1
|
Schall U, Fulham R, Günther M, Bergmann J, Thienel R, Ortmann J, Wall NG, Gómez Álvarez P, Youlden AM. Pre-attentive and Attentive Auditory Event-related Potentials in Children With Attention-Deficit Hyperactivity Disorder and Autism. Clin EEG Neurosci 2024; 55:613-624. [PMID: 38755963 PMCID: PMC11459870 DOI: 10.1177/15500594241255499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/27/2024] [Accepted: 04/30/2024] [Indexed: 05/18/2024]
Abstract
Abnormalities in auditory processing are believed to play a major role in autism and attention-deficit hyperactivity disorder (ADHD). Both conditions often co-occur in children, causing difficulties in deciding the most promising intervention. Event-related potentials (ERPs) have been investigated and are showing promise to act as potential biomarkers for both conditions. This study investigated mismatch negativity (MMN) using a passive listening task and P3b in an active auditory go/no-go discrimination task. Recordings were available from 103 children (24 females): 35 with ADHD, 27 autistic, 15 autistic children with co-occurring ADHD, and 26 neurotypical (NT) children. The age range considered was between 4 and 17 years, but varied between groups. The results revealed increases in the MMN and P3b amplitudes with age. Older children with ADHD exhibited smaller P3b amplitudes, while younger autistic children showed reduced MMN amplitudes in response to phoneme changes compared to their NT counterparts. Notably, children diagnosed with autism and ADHD did not follow this pattern; instead, they exhibited more similarities to NT children. The reduced amplitudes of phonetically elicited MMN in children with autism and reduced P3b in children with ADHD suggest that the two respective ERPs can act as potential biomarkers for each condition. However, optimisation and standardisation of the testing protocol, as well as longitudinal studies are required in order to translate these findings into clinical practice.
Collapse
Affiliation(s)
- Ulrich Schall
- Centre for Brain and Mental Health Research, Mater Hospital, The University of Newcastle, New South Wales, Australia
- EDUCARE Specialists Services, Charlestown, New South Wales, Australia
- Hunter Medical Research Institute, New Lambton, New South Wales, Australia
| | - Ross Fulham
- Centre for Brain and Mental Health Research, Mater Hospital, The University of Newcastle, New South Wales, Australia
- Hunter Medical Research Institute, New Lambton, New South Wales, Australia
| | - Max Günther
- Centre for Brain and Mental Health Research, Mater Hospital, The University of Newcastle, New South Wales, Australia
- Institute of Psychology, Otto Friedrich University of Bamberg, Bamberg, Germany
| | - Jessica Bergmann
- Centre for Brain and Mental Health Research, Mater Hospital, The University of Newcastle, New South Wales, Australia
- School of Medicine and Public Health, The University of Newcastle, Callaghan, New South Wales, Australia
| | - Renate Thienel
- Centre for Brain and Mental Health Research, Mater Hospital, The University of Newcastle, New South Wales, Australia
- Hunter Medical Research Institute, New Lambton, New South Wales, Australia
| | - Julie Ortmann
- Centre for Brain and Mental Health Research, Mater Hospital, The University of Newcastle, New South Wales, Australia
- Department of Behavioural and Cognitive Sciences, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Natalie G Wall
- Centre for Brain and Mental Health Research, Mater Hospital, The University of Newcastle, New South Wales, Australia
- Hunter Medical Research Institute, New Lambton, New South Wales, Australia
- School of Medicine and Public Health, The University of Newcastle, Callaghan, New South Wales, Australia
| | - Paula Gómez Álvarez
- Faculty of Science & Engineering, Southern Cross University, Lismore, New South Wales, Australia
| | | |
Collapse
|
2
|
Guo X, Yu J, Quan C, Xiao J, Wang J, Zhang B, Hao X, Wu X, Liang J. The effect of N-methyl-D-aspartate receptor antagonists on the mismatch negativity of event-related potentials and its regulatory factors: A systematic review and meta-analysis. J Psychiatr Res 2024; 172:210-220. [PMID: 38402843 DOI: 10.1016/j.jpsychires.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/28/2024] [Accepted: 02/01/2024] [Indexed: 02/27/2024]
Abstract
This study investigates the influence of N-methyl-D-aspartate receptor (NMDAR) antagonists on the mismatch negativity (MMN) components of event-related potentials (ERPs) in healthy subjects and explores whether NMDAR antagonists have different effects on MMN components under different types of antagonists, drug dosages, and deviant stimuli. We conducted a comprehensive literature search of PubMed, EMBASE, and the Cochrane Library from inception to August 1, 2023 for studies comparing the MMN components between the NMDAR antagonist intervention group and the control group (or baseline). All statistical analyses were performed using Stata version 12.0 software. Sixteen articles were included in the systematic review: 13 articles were included in the meta-analysis of MMN amplitudes, and seven articles were included in the meta-analysis of MMN latencies. The pooled analysis showed that NMDAR antagonists reduced MMN amplitudes [SMD (95% CI) = 0.32 (0.16, 0.47), P < 0.01, I2 = 47.3%, p < 0.01] and prolonged MMN latencies [SMD (95% CI) = 0.31 (0.13, 0.49), P = 0.16, I2 = 28.3%, p < 0.01]. The type of antagonist drug regulates the effect of NMDAR antagonists on MMN amplitudes. Different antagonists, doses of antagonists, and types of deviant stimuli can also have different effects on MMN. These findings indicate a correlation between NMDAR and MMN, which may provide a foundation for the application of ERP-MMN in the early identification of NMDAR encephalitis.
