1
|
Waehneldt TV, Matthieu JM, Jeserich G. Appearance of Myelin proteins during vertebrate evolution. Neurochem Int 2012; 9:463-74. [PMID: 20493148 DOI: 10.1016/0197-0186(86)90136-1] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/1986] [Accepted: 06/13/1986] [Indexed: 11/30/2022]
Abstract
Myelin, defined as an arrangement of spirally fused unit membranes, is an acquisition of vertebrates and first appeared during evolution in Gnathostomata. In all species studied PNS and CNS myelins contain the myelin-associated glycoprotein (MAG) and the myelin basic protein (MBP). Throughout phylogeny PNS myelin is characterized by the major P(0) glycoprotein which is called IP in fishes. The PNS myelin proteins did not evolve further except for the addition of P(2) protein from reptiles onward. In Elasmobranchii and Chondrostei, PNS and CNS myelin proteins are similar. CNS myelin of actinopterygian fishes possesses a 36,000 Da protein (36K) in addition to P(0)-like IP glycoproteins. In tetrapod CNS myelin, P(0) is replaced by the proteolipid protein (PLP) and the Wolfgram protein (WP). Of particular interest in a transitional phylogenetic sense are the lungfish Protopterus, carrying glycosylated PLP (g-PLP) but no P(0), 36K or WP, and the bichir Polypterus, showing simultaneous presence of P(0), 36K and PLP. These results indicate that myelin proteins could be valuable molecular markers in establishing vertebrate phylogenetic relationships and in reconstructing the fish-tetrapod transition.
Collapse
Affiliation(s)
- T V Waehneldt
- Max-Planck-Institut für experimentelle Medizin, Forschungsstelle Neurochemie, D-3400 Göttingen F.R.G
| | | | | |
Collapse
|
2
|
Zand R, Jin X, Kim J, Wall DB, Gould R, Lubman DM. Studies of posttranslational modifications in spiny dogfish myelin basic protein. Neurochem Res 2001; 26:539-47. [PMID: 11513482 DOI: 10.1023/a:1010921230859] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The objective of this investigation was to determine whether nonmammalian myelin basic protein contained charge isomers resulting from extensive posttranslational modifications as seen in mammalian MBP. Four charge isomer components from dogfish MBP have been isolated. These forms arise by phosphorylation and deamidation modifications. Components C1, C2 and C3 have been characterized. We are currently characterizing component C8. Dogfish MBP is less cationic than mammalian MBP and has about 50% lower mobility on a basic pH gel electrophoresis relative to human and to bovine MBP. The mammalian component C1, which is unmodified, is modified in the dogfish by phosphorylation. The reduced electrophoretic mobility is largely attributable to the charge reduction resulting from phosphorylation in serine 72, 83, and 120 or 121 in C1, and C3. In component C2, two or three phosphate groups were distributed among residues 134, 138 and 139. It was found that dogfish amino acid residue 30 was a lysine residue and not a glutamate residue as reported in the literature.
Collapse
Affiliation(s)
- R Zand
- Department of Biological Chemistry, University of Michigan, Ann Arbor 48109-1055, USA
| | | | | | | | | | | |
Collapse
|
3
|
Gould RM, Fannon AM, Moorman SJ. Neural cells from dogfish embryos express the same subtype-specific antigens as mammalian neural cells in vivo and in vitro. Glia 1995; 15:401-18. [PMID: 8926035 DOI: 10.1002/glia.440150405] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Neural cells are classically identified in vivo and in vitro by a combination of morphological and immunocytochemical criteria. Here, we demonstrate that antibodies used to identify mammalian oligodendrocytes, neurons, and astrocytes recognize these cell types in the developing spiny dogfish central nervous system and in cultures prepared from this tissue. Oligodendrocyte-lineage-specific antibodies O1, O4, and R-mAb labeled cells in the 9 cm dogfish brain stem's medial longitudinal fascicle (MLF) and in areas lateral to it. Process-bearing cells, cultured from the dogfish brain stem, were also labeled with these antibodies. An anti-lamprey neurofilament antibody (LCM), which recognized 60 and 150 kDa proteins in dogfish brain stem homogenates, labeled axons and neurons in the brain stem and axons in the cerebellum of the dogfish embryo. It also labeled cell bodies and/or processes of some cultured cerebellar cells. An anti-bovine glial fibrillary acidic protein antibody, which recognized 42-44 kDa protein(s) in dogfish brain stem homogenates, labeled astrocyte-like processes in the brain stem and cerebellum of the dogfish embryo and numerous large and small flat cells in the cerebellar cultures. These results demonstrate that dogfish oligodendrocytes, neurons, and astrocytes express antigens that are conserved in mammalian neural cells. The ability to culture and identify neural cell types from cartilaginous fish sets the stage for studies to determine if proliferation, migration, and differentiation of these cell types are regulated in a similar fashion to mammalian cells.
