1
|
Sanchez Noriega JL, Chartrand NA, Valdoz JC, Cribbs CG, Jacobs DA, Poulson D, Viglione MS, Woolley AT, Van Ry PM, Christensen KA, Nordin GP. Spatially and optically tailored 3D printing for highly miniaturized and integrated microfluidics. Nat Commun 2021; 12:5509. [PMID: 34535656 PMCID: PMC8448845 DOI: 10.1038/s41467-021-25788-w] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 08/31/2021] [Indexed: 02/07/2023] Open
Abstract
Traditional 3D printing based on Digital Light Processing Stereolithography (DLP-SL) is unnecessarily limiting as applied to microfluidic device fabrication, especially for high-resolution features. This limitation is due primarily to inherent tradeoffs between layer thickness, exposure time, material strength, and optical penetration that can be impossible to satisfy for microfluidic features. We introduce a generalized 3D printing process that significantly expands the accessible spatially distributed optical dose parameter space to enable the fabrication of much higher resolution 3D components without increasing the resolution of the 3D printer. Here we demonstrate component miniaturization in conjunction with a high degree of integration, including 15 μm × 15 μm valves and a 2.2 mm × 1.1 mm 10-stage 2-fold serial diluter. These results illustrate our approach's promise to enable highly functional and compact microfluidic devices for a wide variety of biomolecular applications.
Collapse
Affiliation(s)
- Jose L Sanchez Noriega
- Electrical and Computer Engineering Department, Brigham Young University, Provo, UT, 84602, USA
| | - Nicholas A Chartrand
- Chemistry and Biochemistry Department, Brigham Young University, Provo, UT, 84602, USA
| | - Jonard Corpuz Valdoz
- Chemistry and Biochemistry Department, Brigham Young University, Provo, UT, 84602, USA
| | - Collin G Cribbs
- Chemistry and Biochemistry Department, Brigham Young University, Provo, UT, 84602, USA
| | - Dallin A Jacobs
- Chemistry and Biochemistry Department, Brigham Young University, Provo, UT, 84602, USA
| | - Daniel Poulson
- Chemistry and Biochemistry Department, Brigham Young University, Provo, UT, 84602, USA
| | - Matthew S Viglione
- Electrical and Computer Engineering Department, Brigham Young University, Provo, UT, 84602, USA
| | - Adam T Woolley
- Chemistry and Biochemistry Department, Brigham Young University, Provo, UT, 84602, USA
| | - Pam M Van Ry
- Chemistry and Biochemistry Department, Brigham Young University, Provo, UT, 84602, USA
| | - Kenneth A Christensen
- Chemistry and Biochemistry Department, Brigham Young University, Provo, UT, 84602, USA
| | - Gregory P Nordin
- Electrical and Computer Engineering Department, Brigham Young University, Provo, UT, 84602, USA.
| |
Collapse
|
2
|
Yang YC, Kao LS. Regulation of sodium-calcium exchanger activity by creatine kinase. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 961:163-73. [PMID: 23224878 DOI: 10.1007/978-1-4614-4756-6_14] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
It has been shown that in rat heart NCX1 exists in a macromolecular -complex including PKA, PKA-anchoring protein, PKC, and phosphatases PP1 and PP2A. In addition, several lines of evidence suggest that the interactions of the exchanger with other molecules are closely associated with its function in regulation of [Ca(2+)](i). NCX contains a large intracellular loop (NCXIL) that is responsible for regulating NCX activity. We used the yeast two-hybrid method to screen a human heart cDNA library and found that the C-terminal region of sarcomeric mitochondrial creatine kinase (sMiCK) interacted with NCX1IL. Among the four creatine kinase (CK) isozymes, both sMiCK and the muscle-type cytosolic creatine kinase (CKM) co-immunoprecipitated with NCX1. Both sMiCK and CKM were able to produce a recovery in the decreased NCX1 activity that was lost under energy-compromised conditions. This regulation is mediated through a putative PKC phosphorylation site of sMiCK and CKM. The catalytic activity of sMiCK and CKM is not required for their regulation of NCX1 activity. Our results suggest a novel mechanism for the regulation of NCX1 activity and a novel role for CK.
