1
|
Abstract
The myelin sheath is formed by concentrically apposed membrane pairs and shows a regularly layered pattern of alternating light lines and dense lines. Observation of cryofixed myelin demonstrated that the structures represent aqueous spaces. All lamellae of the myelin sheath show globular aggregates of particles and these particles are corresponding with aggregates observed after detergent extraction of the myelin. Experimental fusion of myelin lamellae shows an intermixing of the globular particles or subunits. The interaction of these structural units in the bilayers may provide the stability of the myelin lamellae and their lamination.
Collapse
Affiliation(s)
- K Meller
- Ruhr-Universität Bochum, Institut für Anatomie, Abteilung für Cytologie, Germany
| |
Collapse
|
2
|
Affiliation(s)
- M Wolman
- Department of Pathology, Tel Aviv University, Sackler Faculty of Medicine, Israel
| |
Collapse
|
3
|
Abstract
The present work attempts to demonstrate that cryofixation is a valuable method for the study of the nervous tissue. The use of the newly developed methods of cryofixation and freeze-etching without fixatives or cryoprotectants allows new exciting perspectives for the electron microscopical observation of cellular components, emphasizing their three-dimensional morphological structures. Significant contributions have been made on the fine structure of the cytoskeleton, cell membranes and cell organelles. The components of the cytoskeleton are distributed in different composition through the perikarya, dendrites and axon. The ubiquitous presence of the cytoskeleton suggests a crucial role in the functional activities of the neurons, especially in relation to the intracellular communication and to developmental and regeneration processes. Vitrified cellular membranes of myelin sheaths and rod outer segments have been observed in hydrated state by using cryofixation and cryotransfer techniques. These procedures allow new insights into the supramolecular structure and an approximation of morphological data to the present biophysical membrane model including a critical comparison with the current descriptions gained by conventional electron microscopy.
Collapse
Affiliation(s)
- K Meller
- Department of Cytology, Anatomical Institute, University of Bochum, Germany
| |
Collapse
|
4
|
Abstract
The ultrastructure of rat optic and trigeminal nerve myelin was studied using different cryotechniques. Replicas of rapid cryofixed and deep-etched material were compared with cryosections of chemically unfixed specimens and also of glutaraldehyde-fixed specimens. Hydrated cryosections were analysed in a cryotransfer device. The data reported here show discrepancies with the current descriptions of myelin structure based on osmium-fixed and resin-embedded material. The structures called the major line (as a fusion of the cytoplasmic surfaces of the glial cells) in conventional electron microscopy and the intraperiod line (as a fusion of the outer surfaces) are seen in the present material to represent actually aqueous spaces. The extracellular space (E-space) is most sensitive to chemical fixation and other preparation procedures, and probably also expands under pathological conditions. The virtual C-space (cytoplasmic space = major line) is more stable. The cytoplasmic surfaces are most probably joined by globular proteins (myelin basic protein). The most compact organization of myelin is seen in fresh, unfixed nerves. A continuous bilayer could not be observed and the bilayer membrane showed particulate subunits.