Collapse
Affiliation(s)
- Xin Guo
- Department of Pediatric Neurology, The First Hospital of Jilin University, Changchun, 130021, China; Jilin Provincial Key Laboratory of Pediatric Neurology, Changchun, 130021, China.
| | - Jieyang Yu
- Department of Pediatric Neurology, The First Hospital of Jilin University, Changchun, 130021, China; Jilin Provincial Key Laboratory of Pediatric Neurology, Changchun, 130021, China.
| | - Chunhua Quan
- Central Laboratory, The Affiliated Hospital of Yanbian University, Juzi-St., No.1327, Yanji, 133000, China.
| | - Jinyu Xiao
- Department of Pediatric Neurology, The First Hospital of Jilin University, Changchun, 130021, China; Jilin Provincial Key Laboratory of Pediatric Neurology, Changchun, 130021, China.
| | - Jiangtao Wang
- Department of Pediatric Neurology, The First Hospital of Jilin University, Changchun, 130021, China; Jilin Provincial Key Laboratory of Pediatric Neurology, Changchun, 130021, China.
| | - Bo Zhang
- Department of Pediatric Neurology, The First Hospital of Jilin University, Changchun, 130021, China; Jilin Provincial Key Laboratory of Pediatric Neurology, Changchun, 130021, China.
| | - Xiaosheng Hao
- Department of Pediatric Neurology, The First Hospital of Jilin University, Changchun, 130021, China; Jilin Provincial Key Laboratory of Pediatric Neurology, Changchun, 130021, China.
| | - Xuemei Wu
- Department of Pediatric Neurology, The First Hospital of Jilin University, Changchun, 130021, China; Jilin Provincial Key Laboratory of Pediatric Neurology, Changchun, 130021, China.
| | - Jianmin Liang
- Department of Pediatric Neurology, The First Hospital of Jilin University, Changchun, 130021, China; Jilin Provincial Key Laboratory of Pediatric Neurology, Changchun, 130021, China.
| |
Collapse
|
3
|
Weise A, Grimm S, Maria Rimmele J, Schröger E. Auditory representations for long lasting sounds: Insights from event-related brain potentials and neural oscillations. BRAIN AND LANGUAGE 2023; 237:105221. [PMID: 36623340 DOI: 10.1016/j.bandl.2022.105221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
The basic features of short sounds, such as frequency and intensity including their temporal dynamics, are integrated in a unitary representation. Knowledge on how our brain processes long lasting sounds is scarce. We review research utilizing the Mismatch Negativity event-related potential and neural oscillatory activity for studying representations for long lasting simple versus complex sounds such as sinusoidal tones versus speech. There is evidence for a temporal constraint in the formation of auditory representations: Auditory edges like sound onsets within long lasting sounds open a temporal window of about 350 ms in which the sounds' dynamics are integrated into a representation, while information beyond that window contributes less to that representation. This integration window segments the auditory input into short chunks. We argue that the representations established in adjacent integration windows can be concatenated into an auditory representation of a long sound, thus, overcoming the temporal constraint.
Collapse
Affiliation(s)
- Annekathrin Weise
- Department of Psychology, Ludwig-Maximilians-University Munich, Germany; Wilhelm Wundt Institute for Psychology, Leipzig University, Germany.
| | - Sabine Grimm
- Wilhelm Wundt Institute for Psychology, Leipzig University, Germany.
| | - Johanna Maria Rimmele
- Department of Neuroscience, Max-Planck-Institute for Empirical Aesthetics, Germany; Center for Language, Music and Emotion, New York University, Max Planck Institute, Department of Psychology, 6 Washington Place, New York, NY 10003, United States.
| | - Erich Schröger
- Wilhelm Wundt Institute for Psychology, Leipzig University, Germany.
| |
Collapse
|
4
|
An H, Ho Kei S, Auksztulewicz R, Schnupp JWH. Do Auditory Mismatch Responses Differ Between Acoustic Features? Front Hum Neurosci 2021; 15:613903. [PMID: 33597853 PMCID: PMC7882487 DOI: 10.3389/fnhum.2021.613903] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 01/07/2021] [Indexed: 11/13/2022] Open
Abstract
Mismatch negativity (MMN) is the electroencephalographic (EEG) waveform obtained by subtracting event-related potential (ERP) responses evoked by unexpected deviant stimuli from responses evoked by expected standard stimuli. While the MMN is thought to reflect an unexpected change in an ongoing, predictable stimulus, it is unknown whether MMN responses evoked by changes in different stimulus features have different magnitudes, latencies, and topographies. The present study aimed to investigate whether MMN responses differ depending on whether sudden stimulus change occur in pitch, duration, location or vowel identity, respectively. To calculate ERPs to standard and deviant stimuli, EEG signals were recorded in normal-hearing participants (N = 20; 13 males, 7 females) who listened to roving oddball sequences of artificial syllables. In the roving paradigm, any given stimulus is repeated several times to form a standard, and then suddenly replaced with a deviant stimulus which differs from the standard. Here, deviants differed from preceding standards along one of four features (pitch, duration, vowel or interaural level difference). The feature levels were individually chosen to match behavioral discrimination performance. We identified neural activity evoked by unexpected violations along all four acoustic dimensions. Evoked responses to deviant stimuli increased in amplitude relative to the responses to standard stimuli. A univariate (channel-by-channel) analysis yielded no significant differences between MMN responses following violations of different features. However, in a multivariate analysis (pooling information from multiple EEG channels), acoustic features could be decoded from the topography of mismatch responses, although at later latencies than those typical for MMN. These results support the notion that deviant feature detection may be subserved by a different process than general mismatch detection.