Collapse
Affiliation(s)
- Ya-Chi Yang
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan, Republic of China
| | | |
Collapse
|
3
|
Zaika OL, Pochinyuk OV, Sadovi OV, Kostyuk PG, Lukyanetz EA. Involvement of the Endoplasmic Reticulum of Chromaffin Cells of the Rat Adrenal Gland in Calcium Signaling. NEUROPHYSIOLOGY+ 2010. [DOI: 10.1007/s11062-010-9117-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
4
|
Yang DM, Huang CC, Lin HY, Tsai DP, Kao LS, Chi CW, Lin CC. Tracking of secretory vesicles of PC12 cells by total internal reflection fluorescence microscopy. J Microsc 2003; 209:223-7. [PMID: 12641766 DOI: 10.1046/j.1365-2818.2003.01129.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Total internal reflection fluorescence microscopy is used to detect cellular events near the plasma membrane. Behaviours of secretory vesicles near the cell surface of living PC12 cells, a neuroendocrine cell line, are studied. The secretory vesicles are labelled by over-expression of enhanced green fluorescent protein-tagged Rab3A, one of the small G proteins involved in the fusion of secretory vesicles to plasma membrane in PC12 cells. Images acquired by a fast cooled charge-coupled device camera using conventional fluorescence microscopy and total internal reflection fluorescence microscopy are compared and analysed. Within the small evanescent range (< 200 nm), the movements of the secretory vesicles of PC12 cells before and after stimulation by high K+ are examined. The movements of one vesicle relative to another already docked on the membrane are detected. Total internal reflection fluorescence microscopy provides a novel optical method to trace and analyse the exocytotic events and vesicle specifically near a cell membrane without interference of signals from other parts of the cell.
Collapse
Affiliation(s)
- D-M Yang
- Department of Medical Research and Education, Taipei Veterans General Hospital, Taipei, Taiwan
| | | | | | | | | | | | | |
Collapse
|
5
|
Yang DM, Kao LS. Relative contribution of the Na(+)/Ca(2+) exchanger, mitochondria and endoplasmic reticulum in the regulation of cytosolic Ca(2+) and catecholamine secretion of bovine adrenal chromaffin cells. J Neurochem 2001; 76:210-6. [PMID: 11145994 DOI: 10.1046/j.1471-4159.2001.00055.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The relative importance of mitochondria, the Na(+)/Ca(2+) exchanger (NCX) and the endoplasmic reticulum (ER) in the regulation of the cytosolic Ca(2+) concentration ([Ca(2+)](i)) were examined in bovine chromaffin cells using fura-2 for average [Ca(2+)](i) and amperometry for secretory activity, which reflects the local Ca(2+) concentration near the exocytotic sites. Chromaffin cells were stimulated by a high concentration of K(+) when the three Ca(2+) removal mechanisms were individually or simultaneously inhibited. When the mitochondrial Ca(2+) uptake was inhibited, the [Ca(2+)](i) decayed at a significantly slower rate and the secretory activity was higher than the control cells. The NCX appears to function only in the initial phase of [Ca(2+)](i) decay and when the ER Ca(2+) pump is blocked. Similarly, the ER had a significant effect on the [Ca(2+)](i) decay and on the secretion only when the NCX was blocked. Inhibition of all three mechanisms leads to a substantial delay in [Ca(2+)](i) recovery and an increase in the secretion. The results suggest that the three mechanisms work together in the regulation of the Ca(2+) near the Ca(2+) channels and exocytotic sites and therefore modulate the secretory activity. When Ca(2+) diffuses away from the exocytotic sites, the mitochondrial Ca(2+) uptake becomes the dominant mechanism.