Collapse
Affiliation(s)
- K Meller
- Abteilung für Cytologie, Ruhr-Universität Bochum, Federal Republic of Germany
| |
Collapse
|
5
|
McIntosh TJ, Holloway PW. Determination of the depth of bromine atoms in bilayers formed from bromolipid probes. Biochemistry 1987; 26:1783-8. [PMID: 3593689 DOI: 10.1021/bi00380a042] [Citation(s) in RCA: 152] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
X-ray diffraction analysis has been performed on a series of 1-palmitoyl-2-dibromostearoyl-phosphatidylcholines (BRPCs) with bromine atoms at the 6, 7-, the 11, 12-, or the 15, 16-positions on the sn-2 acyl chains. The diffraction patterns indicate that, when hydrated, each of these lipids forms liquid-crystalline bilayers at 20 degrees C. For each lipid, electron density profiles and continuous Fourier transforms were calculated by the use of swelling experiments. In the electron profiles, high-density peaks, due to the bromine atoms, are observed. The separation between these bromine peaks in the profile decreases as the bromine atoms are moved toward the terminal methyl of the acyl chain. For the 6, 7- and 11, 12-bromolipids, experimental Fourier transforms can be approximated by the sum of the transform of 1-palmitoyl-2-oleoylphosphatidylcholine (POPC) and the transform of two symmetrically placed peaks of electron density (the bromines). For the case of the 15, 16-bromolipids, a better fit is obtained for the transforms of a model bilayer where the thickness of the methylene chain region of the bilayer is 3 A greater than that of POPC. Our analysis indicates the following: for each of these bromolipids, the bromines are well localized in the bilayer; the distance of the bromines from the head-group-hydrocarbon boundary are 3.5, 8.0, and 14 A, for 6, 7-, 11, 12-, and 15, 16-BRPC, respectively; the bilayer thickness and perturbation to bilayer hydrocarbon chain packing caused by the bromine atoms depend on the position of the bromines on the hydrocarbon chain.
Collapse
|
6
|
Tabira T. Electron microscopic demonstration of polysaccharides in central and peripheral myelin by thiosemicarbazide-protein-silver staining. JOURNAL OF NEUROCYTOLOGY 1985; 14:781-94. [PMID: 2419521 DOI: 10.1007/bf01170828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Thin sections of glutaraldehyde-fixed central and peripheral nerve myelin were stained with thiosemicarbazide and protein-silver after oxidation with periodic acid on thin sections. In compact CNS myelin, staining was observed exclusively on intraperiod lines. In peripheral myelin, both intraperiod and major dense lines were stained. In addition, dense staining was observed on plasma membranes of oligodendrocytes and Schwann cells, especially periaxonally on tongue processes and in Schmidt-Lanterman incisures. The observed staining was most prominent on glycogen granules in unfixed and freeze-substituted tissues. Therefore, the results strongly suggest that polysaccharides of glycoproteins and glycolipids are visualized in both CNS and PNS compact myelin as well as on surface membranes of oligodendrocytes and Schwann cells.
Collapse
|
7
|
Abstract
A complex forms when bovine P2 protein is added to single-bilayer vesicles created by sonicating myelin lipids. The complex was studied by biochemical analysis, freeze-fracture (FF) and thin-section electron microscopy (EM), and by X-ray diffraction. Smaller amounts of P2 cause the vesicles to aggregate and fuse whereas larger amounts (greater than or equal to 4 wt%) cause multilayers to form. Binding saturates at 15 wt% P2. FF EM shows that large, flat multilayers form within 15 min of addition of P2. Only smooth fracture faces are seen, as expected for a peripheral membrane protein. X-ray diffraction shows a constant repeating distance in the multilayers: 86.0 +/- 0.7 A between the centers of bilayers in the range 4 wt% less than or equal to P2/(P2 + lipid) less than or equal to 15 wt%. Assuming a 53 A-thick bilayer, the space between bilayers is 33 A wide. This is a wider space than for myelin basic protein (MBP) (20-25 A wide). The respective widths are consistent with a compact, globular structure for P2 and a flattened shape for MBP. Calculated electron-density profiles of the lipids with and without P2 reveal the protein largely in the interbilayer spaces, with a small part possibly inserted into the lipid headgroup layers. The different proportions of P2 in the sciatic nerve of various species are tentatively correlated with the different average widths observed by X-ray diffraction for the cytoplasmic space (major period line) between bilayers in the respective sciatic myelins.