Collapse
Affiliation(s)
- HyunJung An
- Department of Neuroscience, City University of Hong Kong, Kowloon, Hong Kong
| | - Shing Ho Kei
- Department of Neuroscience, City University of Hong Kong, Kowloon, Hong Kong
| | - Ryszard Auksztulewicz
- Department of Neuroscience, City University of Hong Kong, Kowloon, Hong Kong.,Department of Neuroscience, Max Planck Institute for Empirical Aesthetics, Frankfurt, Germany
| | - Jan W H Schnupp
- Department of Neuroscience, City University of Hong Kong, Kowloon, Hong Kong
| |
Collapse
|
5
|
Male AG, O’Shea RP, Schröger E, Müller D, Roeber U, Widmann A. The quest for the genuine visual mismatch negativity (vMMN): Event‐related potential indications of deviance detection for low‐level visual features. Psychophysiology 2020; 57:e13576. [DOI: 10.1111/psyp.13576] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 01/29/2020] [Accepted: 02/05/2020] [Indexed: 11/28/2022]
Affiliation(s)
- Alie G. Male
- Discipline of Psychology, College of Science, Health, Engineering and Education Murdoch University Perth WA Australia
| | - Robert P. O’Shea
- Discipline of Psychology, College of Science, Health, Engineering and Education Murdoch University Perth WA Australia
- Institute of Psychology Leipzig University Leipzig Germany
- Discipline of Psychology, School of Health and Human Sciences Southern Cross University Coffs Harbour NSW Australia
| | - Erich Schröger
- Institute of Psychology Leipzig University Leipzig Germany
| | - Dagmar Müller
- Institute of Psychology Leipzig University Leipzig Germany
| | - Urte Roeber
- Discipline of Psychology, College of Science, Health, Engineering and Education Murdoch University Perth WA Australia
- Institute of Psychology Leipzig University Leipzig Germany
| | - Andreas Widmann
- Institute of Psychology Leipzig University Leipzig Germany
- CBBS Research Group Neurocognitive Development Leibniz Institute for Neurobiology Magdeburg Germany
| |
Collapse
|
6
|
Osakabe Y, Shiga T, Hoshino H, Kanno K, Wada T, Ochiai H, Itagaki S, Miura I, Yabe H. Do tone duration changes that elicit the mismatch negativity also affect the preceding middle latency responses? Eur J Neurosci 2020; 51:2270-2276. [PMID: 31894634 DOI: 10.1111/ejn.14668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 12/13/2019] [Accepted: 12/16/2019] [Indexed: 11/28/2022]
Abstract
The human brain can automatically detect sound changes. Previous studies have reported that rare sounds presented within a sequence of repetitive sounds elicit the mismatch negativity (MMN) in the absence of attention in the latency range of 100-250 ms. On the other hand, a previous study discovered that occasional changes in sound location enhance the middle latency response (MLR) elicited in the latency range of 10-50 ms. Several studies have reported an increase in the amplitude of the MLR within the frame of oddball paradigms such as frequency and location changes. However, few studies have been conducted on paradigms employing a duration change. The purpose of the present study was to examine whether the peak amplitudes of the MLR components are enhanced by a change in duration. Twenty healthy Japanese men (age: 23.9 ± 2.9 years) participated in the present study. We used an oddball paradigm that contained standard stimuli with a duration of 10 ms and deviant stimuli with a duration of 5 ms. The peak amplitudes of the MLR for the deviant stimuli were then compared with those for the standard stimuli. No changes were observed in the peak amplitude of the MLR resulting from a duration change, whereas a definite MMN was elicited. The amplitude of the MLR was increased within the frame of oddball paradigms such as frequency and location changes. By contrast, the amplitude of the MLR was not changed within the duration change oddball paradigm that elicited the MMN.
Collapse
Affiliation(s)
- Yusuke Osakabe
- Department of Neuropsychiatry, Fukushima Medical University, Fukushima City, Japan
| | - Tetsuya Shiga
- Department of Neuropsychiatry, Fukushima Medical University, Fukushima City, Japan
| | - Hiroshi Hoshino
- Department of Neuropsychiatry, Fukushima Medical University, Fukushima City, Japan
| | - Kazuko Kanno
- Department of Neuropsychiatry, Fukushima Medical University, Fukushima City, Japan
| | - Tomohiro Wada
- Department of Neuropsychiatry, Fukushima Medical University, Fukushima City, Japan
| | - Haruka Ochiai
- Department of Neuropsychiatry, Fukushima Medical University, Fukushima City, Japan
| | - Shuntaro Itagaki
- Department of Neuropsychiatry, Fukushima Medical University, Fukushima City, Japan
| | - Itaru Miura
- Department of Neuropsychiatry, Fukushima Medical University, Fukushima City, Japan
| | - Hirooki Yabe
- Department of Neuropsychiatry, Fukushima Medical University, Fukushima City, Japan
| |
Collapse
|
7
|
Malmierca MS, Niño-Aguillón BE, Nieto-Diego J, Porteros Á, Pérez-González D, Escera C. Pattern-sensitive neurons reveal encoding of complex auditory regularities in the rat inferior colliculus. Neuroimage 2019; 184:889-900. [DOI: 10.1016/j.neuroimage.2018.10.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 09/20/2018] [Accepted: 10/04/2018] [Indexed: 10/28/2022] Open
|
8
|
The effects of aging on early stages of the auditory deviance detection system. Clin Neurophysiol 2018; 129:2252-2258. [PMID: 30216909 DOI: 10.1016/j.clinph.2018.08.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 07/20/2018] [Accepted: 08/23/2018] [Indexed: 11/22/2022]
Abstract
OBJECTIVE The aging effects on auditory change detection have been studied using the Mismatch Negativity (MMN) potential. However, recent studies have found earlier correlates of deviance detection at the level of the middle-latency response (MLR) and the effects of aging on this deviant-related response have not yet been clarified. The purpose of this study was to examine the effects of aging on both levels of the auditory deviance detection system. METHODS MMN and MLR responses were recorded in 33 young and 29 older adults from 32 scalp electrodes during frequency oddball and swapped-oddball conditions. RESULTS In the young group, modulation of MLR and a clear MMN response were observed, whereas in the aged group, no evidence of deviance detection was found at the level of MLR and the MMN amplitude was significantly diminished. CONCLUSIONS Based on the obtained results, aging affects both levels of the auditory deviance detection system which seems to be a result of deficits in regularity encoding along the auditory hierarchy. SIGNIFICANCE The current findings suggest that age-related physiological changes result in deficits in regularity encoding, starting from early stages of processing. This might eventually affect stream segregation and induce difficulties in understanding speech in complex environments.
