicago Zoological Society/Brookfield Zoo; 3300 Golf Road Brookfield IL 60513 USA
- Conservation Research Division; Oregon Zoo; 4001 SW Canyon Rd. Portland OR 97221 USA
| | - Burt P. Kotler
- Mitrani Department of Desert Ecology; Swiss Institute for Dryland Environmental and Energy Research; Jacob Blaustein Institutes for Desert Research; Ben-Gurion University of the Negev; Midreshet Ben-Gurion Israel
| | - Boris R. Krasnov
- Mitrani Department of Desert Ecology; Swiss Institute for Dryland Environmental and Energy Research; Jacob Blaustein Institutes for Desert Research; Ben-Gurion University of the Negev; Midreshet Ben-Gurion Israel
| |
Collapse
|
12
|
Bauer CM, Skaff NK, Bernard AB, Trevino JM, Ho JM, Romero LM, Ebensperger LA, Hayes LD. Habitat type influences endocrine stress response in the degu (Octodon degus). Gen Comp Endocrinol 2013; 186:136-44. [PMID: 23518483 DOI: 10.1016/j.ygcen.2013.02.036] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 02/21/2013] [Accepted: 02/23/2013] [Indexed: 11/30/2022]
Abstract
While many studies have examined whether the stress response differs between habitats, few studies have examined this within a single population. This study tested whether habitat differences, both within-populations and between-populations, relate to differences in the endocrine stress response in wild, free-living degus (Octodon degus). Baseline cortisol (CORT), stress-induced CORT, and negative feedback efficacy were measured in male and female degus from two sites and three habitats within one site during the mating/early gestation period. Higher quality cover and lower ectoparasite loads were associated with lower baseline CORT concentrations. In contrast, higher stress-induced CORT but stronger negative feedback efficacy were associated with areas containing higher quality forage. Stress-induced CORT and body mass were positively correlated in female but not male degus across all habitats. Female degus had significantly higher stress-induced CORT levels compared to males. Baseline CORT was not correlated with temperature at time of capture and only weakly correlated with rainfall. Results suggest that degus in habitats with good cover quality, low ectoparasite loads, and increased food availability have decreased endocrine stress responses.
Collapse
|
13
|
Laver PN, Ganswindt A, Ganswindt SB, Alexander KA. Non-invasive monitoring of glucocorticoid metabolites in banded mongooses (Mungos mungo) in response to physiological and biological challenges. Gen Comp Endocrinol 2012; 179:178-83. [PMID: 22926328 DOI: 10.1016/j.ygcen.2012.08.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 07/27/2012] [Accepted: 08/05/2012] [Indexed: 10/28/2022]
Abstract
Free-ranging banded mongooses are infected by the novel pathogen, Mycobacterium mungi in northern Botswana. A reliable method for determining stress-related physiological responses in banded mongooses will increase our understanding of the stress response in M. mungi infection. Therefore, our aim was to examine the suitability of four enzyme immunoassays (EIAs) for monitoring adrenocortical endocrine function in captive and free-ranging banded mongooses based on fecal glucocorticoid metabolite (FGM) analysis. A conducted adrenocorticotropic hormone challenge revealed suitability of a valid measurement of FGM levels in banded mongoose feces for all four tested EIAs, with an 11-oxoetiocholanolone assay detecting 11,17-dioxoandrostanes (11,17-DOA) performing best. Subsequent analyses using only this EIA showed the expected decrease in FGM concentrations 48 h after administering dexamethasone sodium phosphate. Furthermore, captive mongooses showed higher FGM concentrations during reproductive activity, agonistic encounters and depredation events. Finally, a late-stage, tuberculosis-infected moribund mongoose in a free-ranging troop had a 54-fold elevation in FGM levels relative to the rest of the troop. Measurements of gastrointestinal transit times and FGM metabolism post-defecation indicate that the time delay of FGM excretion approximately corresponded with food transit time and that FGM metabolism is minimal up to 8h post-defecation. The ability to reliably assess adrenocortical endocrine function in banded mongoose now provides a solid basis for advancing our understanding of infectious disease and endocrinology in this species.
Collapse
Affiliation(s)
- Peter N Laver
- Department of Fish and Wildlife Conservation, 100 Cheatham Hall, Virginia Tech, Blacksburg, VA 24061-0321, USA.
| | | | | | | |
Collapse
|