Collapse
Affiliation(s)
- R M Gould
- New York State Institute for Basic Research in Developmental Disabilities, Staten Island 10314-6399, USA
| | | | | |
Collapse
|
4
|
Spivack WD, Zhong N, Salerno S, Saavedra RA, Gould RM. Molecular cloning of the myelin basic proteins in the shark, Squalus acanthias, and the ray, Raja erinacia. J Neurosci Res 1993; 35:577-84. [PMID: 7692075 DOI: 10.1002/jnr.490350602] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Myelin basic proteins (MBPs) are a family of alternatively spliced isoforms present in myelin sheaths of most vertebrates. A reverse transcriptase-polymerase chain reaction (RT-PCR) approach was used to clone MBP isoforms in species representing two superorders of elasmobranchs: Squalus acanthias, representing Squalomorph sharks, and Raja erinacia, representing Batoidea rays. Two products were generated from each species. The larger product encoded a 155 amino acid protein, the same size as MBPs from two Galeomorph sharks, Heterodontus francisci and Carcharhinus obscurus, which, based upon alignment with other vertebrate MBPs, contained six of the seven MBP exons; only exon II was absent. The smaller product encoded a 141 amino acid protein that lacked exon II and exon V. There were 26 and 30 nucleotide differences between Squalus and Heterodontus, and Raja and Heterodontus, respectively. Sequences from Squalus and Raja were far more similar, having only five nucleotide differences. Both isoforms of elasmobranch MBP contain 18.5% basic (lysine plus arginine) amino acids, compared with 17.5% in mammalian MBPs comprised of the corresponding exons. Northern blot analysis of whole brain total RNA revealed a single band of 2.5 kb in Squalus, and three bands of 1.2, 1.4, and 2.3 kb in Raja. The finding that MBPs of a Squalomorph shark and a Batoidea ray are closer to one another than either is to the Galeomorph sharks suggests that MBP sequence information may prove useful in classifying modern day Chondrichthytes.
Collapse
Affiliation(s)
- W D Spivack
- Marine Biological Laboratory, Woods Hole, Massachusetts
| | | | | | | | | |
Collapse
|
5
|
Sapirstein VS, Nolan CE, Fischer I, Cochary E, Blau S, Flynn CJ. The phylogenic expression of plasmolipin in the vertebrate nervous system. Neurochem Res 1991; 16:123-8. [PMID: 1881515 DOI: 10.1007/bf00965699] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Plasmolipin is a plasma membrane proteolipid is a major myelin membrane component (Cochary et al., 1990). In this study we report the phylogenic expression of plasmolipin in the vertebrate nervous system. Using Western blot analysis with polyclonal antibodies, we have analyzed membrane fractions, including myelin, from elasmobranchs, teleosts, amphibians, reptiles, birds and mammals. On the basis of immune detection, plasmolipin appears to be restricted to the mammalian nervous system. Comparison of the central and peripheral nervous systems of mammals showed only minor differences in the level of plasmolipin in these two regions. Within mammals, little quantitative differences were observed when rat, human and bovine membrane fractions were compared. The late evolutionary expression of plasmolipin which results in its restriction to mammals makes it unique among the (major) myelin proteins. The potential physiologic significance of these data are discussed.
Collapse
Affiliation(s)
- V S Sapirstein
- Division of Neurobiology, Nathan Kline Institute, Orangeburg, NY
| | | | | | | | | | | |
Collapse
|
6
|
Wood DD, McLaurin J, Moscarello MA. A hydroxyproline-containing protein from shark brain that is related to myelin basic protein. J Neurochem 1990; 55:1697-702. [PMID: 1698931 DOI: 10.1111/j.1471-4159.1990.tb04958.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Myelin basic protein (MBP) from shark (Chondricthyes) consists of a simpler mixture of charge isomers than human MBP. About two-thirds of the total amount applied to a CM-52 cellulose cation-exchange column was recovered in the unbound fraction of the column; the remaining one-third bound to column and was eluted as a single OD280 peak. This bound material did not sow the usual pattern of charge microheterogeneity found with human or bovine MBP. The unbound fraction was composed of a high molecular weight protein (55-60 kDa), which constituted most of this protein fraction and a low molecular weight protein (approximately 18 kDa). The amino acid composition of our unbound fraction was similar to that reported earlier. The Glx (glutamic acid + glutamine) was increased about threefold whereas the Arg content was only about 25% of that of the 18.5 kDa variant of bovine or human origin. The presence of hydroxyproline (1.2 residues/100) in this protein was noteworthy, identification of which was achieved by amino acid analysis in two different systems and by mass spectrometry. In the precolumn derivatization method, hydroxyproline eluted at 2.7 min; in the postcolumn derivatization method it eluted at 12.2 min. Identification of hydroxyproline was completed by fast atom bombardment-mass spectral analysis. The effect of hydroxyproline on the secondary structure of this protein is being studied. Verification that this high molecular weight protein contained MBP sequences within its primary structure was confirmed by immunological methods.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- D D Wood
- Department of Biochemistry, Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | |
Collapse
|
7
|
Stoner GL. Conservation throughout vertebrate evolution of the predicted beta-strands in myelin basic protein. J Neurochem 1990; 55:1404-11. [PMID: 1697895 DOI: 10.1111/j.1471-4159.1990.tb03153.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
To identify functionally important parts of the 18.5-kDa myelin basic protein (MBP), the amino acid sequences from 10 species ranging from shark to human were aligned using the SEQHP computer program. The residues that are invariant or very conservatively substituted (Arg/Lys, Ser/Thr, Ile/Leu, Asp/Glu) among all 10 proteins were scored. Of the 72 conserved residues in the 170-residue human protein (42% conserved), 32 are found within the five beta-strands previously predicted (45 residues, 71% conserved), 23 within the small-loops region (42 residues, 55% conserved), but only 17 within the large-loops region (83 residues, 20% conserved). Of the 22 hydrophobic residues within the predicted beta-sheet of human MBP, 20 hydrophobic residues remain in the shark protein, 19 of them in the same positions. In contrast, there are 10 hydrophobic residues elsewhere in the human protein, but only 7 remain in the shark protein and only 1 of them is in the same position. The triprolyl sequence found in all mammalian MBPs and in the chicken MBP is not conserved in the shark protein. The four alternately spliced forms of mouse MBP can be accommodated by the beta-structural model, but not the 17-kDa human MBP, which lacks exon 5. These findings confirm the crucial role of the hydrophobic residues in the predicted beta-sheet for the structure and function of the protein. It seems likely that the conserved portions of the protein make an important contribution to the highly ordered lamellar structure of myelin.