Collapse
|
9
|
López-Caballero F, Zarnowiec K, Escera C. Differential deviant probability effects on two hierarchical levels of the auditory novelty system. Biol Psychol 2016; 120:1-9. [DOI: 10.1016/j.biopsycho.2016.08.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 06/16/2016] [Accepted: 08/02/2016] [Indexed: 11/25/2022]
|
10
|
Puschmann S, Huster RJ, Thiel CM. Mapping the spatiotemporal dynamics of processing task-relevant and task-irrelevant sound feature changes using concurrent EEG-fMRI. Hum Brain Mapp 2016; 37:3400-16. [PMID: 27280466 PMCID: PMC6867321 DOI: 10.1002/hbm.23248] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 04/01/2016] [Accepted: 04/24/2016] [Indexed: 11/09/2022] Open
Abstract
The cortical processing of changes in auditory input involves auditory sensory regions as well as different frontoparietal brain networks. The spatiotemporal dynamics of the activation spread across these networks has, however, not been investigated in detail so far. We here approached this issue using concurrent functional magnetic resonance imaging (fMRI) and electroencephalography (EEG), providing us with simultaneous information on both the spatial and temporal patterns of change-related activity. We applied an auditory stimulus categorization task with switching categorization rules, allowing to analyze change-related responses as a function of the changing sound feature (pitch or duration) and the task relevance of the change. Our data show the successive progression of change-related activity from regions involved in early change detection to the ventral and dorsal attention networks, and finally the central executive network. While early change detection was found to recruit feature-specific networks involving auditory sensory but also frontal and parietal brain regions, the later spread of activity across the frontoparietal attention and executive networks was largely independent of the changing sound feature, suggesting the existence of a general feature-independent processing pathway of change-related information. Task relevance did not modulate early auditory sensory processing, but was mainly found to affect processing in frontal brain regions. Hum Brain Mapp 37:3400-3416, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Sebastian Puschmann
- Biological Psychology LabDepartment of PsychologyCluster of Excellence “Hearing4all,”European Medical School, Carl Von Ossietzky UniversityOldenburgGermany
| | - René J. Huster
- Department of PsychologyUniversity of OsloOsloNorway
- The Mind Research NetworkAlbuquerqueNew MexicoUSA
| | - Christiane M. Thiel
- Biological Psychology LabDepartment of PsychologyCluster of Excellence “Hearing4all,”European Medical School, Carl Von Ossietzky UniversityOldenburgGermany
- Research Center Neurosensory ScienceCarl Von Ossietzky UniversityOldenburgGermany
| |
Collapse
|
11
|
The early component of middle latency auditory-evoked potentials in the process of deviance detection. Neuroreport 2016; 27:769-73. [PMID: 27203294 DOI: 10.1097/wnr.0000000000000611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The aim of the present study was to investigate both the encoding mechanism and the process of deviance detection when deviant stimuli were presented in various patterns in an environment featuring repetitive sounds. In adults with normal hearing, middle latency responses were recorded within an oddball paradigm containing complex tones or speech sounds, wherein deviant stimuli featured different change patterns. For both complex tones and speech sounds, the Na and Pa components of middle latency responses showed an increase in the mean amplitude and a reduction in latency when comparing rare deviant stimuli with repetitive standard stimuli in a stimulation block. However, deviant stimuli with a rising frequency induced signals with smaller amplitudes than other deviant stimuli. The present findings indicate that deviant stimuli with different change patterns induce differing responses in the primary auditory cortex. In addition, the Pa components of speech sounds typically feature a longer latency and similar mean amplitude compared with complex tones, which suggests that the auditory system requires more complex processing for the analysis of speech sounds before processing in the auditory cortex.
Collapse
|
12
|
Early indices of deviance detection in humans and animal models. Biol Psychol 2016; 116:23-7. [DOI: 10.1016/j.biopsycho.2015.11.017] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 11/30/2015] [Accepted: 11/30/2015] [Indexed: 11/23/2022]
|
13
|
Aghamolaei M, Zarnowiec K, Grimm S, Escera C. Functional dissociation between regularity encoding and deviance detection along the auditory hierarchy. Eur J Neurosci 2015; 43:529-35. [DOI: 10.1111/ejn.13138] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 10/27/2015] [Accepted: 11/17/2015] [Indexed: 12/01/2022]
Affiliation(s)
- Maryam Aghamolaei
- Institute for Brain Cognition and Behavior (IR3C); University of Barcelona; Passeig de la vall d'Hebron 171 08035 Barcelona Catalonia Spain
- Brainlab - Cognitive Neuroscience Research Group; Department of Psychiatry and Clinical Psychobiology; University of Barcelona; Barcelona Catalonia Spain
- Department of Audiology; Faculty of Rehabilitation Sciences; Tehran University of Medical Sciences; Tehran Iran
| | - Katarzyna Zarnowiec
- Institute for Brain Cognition and Behavior (IR3C); University of Barcelona; Passeig de la vall d'Hebron 171 08035 Barcelona Catalonia Spain
- Brainlab - Cognitive Neuroscience Research Group; Department of Psychiatry and Clinical Psychobiology; University of Barcelona; Barcelona Catalonia Spain
| | - Sabine Grimm
- Institute for Brain Cognition and Behavior (IR3C); University of Barcelona; Passeig de la vall d'Hebron 171 08035 Barcelona Catalonia Spain
- Brainlab - Cognitive Neuroscience Research Group; Department of Psychiatry and Clinical Psychobiology; University of Barcelona; Barcelona Catalonia Spain
- Cognitive and Biological Psychology; Institute of Psychology; University of Leipzig; Leipzig Germany
| | - Carles Escera
- Institute for Brain Cognition and Behavior (IR3C); University of Barcelona; Passeig de la vall d'Hebron 171 08035 Barcelona Catalonia Spain
- Brainlab - Cognitive Neuroscience Research Group; Department of Psychiatry and Clinical Psychobiology; University of Barcelona; Barcelona Catalonia Spain
| |
Collapse
|
14
|
Deviance-Related Responses along the Auditory Hierarchy: Combined FFR, MLR and MMN Evidence. PLoS One 2015; 10:e0136794. [PMID: 26348628 PMCID: PMC4562708 DOI: 10.1371/journal.pone.0136794] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 08/08/2015] [Indexed: 11/19/2022] Open
Abstract
The mismatch negativity (MMN) provides a correlate of automatic auditory discrimination in human auditory cortex that is elicited in response to violation of any acoustic regularity. Recently, deviance-related responses were found at much earlier cortical processing stages as reflected by the middle latency response (MLR) of the auditory evoked potential, and even at the level of the auditory brainstem as reflected by the frequency following response (FFR). However, no study has reported deviance-related responses in the FFR, MLR and long latency response (LLR) concurrently in a single recording protocol. Amplitude-modulated (AM) sounds were presented to healthy human participants in a frequency oddball paradigm to investigate deviance-related responses along the auditory hierarchy in the ranges of FFR, MLR and LLR. AM frequency deviants modulated the FFR, the Na and Nb components of the MLR, and the LLR eliciting the MMN. These findings demonstrate that it is possible to elicit deviance-related responses at three different levels (FFR, MLR and LLR) in one single recording protocol, highlight the involvement of the whole auditory hierarchy in deviance detection and have implications for cognitive and clinical auditory neuroscience. Moreover, the present protocol provides a new research tool into clinical neuroscience so that the functional integrity of the auditory novelty system can now be tested as a whole in a range of clinical populations where the MMN was previously shown to be defective.