Collapse
Affiliation(s)
- D M Yang
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan, China
| | | |
Collapse
|
6
|
Tramontina F, Karl J, Gottfried C, Mendez A, Gonçalves D, Portela LV, Gonçalves CA. Digitonin-permeabilization of astrocytes in culture monitored by trypan blue exclusion and loss of S100B by ELISA. BRAIN RESEARCH. BRAIN RESEARCH PROTOCOLS 2000; 6:86-90. [PMID: 11086267 DOI: 10.1016/s1385-299x(00)00041-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The present protocol details a procedure to permeabilize astrocytes in cultures with digitonin as well as to discuss some data about factors that interfere in permeabilization, particularly divalent cations and nucleotides. Two methods to assess astrocyte permeabilization are described: trypan blue exclusion and ELISA for S100B, a specific protein expressed by these cells. Digitonin-permeabilization of astrocytes has been used to investigate intracellular pools of Ca(2+), internal stores of metabolites, phosphoinositide hydrolysis, and recently we standardized a procedure to study protein phosphorylation (Brain Res. 853 (2000) 32-40). A short incubation time (10 min) with 30 microM digitonin permeabilized at least 75% of cells. A range of media with different ionic nature can be used in cell permeabilization without affecting significantly the extent of permeabilization, but calcium and ATP of the order of 10(-5) M induced a partial resealing which deserves to be considered in assays of permeabilized preparations of astrocytes.
Collapse
Affiliation(s)
- F Tramontina
- Departamento de Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos, 2600-Anexo, 90.035-003, Porto Alegre, Brazil
| | | | | | | | | | | | | |
Collapse
|
7
|
Gonçalves CA, Gottfried C, Dunkley PR. The use of permeabilized cells to assay protein phosphorylation and catecholamine release. Neurochem Res 2000; 25:885-94. [PMID: 10944008 DOI: 10.1023/a:1007533927813] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A number of approaches can be used to determine the protein kinases and protein phosphatases acting on particular phosphoproteins in vivo. Cell permeabilization represents one such approach. In this overview we discuss the different permeabilization procedures used in bovine adrenal chromaffin cells and in particular the use of digitonin. The effect of various factors on the extent of digitonin-permeabilization, protein phosphorylation and catecholamine release are also discussed. The factors include the permeabilization medium, the ions such as calcium, and the second messengers, such as cAMP, IP3, cADPR and calmodulin. The effect of specific peptide inhibitors of protein kinases on tyrosine hydroxylase phosphorylation is illustrated. Advantages and disadvantages of cell permeabilization procedures are discussed throughout the text.
Collapse
Affiliation(s)
- C A Gonçalves
- Dept de Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Brazil
| | | | | |
Collapse
|
8
|
Aunis D. Exocytosis in chromaffin cells of the adrenal medulla. INTERNATIONAL REVIEW OF CYTOLOGY 1998; 181:213-320. [PMID: 9522458 DOI: 10.1016/s0074-7696(08)60419-2] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The chromaffin cell has been used as a model to characterize releasable components present in secretory granules and to understand the cellular mechanisms involved in catecholamine release. Recent physiological and biochemical developments have revealed that molecular mechanisms implicated in granule trafficking are conserved in all eukaryotic species: a rise in intracellular calcium triggers regulated exocytosis, and highly conserved proteins are essential elements which interact with each other to form a molecular scaffolding, ensuring the docking of granules at the plasma membrane, and perhaps membrane fusion. However, the mechanisms regulating secretion are multiple and cell specific. They operate at different steps along the life of a granule, from the time of granule biosynthesis up to the last step of exocytosis. With regard to cell specificity, noradrenaline and adrenaline chromaffin cells display different receptor and signaling characteristics that may be important to exocytosis. Characterization of regulated exocytosis in chromaffin cells provides not only fundamental knowledge of neurosecretion but is of additional importance as these cells are used for therapeutic purposes.
Collapse
Affiliation(s)
- D Aunis
- Biologie de la Communication Cellulaire, Unité INSERM U-338, Strasbourg, France
| |
Collapse
|
9
|
Morita K, Hamano S, Teraoka K, Ishimura K. Possible involvement of intracellular Ca2+ in hyposmosis-evoked catecholamine release from adrenal chromaffin cells. Neurochem Int 1997; 31:731-7. [PMID: 9364459 DOI: 10.1016/s0197-0186(96)00065-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The influence of hyposmotic conditions on catecholamine release was studied using cultured adrenal chromaffin cells. Incubation of the cells in hyposmotic solution led to the enhancement of catecholamine release in a manner dependent on the reduction of osmolarity. Hyposmosis-evoked catecholamine release was similarly observed in the presence or absence of extracellular Ca2+, and was not significantly affected by organic and inorganic Ca2+ entry blockers. These results indicated that the hyposmosis-evoked release might be associated with a rise in the intracellular Ca2+ concentration. Further studies showed that neither ryanodine nor thapsigargin caused any significant effect on hyposmosis-evoked catecholamine release, whereas pretreatment of chromaffin cells with carbonyl cyanide m-chlorophenyl hydrazone significantly enhanced the hyposmosis-evoked release. Catecholamine release evoked by exposure to hyposmotic medium is therefore thought to be mediated through intracellular Ca2+, which may be mainly sequestered by the mitochondrial pools. Neither caffeine- nor inositol 1,4,5-trisphosphate-sensitive Ca2+ pools seems likely to be involved in hyposmosis-evoked catecholamine release, although the Ca2+ pools that contribute to the elevation of intracellular Ca2+ observed under hyposmotic conditions are not yet completely identified.
