1
|
Nafstad ÅM, Rønning B, Aase K, Ringsby TH, Hagen IJ, Ranke PS, Kvalnes T, Stawski C, Räsänen K, Saether BE, Muff S, Jensen H. Spatial variation in the evolutionary potential and constraints of basal metabolic rate and body mass in a wild bird. J Evol Biol 2023; 36:650-662. [PMID: 36811205 DOI: 10.1111/jeb.14164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 12/09/2022] [Accepted: 12/11/2022] [Indexed: 02/24/2023]
Abstract
An organism's energy budget is strongly related to resource consumption, performance, and fitness. Hence, understanding the evolution of key energetic traits, such as basal metabolic rate (BMR), in natural populations is central for understanding life-history evolution and ecological processes. Here we used quantitative genetic analyses to study evolutionary potential of BMR in two insular populations of the house sparrow (Passer domesticus). We obtained measurements of BMR and body mass (Mb ) from 911 house sparrows on the islands of Leka and Vega along the coast of Norway. These two populations were the source populations for translocations to create an additional third, admixed 'common garden' population in 2012. With the use of a novel genetic group animal model concomitant with a genetically determined pedigree, we differentiate genetic and environmental sources of variation, thereby providing insight into the effects of spatial population structure on evolutionary potential. We found that the evolutionary potential of BMR was similar in the two source populations, whereas the Vega population had a somewhat higher evolutionary potential of Mb than the Leka population. BMR was genetically correlated with Mb in both populations, and the conditional evolutionary potential of BMR (independent of body mass) was 41% (Leka) and 53% (Vega) lower than unconditional estimates. Overall, our results show that there is potential for BMR to evolve independently of Mb , but that selection on BMR and/or Mb may have different evolutionary consequences in different populations of the same species.
Collapse
Affiliation(s)
- Ådne M Nafstad
- Centre for Biodiversity Dynamics (CBD), Trondheim, Norway.,Department of Biology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Bernt Rønning
- Centre for Biodiversity Dynamics (CBD), Trondheim, Norway.,Department of Teacher Education, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Kenneth Aase
- Centre for Biodiversity Dynamics (CBD), Trondheim, Norway.,Department of Mathematical Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Thor Harald Ringsby
- Centre for Biodiversity Dynamics (CBD), Trondheim, Norway.,Department of Biology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Ingerid J Hagen
- Centre for Biodiversity Dynamics (CBD), Trondheim, Norway.,Norwegian Institute for Nature Research (NINA), Trondheim, Norway
| | - Peter S Ranke
- Centre for Biodiversity Dynamics (CBD), Trondheim, Norway.,Department of Biology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Thomas Kvalnes
- Centre for Biodiversity Dynamics (CBD), Trondheim, Norway.,Department of Biology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Clare Stawski
- Department of Biology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Katja Räsänen
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylän, Finland
| | - Bernt-Erik Saether
- Centre for Biodiversity Dynamics (CBD), Trondheim, Norway.,Department of Biology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Stefanie Muff
- Centre for Biodiversity Dynamics (CBD), Trondheim, Norway.,Department of Mathematical Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Henrik Jensen
- Centre for Biodiversity Dynamics (CBD), Trondheim, Norway.,Department of Biology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
2
|
Careau V, Glazier DS. A quantitative genetics perspective on the body-mass scaling of metabolic rate. J Exp Biol 2022; 225:274354. [PMID: 35258615 DOI: 10.1242/jeb.243393] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 01/13/2022] [Indexed: 12/20/2022]
Abstract
Widely observed allometric scaling (log-log slope<1) of metabolic rate (MR) with body mass (BM) in animals has been frequently explained using functional mechanisms, but rarely studied from the perspective of multivariate quantitative genetics. This is unfortunate, given that the additive genetic slope (bA) of the MR-BM relationship represents the orientation of the 'line of least genetic resistance' along which MR and BM may most likely evolve. Here, we calculated bA in eight species. Although most bA values were within the range of metabolic scaling exponents reported in the literature, uncertainty of each bA estimate was large (only one bA was significantly lower than 3/4 and none were significantly different from 2/3). Overall, the weighted average for bA (0.667±0.098 95% CI) is consistent with the frequent observation that metabolic scaling exponents are negatively allometric in animals (b<1). Although bA was significantly positively correlated with the phenotypic scaling exponent (bP) across the sampled species, bP was usually lower than bA, as reflected in a (non-significantly) lower weighted average for bP (0.596±0.100). This apparent discrepancy between bA and bP resulted from relatively shallow MR-BM scaling of the residuals [weighted average residual scaling exponent (be)=0.503±0.128], suggesting regression dilution (owing to measurement error and within-individual variance) causing a downward bias in bP. Our study shows how the quantification of the genetic scaling exponent informs us about potential constraints on the correlated evolution of MR and BM, and by doing so has the potential to bridge the gap between micro- and macro-evolutionary studies of scaling allometry.