Collapse
|
15
|
Althen H, Huotilainen M, Grimm S, Escera C. Middle latency response correlates of single and double deviant stimuli in a multi-feature paradigm. Clin Neurophysiol 2015; 127:388-396. [PMID: 25980983 DOI: 10.1016/j.clinph.2015.04.058] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 03/01/2015] [Accepted: 04/15/2015] [Indexed: 01/08/2023]
Abstract
OBJECTIVE This study aimed to test single and double deviance-related modulations of the middle latency response (MLR) and the applicability of the optimum-2 multi-feature paradigm. METHODS The MLR and the MMN to frequency, intensity and double-feature deviants of an optimum-2 multi-feature paradigm and the MMN to double-feature deviants of an oddball paradigm were recorded in young adults. RESULTS Double deviants elicited significant enhancements of the Nb and Pb MLR waves compared with the waves elicited by standard stimuli. These enhancements equalled approximately the sum of the numerical amplitude differences elicited by the single deviants. In contrast, the MMN to double deviants did not show such additivity. MMNs elicited by double deviants of the multi-feature and the oddball paradigm showed no significant difference in amplitude or latency. CONCLUSIONS The optimum-2 multi-feature paradigm is suitable for recording double deviance-related modulations of the MLR. Interspersed intensity and frequency deviants in the standard trace of the optimum-2 condition multi-feature paradigm did not weaken the double MMN. SIGNIFICANCE The optimum-2 multi-feature paradigm could be especially beneficial for clinical studies on early deviance-related modulations in the MLR, due to its optimized utilization of the recording time.
Collapse
Affiliation(s)
- H Althen
- Institute for Brain, Cognition and Behavior (IR3C), University of Barcelona, Catalonia, Spain; Cognitive Neuroscience Research Group, Department of Psychiatry and Clinical Psychobiology, University of Barcelona, Catalonia, Spain
| | - M Huotilainen
- Finnish Institute of Occupational Health, Helsinki, Finland; Cognitive Brain Research Unit, Institute for Behavioural Sciences, University of Helsinki, Finland
| | - S Grimm
- Institute for Brain, Cognition and Behavior (IR3C), University of Barcelona, Catalonia, Spain; Cognitive Neuroscience Research Group, Department of Psychiatry and Clinical Psychobiology, University of Barcelona, Catalonia, Spain
| | - C Escera
- Institute for Brain, Cognition and Behavior (IR3C), University of Barcelona, Catalonia, Spain; Cognitive Neuroscience Research Group, Department of Psychiatry and Clinical Psychobiology, University of Barcelona, Catalonia, Spain.
| |
Collapse
|
16
|
Cornella M, Bendixen A, Grimm S, Leung S, Schröger E, Escera C. Spatial auditory regularity encoding and prediction: Human middle-latency and long-latency auditory evoked potentials. Brain Res 2015; 1626:21-30. [PMID: 25912975 DOI: 10.1016/j.brainres.2015.04.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 03/17/2015] [Accepted: 04/11/2015] [Indexed: 11/19/2022]
Abstract
By encoding acoustic regularities present in the environment, the human brain can generate predictions of what is likely to occur next. Recent studies suggest that deviations from encoded regularities are detected within 10-50ms after stimulus onset, as indicated by electrophysiological effects in the middle latency response (MLR) range. This is upstream of previously known long-latency (LLR) signatures of deviance detection such as the mismatch negativity (MMN) component. In the present study, we created predictable and unpredictable contexts to investigate MLR and LLR signatures of the encoding of spatial auditory regularities and the generation of predictions from these regularities. Chirps were monaurally delivered in an either regular (predictable: left-right-left-right) or a random (unpredictable left/right alternation or repetition) manner. Occasional stimulus omissions occurred in both types of sequences. Results showed that the Na component (peaking at 34ms after stimulus onset) was attenuated for regular relative to random chirps, albeit no differences were observed for stimulus omission responses in the same latency range. In the LLR range, larger chirp-and omission-evoked responses were elicited for the regular than for the random condition, and predictability effects were more prominent over the right hemisphere. We discuss our findings in the framework of a hierarchical organization of spatial regularity encoding. This article is part of a Special Issue entitled SI: Prediction and Attention.
