Charp PA, Kinders RJ, Johnson TC. G2 cell cycle arrest induced by glycopeptides isolated from the bovine cerebral cortex.
J Cell Biol 1983;
97:311-6. [PMID:
6885902 PMCID:
PMC2112537 DOI:
10.1083/jcb.97.2.311]
[Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The ability of glycopeptides, isolated from bovine cerebral cortex, to alter cell division was studied by cell-cycle analyses. The results showed that glycopeptides arrested baby hamster kidney (BHK)-21 cells and Chinese hamster ovary (CHO) cells in the G2 phase of the cell cycle. Upon removal of the growth inhibition from arrested BHK-21 cells, the mitotic index in colchicine-treated cultures increased from 5 to 40% within 6 h and the increase in mitotic activity was accompanied by a complete doubling of all arrested cells within this 6-h time period. Determination of DNA content in growth-arrested BHK-21 cells showed that growth-arrested cells contained about twice the DNA of control cell cultures. Although CHO cells treated in a like manner with growth inhibitor could not be arrested for the same length of time as BHK-21 cells (18 h vs. 72 h before initiation of escape) and to the same degree (60% of the cell population vs. 99% of BHK-21 cells), the escape kinetics of CHO cells did indicate a G2 arrest. Approximately 3.5 h after escape began, CHO cell numbers in treated cultures attained the cell numbers found in control cultures. This rapid growth phase occurring in less than 4 h indicated that the growth inhibitor induced a G2 arrest-point in CHO cells that was not lethal since the entire arrested cell population divided.
Collapse