Collapse
Affiliation(s)
- Vincent Careau
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON, Canada, K1N 6N5
| | - Douglas S Glazier
- Department of Biology, Juniata College, 1700 Moore Street, Huntingdon, PA 16652, USA
| |
Collapse
|
3
|
Broggi J, Hohtola E, Koivula K, Rytkönen S, Nilsson JÅ. Prehatching temperatures drive inter-annual cohort differences in great tit metabolism. Oecologia 2022; 198:619-627. [PMID: 35174406 PMCID: PMC8956552 DOI: 10.1007/s00442-022-05126-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 01/25/2022] [Indexed: 11/14/2022]
Abstract
Basal metabolic rate (BMR) constitutes the lowest metabolic rate in a resting animal and is, therefore, considered to reflect the energetic cost of maintenance in endotherms. BMR is a reversible plastic trait that changes with environmental and ecological circumstances, albeit being heritable and susceptible to selection. Inter-individual variation within populations of small birds is substantial, and while many of the drivers of such variation have been identified, many remain unexplained. We studied winter BMR variation of juveniles over a 15-year period in a wild population of great tits Parus major at the northern border of their distribution. BMR during winter consistently changed between years, even after controlling for environmental factors, suggestive of a non-reversible developmental plasticity shaping the adult metabolic phenotype. BMR in cohorts of wintering great tits varied among winters as a response to minimum ambient temperatures experienced early in life, during the prehatching period. This developmental plasticity might be adaptive if temperatures experienced by growing embryos would metabolically prime them to an environment that they will likely encounter in future life. However, in line with a more unpredictable future climate, the risk of phenotype-environment mismatch is likely to lead to certain cohorts being poorly adapted to prevailing winter conditions, resulting in wider annual fluctuations in population size.
Collapse
Affiliation(s)
- Juli Broggi
- Department of Biology, Section of Evolutionary Ecology, University of Lund, 223 62, Lund, Sweden.
- Estación Biológica de Doñana (CSIC), Av. Américo Vespucio 26, 41092, Sevilla, Spain.
- Departamento de Ecología Evolutiva, Museo Nacional de Ciencias Naturales - CSIC, C/José Gutiérrez Abascal 2, 28006, Madrid, Spain.
| | - Esa Hohtola
- Ecology and Genetics Research Unit, Faculty of Science, University of Oulu, P.O. Box 8000, FI-90014, Oulu, Finland
| | - Kari Koivula
- Ecology and Genetics Research Unit, Faculty of Science, University of Oulu, P.O. Box 8000, FI-90014, Oulu, Finland
| | - Seppo Rytkönen
- Ecology and Genetics Research Unit, Faculty of Science, University of Oulu, P.O. Box 8000, FI-90014, Oulu, Finland
| | - Jan-Åke Nilsson
- Department of Biology, Section of Evolutionary Ecology, University of Lund, 223 62, Lund, Sweden
| |
Collapse
|
4
|
McFarlane SE, Ålund M, Sirkiä PM, Qvarnström A. Low Heritability but Significant Early Environmental Effects on Resting Metabolic Rate in a Wild Passerine. Am Nat 2021; 198:551-560. [PMID: 34559605 DOI: 10.1086/715842] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractPredicting the impact of climate change on biodiversity requires understanding the adaptation potential of wild organisms. Evolutionary responses depend on the additive genetic variation associated with the phenotypic traits targeted by selection. We combine 5 years of cross-fostering experiments, measurements of resting metabolic rate (RMR) on nearly 200 wild collared flycatcher (Ficedula albicollis) nestlings, and animal models using a 17-year pedigree to evaluate the potential for an evolutionary response to changing environmental conditions. Contrary to other avian studies, we find no significant heritability of whole-organism, mass-independent, or mass-specific RMR, but we report a strong effect of nest environment instead. We therefore conclude that variation in nestling RMR is explained by variation in the early-life environment provided by the parents. We discuss possible underlying specific parental effects and the importance of taking different mechanisms into account to understand how animals phenotypically adapt (or fail to adapt) to climate change.