Collapse
Affiliation(s)
- M Cornella
- Institute for Brain, Cognition and Behavior (IR3C), University of Barcelona, Catalonia, Spain; Cognitive Neuroscience Research Group, Department of Psychiatry and Clinical Psychobiology, University of Barcelona, Catalonia, Spain
| | - A Bendixen
- Institute of Psychology, University of Leipzig, Leipzig, Germany; Auditory Psychophysiology Lab, Department of Psychology, Cluster of Excellence "Hearing4all", European Medical School, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - S Grimm
- Institute for Brain, Cognition and Behavior (IR3C), University of Barcelona, Catalonia, Spain; Cognitive Neuroscience Research Group, Department of Psychiatry and Clinical Psychobiology, University of Barcelona, Catalonia, Spain; Institute of Psychology, University of Leipzig, Leipzig, Germany
| | - S Leung
- Institute for Brain, Cognition and Behavior (IR3C), University of Barcelona, Catalonia, Spain; Cognitive Neuroscience Research Group, Department of Psychiatry and Clinical Psychobiology, University of Barcelona, Catalonia, Spain
| | - E Schröger
- Institute of Psychology, University of Leipzig, Leipzig, Germany
| | - C Escera
- Institute for Brain, Cognition and Behavior (IR3C), University of Barcelona, Catalonia, Spain; Cognitive Neuroscience Research Group, Department of Psychiatry and Clinical Psychobiology, University of Barcelona, Catalonia, Spain.
| |
Collapse
|
17
|
Involvement of the human midbrain and thalamus in auditory deviance detection. Neuropsychologia 2015; 68:51-8. [DOI: 10.1016/j.neuropsychologia.2015.01.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 12/29/2014] [Accepted: 01/01/2015] [Indexed: 10/24/2022]
|
18
|
Recasens M, Grimm S, Wollbrink A, Pantev C, Escera C. Encoding of nested levels of acoustic regularity in hierarchically organized areas of the human auditory cortex. Hum Brain Mapp 2014; 35:5701-16. [PMID: 24996147 DOI: 10.1002/hbm.22582] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 04/29/2014] [Accepted: 06/28/2014] [Indexed: 11/10/2022] Open
Abstract
Our auditory system is able to encode acoustic regularity of growing levels of complexity to model and predict incoming events. Recent evidence suggests that early indices of deviance detection in the time range of the middle-latency responses (MLR) precede the mismatch negativity (MMN), a well-established error response associated with deviance detection. While studies suggest that only the MMN, but not early deviance-related MLR, underlie complex regularity levels, it is not clear whether these two mechanisms interplay during scene analysis by encoding nested levels of acoustic regularity, and whether neuronal sources underlying local and global deviations are hierarchically organized. We registered magnetoencephalographic evoked fields to rapidly presented four-tone local sequences containing a frequency change. Temporally integrated local events, in turn, defined global regularities, which were infrequently violated by a tone repetition. A global magnetic mismatch negativity (MMNm) was obtained at 140-220 ms when breaking the global regularity, but no deviance-related effects were shown in early latencies. Conversely, Nbm (45-55 ms) and Pbm (60-75 ms) deflections of the MLR, and an earlier MMNm response at 120-160 ms, responded to local violations. Distinct neuronal generators in the auditory cortex underlay the processing of local and global regularity violations, suggesting that nested levels of complexity of auditory object representations are represented in separated cortical areas. Our results suggest that the different processing stages and anatomical areas involved in the encoding of auditory representations, and the subsequent detection of its violations, are hierarchically organized in the human auditory cortex.
Collapse
Affiliation(s)
- Marc Recasens
- Institute for Brain, Cognition and Behavior (IR3C), University of Barcelona, 08035, Catalonia, Spain; Cognitive Neuroscience Research Group, Department of Psychiatry and Clinical Psychobiology, University of Barcelona, 08035, Catalonia, Spain
| | | | | | | | | |
Collapse
|
19
|
Malmierca MS, Sanchez-Vives MV, Escera C, Bendixen A. Neuronal adaptation, novelty detection and regularity encoding in audition. Front Syst Neurosci 2014; 8:111. [PMID: 25009474 PMCID: PMC4068197 DOI: 10.3389/fnsys.2014.00111] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 05/24/2014] [Indexed: 11/19/2022] Open
Abstract
The ability to detect unexpected stimuli in the acoustic environment and determine their behavioral relevance to plan an appropriate reaction is critical for survival. This perspective article brings together several viewpoints and discusses current advances in understanding the mechanisms the auditory system implements to extract relevant information from incoming inputs and to identify unexpected events. This extraordinary sensitivity relies on the capacity to codify acoustic regularities, and is based on encoding properties that are present as early as the auditory midbrain. We review state-of-the-art studies on the processing of stimulus changes using non-invasive methods to record the summed electrical potentials in humans, and those that examine single-neuron responses in animal models. Human data will be based on mismatch negativity (MMN) and enhanced middle latency responses (MLR). Animal data will be based on the activity of single neurons at the cortical and subcortical levels, relating selective responses to novel stimuli to the MMN and to stimulus-specific neural adaptation (SSA). Theoretical models of the neural mechanisms that could create SSA and novelty responses will also be discussed.
Collapse
Affiliation(s)
- Manuel S Malmierca
- Auditory Neurophysiology Unit, Laboratory for the Neurobiology of Hearing, Institute of Neuroscience of Castilla y León, University of Salamanca Salamanca, Spain ; Department of Cell Biology and Pathology, Faculty of Medicine, University of Salamanca Salamanca, Spain
| | - Maria V Sanchez-Vives
- Institució Catalana de Recerca i Estudis Avançats (ICREA) Barcelona, Spain ; Institut de Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) Barcelona, Spain
| | - Carles Escera
- Cognitive Neuroscience Research Group, Department of Psychiatry and Clinical Psychobiology, University of Barcelona Barcelona, Spain ; Auditory Psychophysiology Lab, Department of Psychology, Cluster of Excellence "Hearing4all", European Medical School, Carl von Ossietzky University of Oldenburg Oldenburg, Germany
| | - Alexandra Bendixen
- Auditory Psychophysiology Lab, Department of Psychology, Cluster of Excellence "Hearing4all", European Medical School, Carl von Ossietzky University of Oldenburg Oldenburg, Germany
| |
Collapse
|
20
|
Pakarinen S, Sokka L, Leinikka M, Henelius A, Korpela J, Huotilainen M. Fast determination of MMN and P3a responses to linguistically and emotionally relevant changes in pseudoword stimuli. Neurosci Lett 2014; 577:28-33. [PMID: 24928223 DOI: 10.1016/j.neulet.2014.06.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 05/12/2014] [Accepted: 06/03/2014] [Indexed: 11/28/2022]
Abstract
We developed a new multi-feature mismatch negativity (MMN) paradigm with two improvements: Firstly, the standard tone, a pseudoword /ta-ta/ was presented with equal probability to the nine linguistically relevant deviants, reducing the recording time by 45%. Secondly, three rare, emotionally valenced stimuli: happy, angry, and sad utterances of the standard pseudoword were included in the sequence. MMN signals reflecting the perceptual properties of the sounds were observed for all stimuli. In addition, P3a signals were observed for the rare emotionally uttered pseudowords. This 28-min paradigm allows a multi-dimensional evaluation of central speech-sound representations (MMN), and attention allocation (P3a) to emotional information content of speech. We recommend this paradigm for studies on subject groups with impairments in language or emotional information processing, such as autism spectrum disorders, attention disorders, and alexithymia.