Collapse
|
8
|
MacNaughtan W, Snook KA, Caspi E, Franks NP. An X-ray diffraction analysis of oriented lipid multilayers containing basic proteins. BIOCHIMICA ET BIOPHYSICA ACTA 1985; 818:132-48. [PMID: 2411290 DOI: 10.1016/0005-2736(85)90556-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
X-ray diffraction techniques have been used to study the structures of lipid bilayers containing basic proteins. Highly ordered multilayer specimens have been formed by using the Langmuir-Blodgett method in which a solid support is passed through a lipid monolayer held at constant surface pressure at an air/water interface. If the lipid monolayer contains acidic lipids then basic proteins in the aqueous subphase are transferred with the monolayer and incorporated into the multi-membrane stack. X-ray diffraction patterns have been recorded from multilayers of cerebroside sulphate and 40% (molar) cholesterol both with and without polylysine, cytochrome c and the basic protein from central nervous system myelin. Electron density profiles across the membranes have been derived at between 6 A and 12 A resolution. All of the membrane profiles have been placed on an absolute scale of electron density by the isomorphous exchange of cholesterol with a brominated cholesterol analog. The distributions and conformations of the various basic proteins incorporated within the cerebroside sulphate/cholesterol bilayer are very different. Polylysine attaches to the surface of the lipid bilayer as a fully extended chain while cytochrome c maintains its native structure and attaches to the bilayer surface with its short axis approximately perpendicular to the membrane plane. The myelin basic protein associates intimately with the lipid headgroups in the form of an extended molecule, yet its dimension perpendicular to the plane of the membrane of approx. 15 A is consistent with the considerable degree of secondary structure found in solution. In the membrane plane, the myelin basic protein extends to cover an area of about 2500 A2. There is no significant penetration of the protein into the hydrocarbon region of the bilayer or, indeed, beyond the position of the sulphate group of the cerebroside sulphate molecule.
Collapse
|
9
|
Inouye H, Kirschner DA. Effects of ZnCl2 on membrane interactions in myelin of normal and shiverer mice. BIOCHIMICA ET BIOPHYSICA ACTA 1984; 776:197-208. [PMID: 6206893 DOI: 10.1016/0005-2736(84)90209-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
X-ray diffraction was used to record the effects of metal cations on the structure of peripheral nerve myelin. Acidic saline (pH 5.0) either with or without added metal cations caused myelin to swell by 10-20 A from its native period of 178 A. The X-ray patterns usually showed broad reflections, and higher orders were either weak or unobserved. With added ZnCl2, however, the swollen myelin gave diffraction patterns that retained sharp reflections to approx. 15 A spacing. Alkaline saline (pH 9.7) containing ZnCl2 produced a reduction of the myelin period by approx. 5 A which was at least twice as much as that produced by other metals. To examine the underlying chemical basis for these unique interactions of Zn2+ with myelin, we carried out parallel X-ray experiments on sciatic nerve from the shiverer mutant mouse, which lacks the major myelin basic proteins. Shiverer myelin responded like normal myelin to ZnCl2 in acidic saline; however, in alkaline saline shiverer myelin showed broadened X-ray reflections which indicated disordering of the regularity of the membrane arrays, and additional reflections were recorded which indicated lipid phase separation. This breakdown may come about by the binding of Zn2+ to negatively-charged lipids which could be more exposed due to the absence of myelin basic proteins. Electron density profiles were calculated on the assumption that, except for changes in their packing, the myelin membranes were minimally altered in structure. For both normal and shiverer myelins, treatments under acidic conditions resulted in swelling at the extracellular apposition and a slight narrowing of the cytoplasmic space. This swelling is likely due to adsorption of protons and divalent cations. Interaction between Zn2+ and myelin P0 glycoprotein could preserve an ordered arrangement of the apposed membrane surfaces. Alkaline saline containing ZnCl2 produced compaction at the cytoplasmic apposition in both normal and shiverer myelins possibly through interactions with a portion of P0 glycoprotein which extends into the cytoplasmic space between membranes.