Collapse
|
5
|
Baškiera S, Gvoždík L. Repeatability and heritability of resting metabolic rate in a long-lived amphibian. Comp Biochem Physiol A Mol Integr Physiol 2020; 253:110858. [PMID: 33276133 DOI: 10.1016/j.cbpa.2020.110858] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/28/2020] [Accepted: 11/28/2020] [Indexed: 11/25/2022]
Abstract
Resting metabolic rate (RMR), i.e. spent energy necessary to maintain basic life functions, is a basic component of energy budget in ectotherms. The evolution of RMR through natural selection rests on the premise of its non-zero repeatability and heritability, i.e. consistent variation within individual lifetimes and resemblance between parents and their offspring, respectively. Joint estimates of RMR repeatability and heritability are missing in ectotherms, however, which precludes estimations of the evolutionary potential of this trait. We examined RMR repeatability and heritability in a long-lived ectotherm, the alpine newt (Ichthyosaura alpestris). Individual RMR was repeatable over both six-month (0.28 ± 0.09 [SE]) and five-year (0.16 ± 0.07) periods. While there was no resemblance between parent and offspring RMR (0.21 ± 0.34), the trait showed similarity among offspring within families (broad-sense heritability; 0.25 ± 0.09). Similar repeatability and broad-sense heritability values in parental and offspring generations, respectively, and non-conclusive narrow-sense heritability suggest the contribution of non-additive genetic factors to total phenotypic variance in this trait. We conclude that RMR evolutionary trajectories are shaped by other processes than natural selection in this long-lived ectotherm.
Collapse
Affiliation(s)
- Senka Baškiera
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Lumír Gvoždík
- Czech Academy of Sciences, Institute of Vertebrate Biology, Brno, Czech Republic.
| |
Collapse
|
6
|
Grinkov VG, Bauer A, Sternberg H, Wink M. Heritability of the extra-pair mating behaviour of the pied flycatcher in Western Siberia. PeerJ 2020; 8:e9571. [PMID: 32821536 PMCID: PMC7397985 DOI: 10.7717/peerj.9571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 06/29/2020] [Indexed: 02/01/2023] Open
Abstract
Males and females take part in extra-pair copulations in most socially monogamous bird species. The mechanisms leading to the frequent occurrence of extra-pair offspring in socially monogamous couples are strongly debated and unresolved, and they are often difficult to distinguish from one another. Most hypotheses explaining the evolution of extra-pair reproduction suggest selective and adaptive scenarios for their origination and persistence. Is extra-pair paternity a heritable trait? We evaluated the heritability of extra-pair paternity in the pied flycatcher (Ficedula hypoleuca) nesting in Western Siberia. Estimated heritability was low: depending on the model used, the point estimate of the heritability (mode) varied from 0.005 to 0.11, and the bounds of the 95% confidence interval are [0–0.16] in the widest range. Thus, it seems that extra-pair mating behaviour in the pied flycatchers is a plastic phenotypic mating tactic with a small or no genetic component. Our data can help to understand the evolution of extra-pair mating behaviour in socially monogamous species.