Collapse
Affiliation(s)
- Satu Pakarinen
- Finnish Institute of Occupational Health, Helsinki, Finland.
| | - Laura Sokka
- Finnish Institute of Occupational Health, Helsinki, Finland
| | | | | | - Jussi Korpela
- Finnish Institute of Occupational Health, Helsinki, Finland
| | | |
Collapse
|
21
|
The inferior colliculus is involved in deviant sound detection as revealed by BOLD fMRI. Neuroimage 2014; 91:220-7. [PMID: 24486979 DOI: 10.1016/j.neuroimage.2014.01.043] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 01/23/2014] [Accepted: 01/24/2014] [Indexed: 11/24/2022] Open
Abstract
Rapid detection of deviant sounds is a crucial property of the auditory system because it increases the saliency of biologically important, unexpected sounds. The oddball paradigm in which a deviant sound is randomly interspersed among a train of standard sounds has been traditionally used to study this property in mammals. Currently, most human studies have only revealed the involvement of cortical regions in this property. Recently, several animal electrophysiological studies have reported that neurons in the inferior colliculus (IC) exhibit reduced responses to a standard sound but restore their responses at the occurrence of a deviant sound (i.e., stimulus-specific adaptation or SSA), suggesting that the IC may also be involved in deviance detection. However, by adopting an invasive method, these animal studies examined only a limited number of neurons. Although SSA appears to be more prominent in the external cortical nuclei of the IC for frequency deviant, a thorough investigation of this property throughout the IC using other deviants and efficient imaging techniques may provide more comprehensive information on this important phenomenon. In this study, blood-oxygen-level-dependent (BOLD) fMRI with a large field of view was applied to investigate the role of the IC in deviance detection. Two sound tokens that had identical frequency spectrum but temporally inverted profiles were used as the deviant and standard. A control experiment showed that these two sounds evoked the same responses in the IC when they were separately presented. Two oddball experiments showed that the deviant induced higher responses than the standard (by 0.41±0.09% and 0.41±0.10%, respectively). The most activated voxels were in the medial side of the IC in both oddball experiments. The results clearly demonstrated that the IC is involved in deviance detection. BOLD fMRI detection of increased activities in the medial side of the IC to the deviant revealed the highly adaptive nature of a substantial population of neurons in this region, probably those that belong to the rostral or dorsal cortex of the IC. These findings highlighted the complexity of auditory information processing in the IC and may guide future studies of the functional organizations of this subcortical structure.
Collapse
|
22
|
Electrophysiological index of acoustic temporal regularity violation in the middle latency range. Clin Neurophysiol 2013; 124:2397-405. [DOI: 10.1016/j.clinph.2013.06.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 05/31/2013] [Accepted: 06/06/2013] [Indexed: 11/22/2022]
|
23
|
Deviance Detection Based on Regularity Encoding Along the Auditory Hierarchy: Electrophysiological Evidence in Humans. Brain Topogr 2013; 27:527-38. [DOI: 10.1007/s10548-013-0328-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 10/28/2013] [Indexed: 10/26/2022]
|
24
|
Escera C, Malmierca MS. The auditory novelty system: An attempt to integrate human and animal research. Psychophysiology 2013; 51:111-23. [DOI: 10.1111/psyp.12156] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 08/06/2013] [Indexed: 11/30/2022]
Affiliation(s)
- Carles Escera
- Institute for Brain; Cognition and Behavior (IR3C); University of Barcelona; Catalonia Spain
- Cognitive Neuroscience Research Group; Department of Psychiatry and Clinical Psychobiology; University of Barcelona; Catalonia Spain
| | - Manuel S. Malmierca
- Auditory Neurophysiology Laboratory; The Institute of Neuroscience of Castilla y Leon (INCyL); University of Salamanca; Salamanca Spain
- Department of Cell Biology and Pathology; The Medical School; University of Salamanca; Salamanca Spain
| |
Collapse
|
25
|
Cornella M, Leung S, Grimm S, Escera C. Regularity encoding and deviance detection of frequency modulated sweeps: Human middle- and long-latency auditory evoked potentials. Psychophysiology 2013; 50:1275-81. [DOI: 10.1111/psyp.12137] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 07/01/2013] [Indexed: 11/29/2022]
Affiliation(s)
- Miriam Cornella
- Institute for Brain, Cognition and Behavior (IR3C) and Cognitive Neuroscience Research Group, Department of Psychiatry and Clinical Psychobiology; University of Barcelona; Catalonia Spain
| | - Sumie Leung
- Institute for Brain, Cognition and Behavior (IR3C) and Cognitive Neuroscience Research Group, Department of Psychiatry and Clinical Psychobiology; University of Barcelona; Catalonia Spain
| | - Sabine Grimm
- Institute for Brain, Cognition and Behavior (IR3C) and Cognitive Neuroscience Research Group, Department of Psychiatry and Clinical Psychobiology; University of Barcelona; Catalonia Spain
| | - Carles Escera
- Institute for Brain, Cognition and Behavior (IR3C) and Cognitive Neuroscience Research Group, Department of Psychiatry and Clinical Psychobiology; University of Barcelona; Catalonia Spain
| |
Collapse
|
26
|
Althen H, Grimm S, Escera C. Simple and complex acoustic regularities are encoded at different levels of the auditory hierarchy. Eur J Neurosci 2013; 38:3448-55. [DOI: 10.1111/ejn.12346] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 07/25/2013] [Accepted: 07/26/2013] [Indexed: 11/30/2022]
Affiliation(s)
- Heike Althen
- Institute for Brain, Cognition and Behavior (IR3C); University of Barcelona; Catalonia Spain
- Cognitive Neuroscience Research Group; Department of Psychiatry and Clinical Psychobiology; University of Barcelona; Catalonia Spain
| | - Sabine Grimm
- Institute for Brain, Cognition and Behavior (IR3C); University of Barcelona; Catalonia Spain