Collapse
Affiliation(s)
- K Morita
- Department of Pharmacology, Tokushima University School of Medicine, Japan
| | | | | | | |
Collapse
|
10
|
Teraoka H, Takai R, Taneike T, Hiraga T, Ohga A. Inositol 1,4,5-trisphosphate- and caffeine-sensitive Ca(2+)-storing organelle in bovine adrenal chromaffin cells. JAPANESE JOURNAL OF PHARMACOLOGY 1996; 72:307-15. [PMID: 9015739 DOI: 10.1254/jjp.72.307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The uptake and release properties of Ca2+ by several subcellular fractions of the bovine adrenal medulla were investigated. Investigation by the 45Ca2+ tracer method showed that permeabilized cells and the fractions of mitochondria (MT) and microsomes (MC) caused ATP-dependent Ca2+ uptake in a Ca2+ concentration-dependent manner (pCa 8-4), whereas permeabilized cells and the fractions of secretory granules (SG) were able to accumulate a significant amount of Ca2+ even in the absence of ATP, which was completed by the addition of hexokinase and glucose. In these organelle fractions, Ca2+ uptake in the presence of ATP at pCa 7 and pCa 5.8 was well-correlated with the activity of the NADPH cytochrome c reductase (marker enzyme for the endoplasmic reticulum) and cytochrome c oxidase (marker enzyme for mitochondria), respectively. As detected by Fura-2 ratiometry, both inositol 1,4,5-trisphosphate (IP3) and caffeine caused concentration-dependent Ca2+ releases from permeabilized cells and MC, but not from MT and SG. In an ATP-depleted condition, homogenates still took up a significant amount of Ca2+ but was not able to respond to IP3 and caffeine. These results suggest that the endoplasmic reticulum is a major Ca(2+)-storing organelle, which releases Ca2+ in response to IP3 and caffeine in bovine adrenal chromaffin cells.
Collapse
Affiliation(s)
- H Teraoka
- Department of Toxicology, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan
| | | | | | | | | |
Collapse
|
11
|
Chueh SH, Kao LS, Liu YT. Enhanced calcium signalling events in neuroblastoma x glioma hybrid NG108-15 cells after treatment with dibutyryl cyclic AMP. Brain Res 1994; 660:81-7. [PMID: 7828005 DOI: 10.1016/0006-8993(94)90841-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The effects of dibutyryl cyclic AMP (dbcAMP) treatment on Ca2+ channel activities, Ca2+ accumulation by intracellular Ca2+ pools, and sizes of IP3- and GTP-releasable pools in neuroblastoma x glioma hybrid NG108-15 cells were studied. High extracellular K+ induced a greater rise in intracellular calcium concentration ([Ca2+]i) in dbcAMP-treated cells than in control cells. In dbcAMP-treated cells, the initial phase of the high K(+)-induced [Ca2+]i rise displayed a much higher sensitivity to omega-conotoxin than it did in control cells, whereas the plateau phase of the [Ca2+]i rise was sensitive only to nifedipine. These results indicate that predominantly L-type Ca2+ channels exist in control cells, and that N-type channels develop only after dbcAMP treatment. In dbcAMP-treated cells, mitochondria showed an increased Ca2+ uptake capacity (5.3 nmol Ca2+/mg protein) compared with that in control cells (4.2 nmol Ca2+/mg protein). However, dbcAMP treatment did not cause significant change in the affinity for Ca2+. Dibutyryl cAMP treatment enhanced the Ca2+ accumulation activity by nonmitochondrial pools (from 0.84 to 0.97 nmol Ca2+/mg protein) and increased the affinity for Ca2+ (EC50 for Ca2+ decreased from 0.146 microM to 0.063 microM). Our data also indicate that the pool that is sensitive to both IP3 and GTP was enlarged. The affinities for IP3 and GTP in causing Ca2+ release remained the same before or after dbcAMP treatment.