Collapse
Affiliation(s)
- Vladimir G Grinkov
- Evolutionary Biology Department, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russian Federation.,Tomsk State University, Tomsk, Russian Federation
| | - Andreas Bauer
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
| | | | - Michael Wink
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
7
|
Verhagen I, Gienapp P, Laine VN, Grevenhof EM, Mateman AC, Oers K, Visser ME. Genetic and phenotypic responses to genomic selection for timing of breeding in a wild songbird. Funct Ecol 2019. [DOI: 10.1111/1365-2435.13360] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Irene Verhagen
- Department of Animal Ecology Netherlands Institute of Ecology (NIOO‐KNAW) Wageningen The Netherlands
| | - Phillip Gienapp
- Department of Animal Ecology Netherlands Institute of Ecology (NIOO‐KNAW) Wageningen The Netherlands
| | - Veronika N. Laine
- Department of Animal Ecology Netherlands Institute of Ecology (NIOO‐KNAW) Wageningen The Netherlands
| | - Elizabeth M. Grevenhof
- Department of Animal Ecology Netherlands Institute of Ecology (NIOO‐KNAW) Wageningen The Netherlands
| | - Andrea C. Mateman
- Department of Animal Ecology Netherlands Institute of Ecology (NIOO‐KNAW) Wageningen The Netherlands
| | - Kees Oers
- Department of Animal Ecology Netherlands Institute of Ecology (NIOO‐KNAW) Wageningen The Netherlands
| | - Marcel E. Visser
- Department of Animal Ecology Netherlands Institute of Ecology (NIOO‐KNAW) Wageningen The Netherlands
| |
Collapse
|
8
|
Grinkov VG, Bauer A, Gashkov SI, Sternberg H, Wink M. Diversity of social-genetic relationships in the socially monogamous pied flycatcher ( Ficedula hypoleuca) breeding in Western Siberia. PeerJ 2018; 6:e6059. [PMID: 30564520 PMCID: PMC6286800 DOI: 10.7717/peerj.6059] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 11/04/2018] [Indexed: 11/25/2022] Open
Abstract
We explored the genetic background of social interactions in two breeding metapopulations of the pied flycatcher (Ficedula hypoleuca) in Western Siberia. In 2005, we sampled blood from birds breeding in study areas located in the city of Tomsk and in a natural forest 13 km southward of Tomsk (Western Siberia, Russia). We sampled 30 males, 46 females, 268 nestlings (46 nests) in the urban settlement of pied flycatcher, and 232 males, 250 females, 1,485 nestlings (250 nests) in the woodland plot. DNA fingerprinting was carried out using eight microsatellite loci, which were amplified by two multiplex-PCRs and analyzed by capillary electrophoresis. About 50–58% of all couples were socially and genetically monogamous in both study plots. However, almost all possible social and genetic interactions were detected for non-monogamous couples: polygamy, polyandry, helping, adoption, and egg dumping. Differences in the rate of polygyny and the rate of extra-pair paternity between both study sites could be explained by differences in environmental heterogeneity and breeding density. Our findings suggest that egg dumping, adoption, polygamy, extra pair copulation, and other types of social-genetic interactions are modifications of the monogamous social system caused by patchy environment, breeding density, and birds’ breeding status.
Collapse
Affiliation(s)
- Vladimir G Grinkov
- Department of Biological Evolution, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Andreas Bauer
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
| | - Sergey I Gashkov
- Zoology Museum, Tomsk State University, Tomsk, Russian Federation
| | | | - Michael Wink
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
9
|
McFarlane SE, Ålund M, Sirkiä PM, Qvarnström A. Difference in plasticity of resting metabolic rate - the proximate explanation to different niche breadth in sympatric Ficedula flycatchers. Ecol Evol 2018; 8:4575-4586. [PMID: 29760898 PMCID: PMC5938467 DOI: 10.1002/ece3.3987] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/24/2018] [Accepted: 02/09/2018] [Indexed: 12/11/2022] Open
Abstract
Variation in relative fitness of competing recently formed species across heterogeneous environments promotes coexistence. However, the physiological traits mediating such variation in relative fitness have rarely been identified. Resting metabolic rate (RMR) is tightly associated with life history strategies, thermoregulation, diet use, and inhabited latitude and could therefore moderate differences in fitness responses to fluctuations in local environments, particularly when species have adapted to different climates in allopatry. We work in a long‐term study of collared (Ficedula albicollis) and pied flycatchers (Ficedula hypoleuca) in a recent hybrid zone located on the Swedish island of Öland in the Baltic Sea. Here, we explore whether differences in RMR match changes in relative performance of growing flycatcher nestlings across environmental conditions using an experimental approach. The fitness of pied flycatchers has previously been shown to be less sensitive to the mismatch between the peak in food abundance and nestling growth among late breeders. Here, we find that pied flycatcher nestlings have lower RMR in response to higher ambient temperatures (associated with low food availability). We also find that experimentally relaxed nestling competition is associated with an increased RMR in this species. In contrast, collared flycatcher nestlings did not vary their RMR in response to these environmental factors. Our results suggest that a more flexible nestling RMR in pied flycatchers is responsible for the better adaptation of pied flycatchers to the typical seasonal changes in food availability experienced in this hybrid zone. Generally, subtle physiological differences that have evolved when species were in allopatry may play an important role to patterns of competition, coexistence, or displacements between closely related species in secondary contact.