- Cognitive Neuroscience Research Group; Department of Psychiatry and Clinical Psychobiology; University of Barcelona; Catalonia Spain
| | - Carles Escera
- Institute for Brain, Cognition and Behavior (IR3C); University of Barcelona; Catalonia Spain
- Cognitive Neuroscience Research Group; Department of Psychiatry and Clinical Psychobiology; University of Barcelona; Catalonia Spain
| |
Collapse
|
27
|
Puschmann S, Sandmann P, Ahrens J, Thorne J, Weerda R, Klump G, Debener S, Thiel CM. Electrophysiological correlates of auditory change detection and change deafness in complex auditory scenes. Neuroimage 2013; 75:155-164. [DOI: 10.1016/j.neuroimage.2013.02.037] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 02/18/2013] [Accepted: 02/20/2013] [Indexed: 10/27/2022] Open
|
28
|
Paavilainen P. The mismatch-negativity (MMN) component of the auditory event-related potential to violations of abstract regularities: A review. Int J Psychophysiol 2013; 88:109-23. [PMID: 23542165 DOI: 10.1016/j.ijpsycho.2013.03.015] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 03/19/2013] [Accepted: 03/21/2013] [Indexed: 11/26/2022]
|
29
|
Puschmann S, Weerda R, Klump G, Thiel CM. Segregating the Neural Correlates of Physical and Perceived Change in Auditory Input using the Change Deafness Effect. J Cogn Neurosci 2013; 25:730-42. [DOI: 10.1162/jocn_a_00346] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Abstract
Psychophysical experiments show that auditory change detection can be disturbed in situations in which listeners have to monitor complex auditory input. We made use of this change deafness effect to segregate the neural correlates of physical change in auditory input from brain responses related to conscious change perception in an fMRI experiment. Participants listened to two successively presented complex auditory scenes, which consisted of six auditory streams, and had to decide whether scenes were identical or whether the frequency of one stream was changed between presentations. Our results show that physical changes in auditory input, independent of successful change detection, are represented at the level of auditory cortex. Activations related to conscious change perception, independent of physical change, were found in the insula and the ACC. Moreover, our data provide evidence for significant effective connectivity between auditory cortex and the insula in the case of correctly detected auditory changes, but not for missed changes. This underlines the importance of the insula/anterior cingulate network for conscious change detection.
Collapse
|
30
|
Recasens M, Grimm S, Capilla A, Nowak R, Escera C. Two Sequential Processes of Change Detection in Hierarchically Ordered Areas of the Human Auditory Cortex. Cereb Cortex 2012; 24:143-53. [DOI: 10.1093/cercor/bhs295] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
31
|
Cornella M, Leung S, Grimm S, Escera C. Detection of simple and pattern regularity violations occurs at different levels of the auditory hierarchy. PLoS One 2012; 7:e43604. [PMID: 22916282 PMCID: PMC3423368 DOI: 10.1371/journal.pone.0043604] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 07/24/2012] [Indexed: 11/19/2022] Open
Abstract
Auditory deviance detection in humans is indexed by the mismatch negativity (MMN), a component of the auditory evoked potential (AEP) of the electroencephalogram (EEG) occurring at a latency of 100–250 ms after stimulus onset. However, by using classic oddball paradigms, differential responses to regularity violations of simple auditory features have been found at the level of the middle latency response (MLR) of the AEP occurring within the first 50 ms after stimulus (deviation) onset. These findings suggest the existence of fast deviance detection mechanisms for simple feature changes, but it is not clear whether deviance detection among more complex acoustic regularities could be observed at such early latencies. To test this, we examined the pre-attentive processing of rare stimulus repetitions in a sequence of tones alternating in frequency in both long and middle latency ranges. Additionally, we introduced occasional changes in the interaural time difference (ITD), so that a simple-feature regularity could be examined in the same paradigm. MMN was obtained for both repetition and ITD deviants, occurring at 150 ms and 100 ms after stimulus onset respectively. At the level of the MLR, a difference was observed between standards and ITD deviants at the Na component (20–30 ms after stimulus onset), for 800 Hz tones, but not for repetition deviants. These findings suggest that detection mechanisms for deviants to simple regularities, but not to more complex regularities, are already activated in the MLR range, supporting the view that the auditory deviance detection system is organized in a hierarchical manner.
Collapse
Affiliation(s)
- Miriam Cornella
- Institute for Brain, Cognition and Behavior (IR3C), University of Barcelona, Catalonia, Spain
- Cognitive Neuroscience Research Group, Department of Psychiatry and Clinical Psychobiology, University of Barcelona, Catalonia, Spain
| | - Sumie Leung
- Institute for Brain, Cognition and Behavior (IR3C), University of Barcelona, Catalonia, Spain
- Cognitive Neuroscience Research Group, Department of Psychiatry and Clinical Psychobiology, University of Barcelona, Catalonia, Spain
| | - Sabine Grimm
- Institute for Brain, Cognition and Behavior (IR3C), University of Barcelona, Catalonia, Spain
- Cognitive Neuroscience Research Group, Department of Psychiatry and Clinical Psychobiology, University of Barcelona, Catalonia, Spain
| | - Carles Escera
- Institute for Brain, Cognition and Behavior (IR3C), University of Barcelona, Catalonia, Spain
- Cognitive Neuroscience Research Group, Department of Psychiatry and Clinical Psychobiology, University of Barcelona, Catalonia, Spain
- * E-mail:
| |
Collapse
|
32
|
Alho K, Grimm S, Mateo-León S, Costa-Faidella J, Escera C. Early processing of pitch in the human auditory system. Eur J Neurosci 2012; 36:2972-8. [DOI: 10.1111/j.1460-9568.2012.08219.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|