Collapse
Affiliation(s)
- S H Chueh
- Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan, ROC
| | | | | |
Collapse
|
12
|
Sui AL, Kao LS. Depletion and refilling of intracellular calcium pools in bovine chromaffin cells. Neurochem Res 1994; 19:753-9. [PMID: 8065533 DOI: 10.1007/bf00967716] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
To investigate Ca2+ uptake by Ca(2+)-depleted bovine chromaffin cells, we depleted these cells of Ca2+ by incubating them in Ca(2+)-free buffer, then measured changes in cytoplasmic Ca2+ concentration ([Ca2+]i), 45Ca2+ uptake, and Mn2+ uptake in response to added Ca2+ or MN2+. In depleted cells, the increase in [Ca2+]i after Ca2+ addition, and the Mn2+ and 45Ca2+ uptakes were higher than in control cells, and were inhibited by verapamil. The size of the intracellular Ca2+ pools in depleted cells increased after Ca2+ addition. The times for [Ca2+]i rise and Mn2+ entry to reach plateau levels were much shorter than the time for refilling of intracellular Ca2+ stores. In Ca(2+)-depleted cells and cells which had been loaded with BAPTA, 45Ca2+ uptake was much higher than in control cells. These results suggest that extracellular Ca2+ enters the cytoplasm first before refilling the intracellular stores. The rate of Mn2+ influx depended on the level of filling of the Ca2+ stores, suggesting that some signalling takes place between the intracellular stores and Ca2+ entry pathways through the plasma membrane.
Collapse
Affiliation(s)
- A L Sui
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan, Republic of China
| | | |
Collapse
|
13
|
Sodium-dependent calcium efflux from adrenal chromaffin cells following exocytosis. Possible role of secretory vesicle membranes. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)50146-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
14
|
Chern YJ, Chueh SH, Lin YJ, Ho CM, Kao LS. Presence of Na+/Ca2+ exchange activity and its role in regulation of intracellular calcium concentration in bovine adrenal chromaffin cells. Cell Calcium 1992; 13:99-106. [PMID: 1633612 DOI: 10.1016/0143-4160(92)90003-b] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The presence of a Na+/Ca2+ exchanger in bovine adrenal chromaffin cells was demonstrated by measuring the efflux of 45Ca2+ which had been preloaded into cells by a brief depolarization. The efflux of 45Ca2+ was dependent on extracellular Na+ (Na+o); 45Ca2+ efflux was significantly decreased by replacing Na+o with N-methylglucamine (NMG), or Li+. Replacement of Na+o by NMG increased the resting intracellular Ca2+ concentration ([Ca2+]i) of freshly isolated chromaffin cells. This could be reversed by adding Na+, suggesting that Na+/Ca2+ exchanger activity was involved in maintaining [Ca2+]i at its resting level. The initial rate of Na(+)-dependent [Ca2+]i recovery after Ca2+ loading by depolarization was dependent on the level of [Ca2+]i. There was an apparent linear relationship between the activity of the Na+/Ca2+ exchanger and [Ca2+]i both in the presence and absence of Na+o. When cells were treated with other stimuli, including 10 microM DMPP or 40 mM caffeine, the ability of the stimulated cells to decrease [Ca2+]i was significantly reduced upon replacing Na+o with NMG. Our data show that the Na+/Ca2+ exchanger is one of the major pathways for regulating [Ca2+]i in chromaffin cells in both resting and stimulated states.