Collapse
Affiliation(s)
- S Eryn McFarlane
- Animal Ecology/Ecology and Genetics Evolutionary Biology Centre Uppsala University Uppsala Sweden.,Present address: Institute of Evolutionary Biology University of Edinburgh Edinburgh UK
| | - Murielle Ålund
- Animal Ecology/Ecology and Genetics Evolutionary Biology Centre Uppsala University Uppsala Sweden
| | - Päivi M Sirkiä
- Finnish Museum of Natural History Zoology Unit University of Helsinki Helsinki Finland.,Section of Ecology Department of Biology University of Turku Turku Finland
| | - Anna Qvarnström
- Animal Ecology/Ecology and Genetics Evolutionary Biology Centre Uppsala University Uppsala Sweden
| |
Collapse
|
10
|
Bushuev A, Tolstenkov O, Zubkova E, Solovyeva E, Kerimov A. Basal metabolic rate in free-living tropical birds: the influence of phylogenetic, behavioral, and ecological factors. Curr Zool 2018; 64:33-43. [PMID: 29492036 PMCID: PMC5809028 DOI: 10.1093/cz/zox018] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 03/17/2017] [Indexed: 11/30/2022] Open
Abstract
The majority of our knowledge of avian energetics is based on studies of birds from temperate and high latitudes. Using the largest existing sample of wild-caught Old World tropical species, we showed that birds from Southern Vietnam had lower basal metabolic rate (BMR) than temperate species. The strongest dissimilarity between tropical and temperate species was the low scaling exponent in the allometric relation between BMR and body mass in tropical birds (the regression slope was 0.573). The passerine migrants to temperate and high latitudes had higher BMR than tropical sedentary passerines. Body mass alone accounted for 93% of the variation in BMR (body mass ranged from 5 to 252 g). Contrary to some other studies, we did not find evidence besides the above mentioned that phylogeny, taxonomy, behavior, or ecology have a significant influence on BMR variation among tropical birds.
Collapse
Affiliation(s)
- Andrey Bushuev
- Department of Vertebrate Zoology, Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory 1/12, Moscow, Russia
- Joint Russian-Vietnamese Tropical Research and Technological Center, South Branch, Street 3/2 3, 10 District, Ho Chi Minh City, Vietnam
| | - Oleg Tolstenkov
- Joint Russian-Vietnamese Tropical Research and Technological Center, South Branch, Street 3/2 3, 10 District, Ho Chi Minh City, Vietnam
- Laboratory of Experimental Parasitology, Center of Parasitology, A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninskij prospekt 33, Moscow, Russia
| | - Ekaterina Zubkova
- Department of Vertebrate Zoology, Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory 1/12, Moscow, Russia
- Joint Russian-Vietnamese Tropical Research and Technological Center, South Branch, Street 3/2 3, 10 District, Ho Chi Minh City, Vietnam
| | - Eugenia Solovyeva
- Zoological Museum of Lomonosov Moscow State University, Bolshaya Nikitskaya 6, Moscow, Russia
| | - Anvar Kerimov
- Department of Vertebrate Zoology, Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory 1/12, Moscow, Russia
- Joint Russian-Vietnamese Tropical Research and Technological Center, South Branch, Street 3/2 3, 10 District, Ho Chi Minh City, Vietnam
| |
Collapse
|
11
|
|
12
|
Pettersen AK, White CR, Marshall DJ. Why does offspring size affect performance? Integrating metabolic scaling with life-history theory. Proc Biol Sci 2016; 282:rspb.2015.1946. [PMID: 26559952 DOI: 10.1098/rspb.2015.1946] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Within species, larger offspring typically outperform smaller offspring. While the relationship between offspring size and performance is ubiquitous, the cause of this relationship remains elusive. By linking metabolic and life-history theory, we provide a general explanation for why larger offspring perform better than smaller offspring. Using high-throughput respirometry arrays, we link metabolic rate to offspring size in two species of marine bryozoan. We found that metabolism scales allometrically with offspring size in both species: while larger offspring use absolutely more energy than smaller offspring, larger offspring use proportionally less of their maternally derived energy throughout the dependent, non-feeding phase. The increased metabolic efficiency of larger offspring while dependent on maternal investment may explain offspring size effects-larger offspring reach nutritional independence (feed for themselves) with a higher proportion of energy relative to structure than smaller offspring. These findings offer a potentially universal explanation for why larger offspring tend to perform better than smaller offspring but studies on other taxa are needed.
