1
|
Zuberi SM, Wirrell E, Yozawitz E, Wilmshurst JM, Specchio N, Riney K, Pressler R, Auvin S, Samia P, Hirsch E, Galicchio S, Triki C, Snead OC, Wiebe S, Cross JH, Tinuper P, Scheffer IE, Perucca E, Moshé SL, Nabbout R. ILAE classification and definition of epilepsy syndromes with onset in neonates and infants: Position statement by the ILAE Task Force on Nosology and Definitions. Epilepsia 2022; 63:1349-1397. [PMID: 35503712 DOI: 10.1111/epi.17239] [Citation(s) in RCA: 339] [Impact Index Per Article: 113.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 03/20/2022] [Accepted: 03/21/2022] [Indexed: 12/20/2022]
Abstract
The International League Against Epilepsy (ILAE) Task Force on Nosology and Definitions proposes a classification and definition of epilepsy syndromes in the neonate and infant with seizure onset up to 2 years of age. The incidence of epilepsy is high in this age group and epilepsy is frequently associated with significant comorbidities and mortality. The licensing of syndrome specific antiseizure medications following randomized controlled trials and the development of precision, gene-related therapies are two of the drivers defining the electroclinical phenotypes of syndromes with onset in infancy. The principal aim of this proposal, consistent with the 2017 ILAE Classification of the Epilepsies, is to support epilepsy diagnosis and emphasize the importance of classifying epilepsy in an individual both by syndrome and etiology. For each syndrome, we report epidemiology, clinical course, seizure types, electroencephalography (EEG), neuroimaging, genetics, and differential diagnosis. Syndromes are separated into self-limited syndromes, where there is likely to be spontaneous remission and developmental and epileptic encephalopathies, diseases where there is developmental impairment related to both the underlying etiology independent of epileptiform activity and the epileptic encephalopathy. The emerging class of etiology-specific epilepsy syndromes, where there is a specific etiology for the epilepsy that is associated with a clearly defined, relatively uniform, and distinct clinical phenotype in most affected individuals as well as consistent EEG, neuroimaging, and/or genetic correlates, is presented. The number of etiology-defined syndromes will continue to increase, and these newly described syndromes will in time be incorporated into this classification. The tables summarize mandatory features, cautionary alerts, and exclusionary features for the common syndromes. Guidance is given on the criteria for syndrome diagnosis in resource-limited regions where laboratory confirmation, including EEG, MRI, and genetic testing, might not be available.
Collapse
Affiliation(s)
- Sameer M Zuberi
- Paediatric Neurosciences Research Group, Royal Hospital for Children, Institute of Health & Wellbeing, Collaborating Centre of European Reference Network EpiCARE, University of Glasgow, Glasgow, UK
| | - Elaine Wirrell
- Divisions of Child and Adolescent Neurology and Epilepsy, Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Elissa Yozawitz
- Isabelle Rapin Division of Child Neurology, Saul R. Korey Department of Neurology, Montefiore Medical Center, Bronx, New York, USA
| | - Jo M Wilmshurst
- Department of Paediatric Neurology, Red Cross War Memorial Children's Hospital, Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Nicola Specchio
- Rare and Complex Epilepsy Unit, Department of Neuroscience, Bambino Gesu' Children's Hospital, IRCCS, Member of European Reference Network EpiCARE, Rome, Italy
| | - Kate Riney
- Neurosciences Unit, Queensland Children's Hospital, South Brisbane, Queensland, Australia.,Faculty of Medicine, University of Queensland, St Lucia, Queensland, Australia
| | - Ronit Pressler
- Clinical Neuroscience, UCL- Great Ormond Street Institute of Child Health, London, UK.,Department of Clinical Neurophysiology, Great Ormond Street Hospital for Children NHS Foundation Trust, Member of European Reference Network EpiCARE, London, UK
| | - Stephane Auvin
- AP-HP, Hôpital Robert-Debré, INSERM NeuroDiderot, DMU Innov-RDB, Neurologie Pédiatrique, Member of European Reference Network EpiCARE, Université de Paris, Paris, France
| | - Pauline Samia
- Department of Paediatrics and Child Health, Aga Khan University, Nairobi, Kenya
| | - Edouard Hirsch
- Neurology Epilepsy Unit "Francis Rohmer", INSERM 1258, FMTS, Strasbourg University, Strasbourg, France
| | - Santiago Galicchio
- Child Neurology Department, Victor J Vilela Child Hospital of Rosario, Santa Fe, Argentina
| | - Chahnez Triki
- Child Neurology Department, LR19ES15 Neuropédiatrie, Sfax Medical School, University of Sfax, Sfax, Tunisia
| | - O Carter Snead
- Pediatric Neurology, Hospital for Sick Children, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Samuel Wiebe
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - J Helen Cross
- Programme of Developmental Neurosciences, UCL NIHR BRC Great Ormond Street Institute of Child Health, Great Ormond Street Hospital for Children, Member of European Reference Network EpiCARE, London, UK.,Young Epilepsy, Lingfield, UK
| | - Paolo Tinuper
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.,IRCCS Istituto delle Scienze Neurologiche, Bologna, Italy
| | - Ingrid E Scheffer
- Austin Health and Royal Children's Hospital, Florey Institute, Murdoch Children's Research Institute, University of Melbourne, Melbourne, Victoria, Australia
| | - Emilio Perucca
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia.,Department of Medicine, Austin Health, University of Melbourne, Heidelberg, Victoria, Australia
| | - Solomon L Moshé