Collapse
|
10
|
Sedzik J, Blaurock AE, Höchli M. Lipid/myelin basic protein multilayers. A model for the cytoplasmic space in central nervous system myelin. J Mol Biol 1984; 174:385-409. [PMID: 6201618 DOI: 10.1016/0022-2836(84)90344-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A multilayered complex forms when a solution of myelin basic protein is added to single-bilayer vesicles formed by sonicating myelin lipids. Vesicles and multilayers have been studied by electron microscopy, biochemical analysis, and X-ray diffraction. Freeze-fracture electron microscopy shows well-separated vesicles before myelin basic protein is added, but afterward there are aggregated, possibly multilayered, vesicles and extensive planar multilayers. The vesicles aggregate and fuse within seconds after the protein is added, and the multilayers form within minutes. No intra-bilayer particles are seen, with or without the protein. Some myelin basic protein, but no lipid, remains in the supernatant after the protein is added and the complex sedimented for X-ray diffraction. A rather variable proportion of the protein is bound. X-ray diffraction patterns show that the vesicles are stable in the absence of myelin basic protein, even under high g-forces. After the protein is added, however, lipid/myelin basic protein multilayers predominate over single-bilayer vesicles. The protein is in every space between lipid bilayers. Thus the vesicles are torn open by strong interaction with myelin basic protein. The inter-bilayer spaces in the multilayers are comparable to the cytoplasmic spaces in central nervous system myelins . The diffraction indicates the same lipid bilayer thickness in vesicles and multilayers, to within 1 A. By comparing electron-density profiles of vesicles and multilayers, most of the myelin basic protein is located in the inter-bilayer space while up to one-third may be inserted between lipid headgroups. When cytochrome c is added in place of myelin basic protein, multilayers also form. In this case the protein is located entirely outside the unchanged bilayer. Comparison of the various profiles emphasizes the close and extensive apposition of myelin basic protein to the lipid bilayer. Numerous bonds may form between myelin basic protein and lipids. Cholesterol may enhance binding by opening gaps between diacyl-lipid headgroups.
Collapse
|
11
|
Koski CL, Franko MC, Hudson CS, Shin ML. Incorporation of P0 protein into liposomes: demonstration of a two-domain structure by immunochemical and PAGE analysis. J Neurochem 1984; 42:856-62. [PMID: 6198474 DOI: 10.1111/j.1471-4159.1984.tb02759.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The amphiphilic nature of P0, the major glycoprotein of peripheral nerve myelin, has been suggested previously. In the present study, purified P0 from human peripheral nerve myelin was incorporated into an artificial lipid bilayer consisting of dimyristoyl lecithin and cholesterol. The liposomes were fractionated on a sucrose gradient. The continued expression of P0 antigenicity by the liposomes was shown by specific complement consumption with a multivalent antiserum against P0 or with an IgM monoclonal antibody. Both antibodies recognized P0 expressed on the surface of peripheral nerve myelin and the P0 liposomes. P0 liposomes and peripheral nerve myelin treated with trypsin lost the surface determinant that reacted with the monoclonal antibody. Analysis of the trypsin-treated liposomes and peripheral nerve myelin by polyacrylamide gel electrophoresis revealed molecular weights for this protein of 19,500 and 20,500, respectively. Similar treatment of the P0 in the fluid phase resulted in many smaller fragments. These results indicate that P0 consists of two domains, a hydrophilic domain accessible to trypsin digestion and a hydrophobic domain, which is potentially trypsin-sensitive, but shielded by the lipid bilayer. Binding studies with an anti-P0 monoclonal antibody and polyacrylamide gel analysis of the lipid-shielded P0 fragment in liposomes and peripheral nerve myelin suggest that the orientation of the protein in the liposome is similar to that in peripheral nerve myelin.