Collapse
Affiliation(s)
- Amanda K Pettersen
- School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia
| | - Craig R White
- School of Biological Sciences, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Dustin J Marshall
- School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia
| |
Collapse
|
13
|
Lodjak J, Mägi M, Sild E, Mänd R. Causal link between insulin‐like growth factor 1 and growth in nestlings of a wild passerine bird. Funct Ecol 2016. [DOI: 10.1111/1365-2435.12679] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Jaanis Lodjak
- Department of Zoology Institute of Ecology and Earth Sciences University of Tartu 46 Vanemuise Street Tartu 51014 Estonia
| | - Marko Mägi
- Department of Zoology Institute of Ecology and Earth Sciences University of Tartu 46 Vanemuise Street Tartu 51014 Estonia
| | - Elin Sild
- Department of Zoology Institute of Ecology and Earth Sciences University of Tartu 46 Vanemuise Street Tartu 51014 Estonia
| | - Raivo Mänd
- Department of Zoology Institute of Ecology and Earth Sciences University of Tartu 46 Vanemuise Street Tartu 51014 Estonia
| |
Collapse
|
14
|
Fletcher QE, Speakman JR, Boutin S, Lane JE, McAdam AG, Gorrell JC, Coltman DW, Humphries MM. Daily energy expenditure during lactation is strongly selected in a free‐living mammal. Funct Ecol 2014. [DOI: 10.1111/1365-2435.12313] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Quinn E. Fletcher
- Department of Natural Resource Sciences Macdonald Campus McGill University Ste‐Anne‐de‐Bellevue QuebecH9X 3V9 Canada
| | - John R. Speakman
- Institute of Biological and Environmental Sciences University of Aberdeen AberdeenAB24 2TZ UK
- State Key Laboratory of Molecular Developmental Biology Institute of Genetics and Developmental Biology 1 West Beichen RoadChaoyang Beijing 100080 China
| | - Stan Boutin
- Department of Biological Sciences University of Alberta Edmonton AlbertaT6G 2E9 Canada
| | - Jeffrey E. Lane
- Department of Biological Sciences University of Alberta Edmonton AlbertaT6G 2E9 Canada
| | - Andrew G. McAdam
- Department of Integrative Biology University of Guelph Guelph Ontario N1G 2W1 Canada
| | - Jamieson C. Gorrell
- Department of Biological Sciences University of Alberta Edmonton AlbertaT6G 2E9 Canada
| | - David W. Coltman
- Department of Biological Sciences University of Alberta Edmonton AlbertaT6G 2E9 Canada
| | - Murray M. Humphries
- Department of Natural Resource Sciences Macdonald Campus McGill University Ste‐Anne‐de‐Bellevue QuebecH9X 3V9 Canada
| |
Collapse
|
15
|
Rogovin KA, Bushuev AV, Khruscheva AM, Vasilieva NY. Resting metabolic rate, stress, testosterone, and induced immune response in spring- and fall-born males of Campbell’s dwarf hamsters: Maintenance in long-day conditions. ACTA ACUST UNITED AC 2014. [DOI: 10.1134/s2079086414030062] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Basal metabolic rate can evolve independently of morphological and behavioural traits. Heredity (Edinb) 2013; 111:175-81. [PMID: 23632896 DOI: 10.1038/hdy.2013.35] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Revised: 03/05/2013] [Accepted: 03/08/2013] [Indexed: 11/08/2022] Open
Abstract
Quantitative genetic analyses of basal metabolic rate (BMR) can inform us about the evolvability of the trait by providing estimates of heritability, and also of genetic correlations with other traits that may constrain the ability of BMR to respond to selection. Here, we studied a captive population of zebra finches (Taeniopygia guttata) in which selection lines for male courtship rate have been established. We measure BMR in these lines to see whether selection on male sexual activity would change BMR as a potentially correlated trait. We find that the genetic correlation between courtship rate and BMR is practically zero, indicating that the two traits can evolve independently of each other. Interestingly, we find that the heritability of BMR in our population (h(2)=0.45) is markedly higher than was previously reported for a captive zebra finch population from Norway. A comparison of the two studies shows that additive genetic variance in BMR has been largely depleted in the Norwegian population, especially the genetic variance in BMR that is independent of body mass. In our population, the slope of BMR increase with body mass differs not only between the sexes but also between the six selection lines, which we tentatively attribute to genetic drift and/or founder effects being strong in small populations. Our study therefore highlights two things. First, the evolvability of BMR may be less constrained by genetic correlations and lack of independent genetic variation than previously described. Second, genetic drift in small populations can rapidly lead to different evolvabilities across populations.
Collapse
|