- Isabelle Rapin Division of Child Neurology, Saul R. Korey Department of Neurology, Bronx, New York, USA.,Departments of Neuroscience and Pediatrics, Albert Einstein College of Medicine, Bronx, New York, USA.,Montefiore Medical Center, Bronx, New York, USA
| | - Rima Nabbout
- Reference Centre for Rare Epilepsies, Department of Pediatric Neurology, Necker-Enfants Malades University Hospital, APHP, Member of European Reference Network EpiCARE, Institut Imagine, INSERM, UMR 1163, Université Paris cité, Paris, France
| |
Collapse
|
2
|
Malak R, Fechner B, Sikorska D, Rosołek M, Mojs E, Samborski W, Baum E. Application of the Neonatal Behavioral Assessment Scale to Evaluate the Neurobehavior of Preterm Neonates. Brain Sci 2021; 11:brainsci11101285. [PMID: 34679350 PMCID: PMC8534209 DOI: 10.3390/brainsci11101285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/06/2021] [Accepted: 09/24/2021] [Indexed: 11/19/2022] Open
Abstract
Background: The neonatal behavioral assessment scale (NBAS) was primarily developed to aid in the assessment of full-term neonates. The aim of this study was to detect if the NBAS was also valuable in the assessment of preterm neonates. Materials and Methods: We assessed 112 infants at a neonatal unit using the NBAS, 4th edition. The inclusion criteria included an oxygen saturation level between 88–95% and a heartrate of 100–205 beats per minute. Infant neurobehavior was assessed using the NBAS. Results: For full-term and preterm neonates, we observed that the NBAS enabled us to assess both groups of infants and gave relevant information pertaining to them. We found a significant correlation between the average week of gestation and response to touch, sensory input, peak of excitement, cost of attention, hand-to-mouth, and quality of alertness. Conclusions: The NBAS is a valuable scale for evaluating the neurobehavior of preterm neonates. The week of gestation at birth affects certain aspects of neurobehavior, such as response to sensory input, putting hand to mouth, peak of excitement, and cost of attention. The NBAS as an individually structured assessment may help in planning for early rehabilitation and intervention for this vulnerable population.
Collapse
Affiliation(s)
- Roksana Malak
- Department and Clinic of Rheumatology, Rehabilitation, and Internal Medicine, Poznań University of Medical Sciences, 61-545 Poznań, Poland; (B.F.); (D.S.); (W.S.)
- Correspondence:
| | - Brittany Fechner
- Department and Clinic of Rheumatology, Rehabilitation, and Internal Medicine, Poznań University of Medical Sciences, 61-545 Poznań, Poland; (B.F.); (D.S.); (W.S.)
| | - Dorota Sikorska
- Department and Clinic of Rheumatology, Rehabilitation, and Internal Medicine, Poznań University of Medical Sciences, 61-545 Poznań, Poland; (B.F.); (D.S.); (W.S.)
| | - Marta Rosołek
- Department of Rehabilitation, Poznań University of Medical Sciences, 61-545 Poznań, Poland;
| | - Ewa Mojs
- Department of Clinical Psychology, Poznań University of Medical Sciences, 60-812 Poznań, Poland;
| | - Włodzimierz Samborski
- Department and Clinic of Rheumatology, Rehabilitation, and Internal Medicine, Poznań University of Medical Sciences, 61-545 Poznań, Poland; (B.F.); (D.S.); (W.S.)
| | - Ewa Baum
- Department of Social and Human Sciences, Poznań University of Medical Sciences, 60-806 Poznań, Poland;
| |
Collapse
|
5
|
McTague A, Appleton R, Avula S, Cross JH, King MD, Jacques TS, Bhate S, Cronin A, Curran A, Desurkar A, Farrell MA, Hughes E, Jefferson R, Lascelles K, Livingston J, Meyer E, McLellan A, Poduri A, Scheffer IE, Spinty S, Kurian MA, Kneen R. Migrating partial seizures of infancy: expansion of the electroclinical, radiological and pathological disease spectrum. ACTA ACUST UNITED AC 2013; 136:1578-91. [PMID: 23599387 DOI: 10.1093/brain/awt073] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Migrating partial seizures of infancy, also known as epilepsy of infancy with migrating focal seizures, is a rare early infantile epileptic encephalopathy with poor prognosis, presenting with focal seizures in the first year of life. A national surveillance study was undertaken in conjunction with the British Paediatric Neurology Surveillance Unit to further define the clinical, pathological and molecular genetic features of this disorder. Fourteen children with migrating partial seizures of infancy were reported during the 2 year study period (estimated prevalence 0.11 per 100,000 children). The study has revealed that migrating partial seizures of infancy is associated with an expanded spectrum of clinical features (including severe gut dysmotility and a movement disorder) and electrographic features including hypsarrhythmia (associated with infantile spasms) and burst suppression. We also report novel brain imaging findings including delayed myelination with white matter hyperintensity on brain magnetic resonance imaging in one-third of the cohort, and decreased N-acetyl aspartate on magnetic resonance spectroscopy. Putaminal atrophy (on both magnetic resonance imaging and at post-mortem) was evident in one patient. Additional neuropathological findings included bilateral hippocampal gliosis and neuronal loss in two patients who had post-mortem examinations. Within this cohort, we identified two patients with mutations in the newly discovered KCNT1 gene. Comparative genomic hybridization array, SCN1A testing and genetic testing for other currently known early infantile epileptic encephalopathy genes (including PLCB1 and SLC25A22) was non-informative for the rest of the cohort.
Collapse
Affiliation(s)
- Amy McTague
- Neurosciences Unit, UCL-Institute of Child Health, London, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|