Collapse
|
12
|
Shuman S, Hardy M, Pleasure D. Peripheral nervous system myelin and Schwann cell glycoproteins: identification by lectin binding and partial purification of a peripheral nervous system myelin-specific 170,000 molecular weight glycoprotein. J Neurochem 1983; 41:1277-85. [PMID: 6619865 DOI: 10.1111/j.1471-4159.1983.tb00822.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Radioiodinated lectins were used to detect glycoproteins of peripheral nervous system (PNS) myelin (rat, human, bovine) and cultured rat Schwann cells. Proteins were resolved by sodium dodecyl sulfate-polyacrylamide slab gel electrophoresis and transferred to nitrocellulose filters. The filters were overlaid with radioiodinated lectins of known saccharide affinities. These included concanavalin A, Helix pomatia, Limulus polyphemus, Maclura pomifera, peanut, soybean, Ulex europaeus, and wheat germ agglutinins. Inclusion of the appropriate monosaccharide in the overlay solution (0.2 M) inhibited lectin binding to the nitrocellulose-fixed proteins. Fluorography permitted identification of 26 myelin glycoproteins and many more in Schwann cells. All lectins labeled a band present in myelin, but not Schwann cells, corresponding to the major PNS myelin protein, P0. Our attention focused on a high-molecular-weight myelin glycoprotein [apparent molecular weight (Mr) 170,000], which appeared abundant by Coomassie Blue staining and which was heavily labeled by all lectins except concanavalin A. A protein with approximately this Mr and lectin-binding pattern was present in human and bovine PNS myelin as well, but not detected in rat Schwann cells, CNS myelin, liver and fibroblast homogenates, or cultured bovine oligodendroglia. Hence this 170,000 Mr glycoprotein is apparently unique to PNS myelin.
Collapse
|
13
|
Kirschner DA, Ganser AL. Myelin labeled with mercuric chloride. Asymmetric localization of phosphatidylethanolamine plasmalogen. J Mol Biol 1982; 157:635-58. [PMID: 6214639 DOI: 10.1016/0022-2836(82)90503-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
14
|
Blaurock AE. Evidence of bilayer structure and of membrane interactions from X-ray diffraction analysis. BIOCHIMICA ET BIOPHYSICA ACTA 1982; 650:167-207. [PMID: 7046799 DOI: 10.1016/0304-4157(82)90016-8] [Citation(s) in RCA: 112] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
15
|
Sealock R. Cytoplasmic surface structure in postsynaptic membranes from electric tissue visualized by tannic-acid-mediated negative contrasting. J Biophys Biochem Cytol 1982; 92:514-22. [PMID: 7061593 PMCID: PMC2112082 DOI: 10.1083/jcb.92.2.514] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
In this study, acetylcholine receptor-rich postsynaptic membranes from electric tissues of the electric rays Narcine brasiliensis and Torpedo californica are negatively contrasted for thin-section electron microscopy through the use of tannic acid. Both outer (extracellular) and inner (cytoplasmic) membrane surfaces are negatively contrasted, and can be studied together in transverse sections. The hydrophobic portion of the membrane appears as a thin (approximately 2 nm), strongly contrasted band. This band is the only image given by membrane regions which are devoid of acetylcholine receptor. In regions of high receptor density, however, both surfaces of the membrane are seen to bear or be associated with material which extends approximately 6.5 nm beyond the center of the bilayer. The material on the outer surface can be identified with the well-known extracellular portion of the receptor molecule. A major portion of the inner surface image is eliminated by extraction of the membranes at pH 11 to remove peripheral membrane proteins, principally the 43,000 Mr (43K) protein. The images thus suggest a cytoplasmic localization of the 43K protein, with its distribution being coextensive with that of the receptor. They also suggest that the 43K protein extends farther from the cytoplasmic surface than does the receptor.
Collapse
|
16
|
Blaurock AE. The spaces between membrane bilayers within PNS myelin as characterized by X-ray diffraction. Brain Res 1981; 210:383-7. [PMID: 6971691 DOI: 10.1016/0006-8993(81)90914-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
X-ray diffraction data from a wide range of animals characterize the two spaces in the peripheral nervous system (PNS) and the central nervous system (CNS) myelins. The 'extracellular space' is nearly constant from species to species while the 'cytoplasmic space' is more variable. A profile of swollen rat sciatic myelin shows material projecting from the bilayer into the extracellular space. Interdigitating Po molecules therefore are proposed to separate neighboring myelin bilayers across the extracellular space in PNS.
Collapse
|
17
|
Franks NP, Levine YK. Low-angle x-ray diffraction. MOLECULAR BIOLOGY, BIOCHEMISTRY, AND BIOPHYSICS 1981; 31:437-87. [PMID: 7015110 DOI: 10.1007/978-3-642-81537-9_9] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
18
|
|