Collapse
Affiliation(s)
- Y J Chern
- Institute of Biomedical Sciences, Academia Sinica, Nankang, Taipei, Taiwan, Republic of China
| | | | | | | | | |
Collapse
|
15
|
Stauderman KA, McKinney RA, Murawsky MM. The role of caffeine-sensitive Ca2+ stores in agonist- and inositol 1,4,5-trisphosphate-induced Ca2+ release from bovine adrenal chromaffin cells. Biochem J 1991; 278 ( Pt 3):643-50. [PMID: 1898353 PMCID: PMC1151395 DOI: 10.1042/bj2780643] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In single bovine adrenal chromaffin cells loaded with fura-2, histamine, angiotensin II (AII) and caffeine elicited large transient increases of intracellular free Ca2+ concentration [( Ca2+]i) in the absence of external Ca2+, with peak amplitudes averaging 726 +/- 138 (n = 14), 710 +/- 102 (n = 21) and 830 +/- 100 nM (n = 30) respectively. A substantial portion of the agonist-induced rise in [Ca2+]i depended on Ca2+ release from caffeine-sensitive stores, as pretreatment with caffeine diminished subsequent agonist responses by 90-95%. Conversely, pretreatment with histamine or AII decreased subsequent caffeine responses by 100% and 90% respectively. The effects of caffeine most likely resulted from activation of a Ca(2+)-induced Ca(2+)-release (CICR) process, whereas histamine and AII initially acted through generation of Ins(1,4,5)P3. The relationship of Ins(1,4,5)P3- and caffeine-sensitive Ca2+ pools was studied by using alpha-toxin-permeabilized chromaffin cells. Evidence was found for three non-mitochondrial, ATP-dependent, Ca2+ pools: one exclusively sensitive to Ins(1,4,5)P3 (pool 1), a second sensitive to both Ins(1,4,5)P3 and caffeine (pool 2), and a third exclusively sensitive to caffeine (pool 3). The existence of pools 1 and 3, and the ability of agonists such as histamine to discharge pool 3 completely, supports a two-pool model in which a caffeine-sensitive CICR mechanism plays a major role in the generation of agonist-induced Ca2+ spikes in bovine chromaffin cells.
Collapse
Affiliation(s)
- K A Stauderman
- Marion Merrell Dow Research Institute, Cincinnati, OH 45215
| | | | | |
Collapse
|
16
|
Burgoyne RD. Control of exocytosis in adrenal chromaffin cells. BIOCHIMICA ET BIOPHYSICA ACTA 1991; 1071:174-202. [PMID: 1649638 DOI: 10.1016/0304-4157(91)90024-q] [Citation(s) in RCA: 195] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- R D Burgoyne
- Department of Physiology, University of Liverpool, U.K
| |
Collapse
|
17
|
Robinson IM, Burgoyne RD. Characterisation of distinct inositol 1,4,5-trisphosphate-sensitive and caffeine-sensitive calcium stores in digitonin-permeabilised adrenal chromaffin cells. J Neurochem 1991; 56:1587-93. [PMID: 1826518 DOI: 10.1111/j.1471-4159.1991.tb02055.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The effect of inositol 1,4,5-trisphosphate [Ins-(1,4,5)P3] and caffeine on Ca2+ release from digitonin-permeabilised bovine adrenal chromaffin cells was examined by using the Ca2+ indicator fura-2 to monitor [Ca2+]. Permeabilised cells accumulated Ca2+ in the presence of ATP and addition of either Ins(1,4,5)P3 or caffeine released 17% or 40-50%, respectively, of the accumulated Ca2+, indicated by sustained rises in [Ca2+] in the cell suspension. Prior addition of Ins(1,4,5)P3 had no effect on the magnitude of the response to a subsequent addition of caffeine. The response to Ins(1,4,5)P3 was prevented by prior addition of caffeine or CaCl2, indicating that the Ins(1,4,5)P3 response was blocked by elevated [Ca2+]. The responses were essentially identical in the presence of the proton ionophore carbonyl cyanide m-chlorophenylhydrazone, indicating that the Ca2+ release was not from mitochondria or secretory granules and that a proton gradient was not required for Ca2+ accumulation into the Ins(1,4,5)P3- or caffeine-sensitive stores. Ca2+ release from the caffeine-sensitive store was selectively blocked by ryanodine. The Ins(1,4,5)P3-sensitive store was emptied by thapsigargin, which had no effect on caffeine responses. These data suggest that permeabilised chromaffin cells possess two distinct nonoverlapping Ca2+ stores sensitive to either Ins(1,4,5)P3 or caffeine and support previous conclusions that these stores possess different Ca2(+)-ATPases.