Collapse
Affiliation(s)
- G L Stoner
- Laboratory of Experimental Neuropathology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
8
|
Milne TJ, Atkins AR, Warren JA, Auton WP, Smith R. Shark myelin basic protein: amino acid sequence, secondary structure, and self-association. J Neurochem 1990; 55:950-5. [PMID: 1696624 DOI: 10.1111/j.1471-4159.1990.tb04583.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Myelin basic protein (MBP) from the Whaler shark (Carcharhinus obscurus) has been purified from acid extracts of a chloroform/methanol pellet from whole brains. The amino acid sequence of the majority of the protein has been determined and compared with the sequences of other MBPs. The shark protein has only 44% homology with the bovine protein, but, in common with other MBPs, it has basic residues distributed throughout the sequence and no extensive segments that are predicted to have an ordered secondary structure in solution. Shark MBP lacks the triproline sequence previously postulated to form a hairpin bend in the molecule. The region containing the putative consensus sequence for encephalitogenicity in the guinea pig contains several substitutions, thus accounting for the lack of activity of the shark protein. Studies of the secondary structure and self-association have shown that shark MBP possesses solution properties similar to those of the bovine protein, despite the extensive differences in primary structure.
Collapse
Affiliation(s)
- T J Milne
- Department of Biochemistry, University of Queensland, St. Lucia, Australia
| | | | | | | | | |
Collapse
|
9
|
Saavedra RA, Fors L, Aebersold RH, Arden B, Horvath S, Sanders J, Hood L. The myelin proteins of the shark brain are similar to the myelin proteins of the mammalian peripheral nervous system. J Mol Evol 1989; 29:149-56. [PMID: 2478717 DOI: 10.1007/bf02100113] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The two major structural proteins in the shark CNS are similar to the structural proteins, Po and myelin basic protein (MBP), found in the mammalian peripheral nervous system (PNS). Shark Po is 46% similar to its mammalian counterpart. The extracellular domain of shark Po also appears to be organized as an immunoglobulin-like domain that mediates homotypic interactions. The intracellular domain of shark Po also is very basic and may play a role in myelin condensation analogous to that of MBP. Shark MBP is 44% similar to mammalian MBP. Both MBPs show conserved interspersed regions and are present in multiple forms that arise by alternative splicing of a single transcript. These structural analyses indicate that the complexities seen in mammalian myelin arose early during vertebrate evolution.
Collapse
Affiliation(s)
- R A Saavedra
- Biology Division, California Institute of Technology, Pasadena 91125
| | | | | | | | | | | | | |
Collapse
|
10
|
LeBlanc AC, Mezei C. Mammalian and avian PO protein of the peripheral nervous system myelin are different. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. B, COMPARATIVE BIOCHEMISTRY 1987; 87:895-905. [PMID: 2444388 DOI: 10.1016/0305-0491(87)90410-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
1. The mammalian PO gene exhibits low homology to the avian PO gene and transcript. 2. The avian PO mRNA is smaller than the mammalian mRNA. 3. The primary structure of mammalian and avian PO proteins differ in their molecular weight, isoelectric point, and chymotryptic peptide pattern. 4. Similarity between the PO proteins is indicated by immuno-cross-reactivity of the anti-chicken PO IgG to mammalian PO proteins. 5. Similarities at the level of amino acid sequence could provide insight on the structure and function of the PO protein.
Collapse
Affiliation(s)
- A C LeBlanc
- Department of Biochemistry, Dalhousie University, Halifax, Nova Scotia, Canada
| | | |
Collapse
|