Collapse
Affiliation(s)
- I M Robinson
- MRC Secretory Control Research Group, Department of Physiology, University of Liverpool, England
| | | |
Collapse
|
18
|
Föhr KJ, Ahnert-Hilger G, Stecher B, Scott J, Gratzl M. GTP and Ca2+ modulate the inositol 1,4,5-trisphosphate-dependent Ca2+ release in streptolysin O-permeabilized bovine adrenal chromaffin cells. J Neurochem 1991; 56:665-70. [PMID: 1988562 DOI: 10.1111/j.1471-4159.1991.tb08201.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The inositol 1,4,5-trisphosphate (IP3)-induced Ca2+ release was studied using streptolysin O-permeabilized bovine adrenal chromaffin cells. The IP3-induced Ca2+ release was followed by Ca2+ reuptake into intracellular compartments. The IP3-induced Ca2+ release diminished after sequential applications of the same amount of IP3. Addition of 20 microM GTP fully restored the sensitivity to IP3. Guanosine 5'-O-(3-thio)triphosphate (GTP gamma S) could not replace GTP but prevented the action of GTP. The effects of GTP and GTP gamma S were reversible. Neither GTP nor GTP gamma S induced release of Ca2+ in the absence of IP3. The amount of Ca2+ whose release was induced by IP3 depended on the free Ca2+ concentration of the medium. At 0.3 microM free Ca2+, a half-maximal Ca2+ no Ca2+ release was observed with 0.1 microM IP3; at this Ca2+ concentration, higher concentrations of IP3 (0.25 microM) were required to evoke Ca2+ release. At 8 microM free Ca2+, even 0.25 microM IP3 failed to induce release of Ca2+ from the store. The IP3-induced Ca2+ release at constant low (0.2 microM) free Ca2+ concentrations correlated directly with the amount of stored Ca2+. depending on the filling state of the intracellular compartment, 1 mol of IP3 induced release of between 5 and 30 mol of Ca2+.
Collapse
Affiliation(s)
- K J Föhr
- Abteilung Anatomie und Zellbiologie der Universität Ulm, F.R.G
| | | | | | | | | |
Collapse
|
19
|
Abstract
Caffeine was used to study the intracellular Ca2+ pools of bovine chromaffin cells. Its effects on cytosolic Ca2+ concentration ([Ca2+]i) were examined using fura-2. Caffeine caused a transient increase in [Ca2+]i in the presence or absence of extracellular Ca2+. In the former case, the caffeine-induced [Ca2+]i increase was higher and stayed above the basal value for several minutes. In the latter case, the [Ca2+]i rise was lower and fell to the basal level within 1 min. These results suggest that caffeine increases [Ca2+]i by causing both Ca2+ influx and Ca2+ release from intracellular pools. In the absence of extracellular Ca2+, ionomycin but not caffeine caused a further increase in [Ca2+]i in cells that had been treated with caffeine. Apparently there are at least two intracellular Ca2+ pools, only one of which is sensitive to caffeine. The caffeine-induced [Ca2+]i rise became smaller when the cells were pretreated with the inositol trisphosphate-generating agonists, methacholine and bradykinin. In addition, methacholine was unable to initiate a [Ca2+]i transient after the cells had been treated with caffeine. The results indicate that the caffeine-sensitive Ca2+ pools overlap with the inositol trisphosphate-sensitive pool and that the size of the latter pool is smaller than that of the former. The caffeine-sensitive Ca2+ pools were refilled after high K+ treatment, which suggests that the caffeine-sensitive Ca2+ pools may be important in buffering the cytosolic Ca2+. The effect of caffeine on [Ca2+]i is not due to inhibition of phosphodiesterase. Our results support a Ca2+ entry model in which depletion of intracellular Ca2+ pools controls the rate of Ca2+ entry across the plasma membrane.
Collapse
Affiliation(s)
- P S Liu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan, R.O.C
| | | | | |
Collapse
|
20
|
Regateiro FJ, Carvalho CM, Ferreira IL, Bairos VA, Carvalho AP. Calcium stores in electropermeabilized HL-60 cells before and after differentiation. Cell Signal 1991; 3:41-9. [PMID: 2036295 DOI: 10.1016/0898-6568(91)90006-g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Non-induced HL-60 cells (N-IND) and HL-60 cells induced to differentiate with 2 microM retinoic acid (IND) were electropermeabilized with electrical discharges, and the intracellular Ca2+ stores were measured in each type of cell. Both N-IND and IND cells accumulate Ca2+ in the presence of ATP after electropermeabilization. The Ca2+ is stored in at least two different compartments; accumulation in one of the compartments is inhibited by oligomycin and CCCP, and it is not releasable by Ins(1,4,5)P3. The maximal accumulation of Ca2+ by the Ins(1,4,5)P3 sensitive pool is about 0.3 nmol/10(6) cells and 0.9 nmol/10(6) cells for the N-IND and for the IND cells, respectively, and the half-maximal value occurs at a free Ca2+ concentration of 0.23 microM and 0.63 microM, respectively. The oligomycin + CCCP sensitive pool hardly accumulates any Ca2+ at this level of free Ca2+, but at higher free [Ca2+] (greater than microM) its maximal capacity is 80-100-fold higher than the Ins(1,4,5)P3-sensitive pool (about 17-18 nmol/10(6) cells). It is concluded that at physiological free Ca2+ concentrations, the non-mitochondrial Ca2+ pool is regulating the intracellular free Ca2+ in N-IND and IND HL-60 cells, and that this Ca2+ pool can be mobilized by Ins(1,4,5)P3. Furthermore, the capacity of this pool increases about 3-fold when the cells are induced to differentiate with retinoic acid.
Collapse
Affiliation(s)
- F J Regateiro
- Departamento de Zoologia, Universidade de Coimbra, Portugal
| | | | | | | | | |
Collapse
|
21
|
Lee K, Miwa S, Koshimura K, Hasegawa H, Hamahata K, Fujiwara M. Effects of hypoxia on the catecholamine release, Ca2+ uptake, and cytosolic free Ca2+ concentration in cultured bovine adrenal chromaffin cells. J Neurochem 1990; 55:1131-7. [PMID: 2398351 DOI: 10.1111/j.1471-4159.1990.tb03115.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The purpose of the present study is to clarify the effects of hypoxia on catecholamine release and its mechanism of action. For this purpose, using cultured bovine adrenal chromaffin cells, we examined the effects of hypoxia on high (55 mM) K(+)-induced increases in catecholamine release, in cytosolic free Ca2+ concentration ([Ca2+]i), and in 45Ca2+ uptake. Experiments were carried out in media preequilibrated with a gas mixture of either 21% O2/79% N2 (control) or 100% N2 (hypoxia). High K(+)-induced catecholamine release was inhibited by hypoxia to approximately 40% of the control value, but on reoxygenation the release returned to control levels. Hypoxia had little effect on ATP concentrations in the cells. In the hypoxic medium, [Ca2+]i (measured using fura-2) gradually increased and reached a plateau of approximately 1.0 microM at 30 min, whereas the level was constant in the control medium (approximately 200 nM). High K(+)-induced increases in [Ca2+]i were inhibited by hypoxia to approximately 30% of the control value. In the cells permeabilized by digitonin, catecholamine release induced by Ca2+ was unaffected by hypoxia. Hypoxia had little effect on basal 45Ca2+ uptake into the cells, but high K(+)-induced 45Ca2+ uptake was inhibited by hypoxia. These results suggest that hypoxia inhibits high K(+)-induced catecholamine release and that this inhibition is mainly the result of the inhibition of high K(+)-induced increases in [Ca2+]i subsequent to the inhibition of Ca2+ influx through voltage-dependent Ca2+ channels.
Collapse
Affiliation(s)
- K Lee
- Department of Pharmacology, Kyoto University Faculty of Medicine, Japan
| | | | | | | | | | | |
Collapse
|
22
|
Abstract
The mechanism of calcium transport across the plasma membrane of chromaffin cells was studied using plasma membrane vesicles prepared from cells of adrenal medulla. Purification of the plasma membrane was about 30-fold, based on the alpha-bungarotoxin binding activity. The isolated membrane vesicles have both Na+/Ca2+ exchange and calcium pump activities. The Na+/Ca2+ exchange activity increased with the free calcium concentration and was not saturated at 1 mM, the highest concentration tried. The K1/2 of the calcium pump for calcium is 0.06 microM. Part of the Na+/Ca2+ exchange activity was inhibited by preincubation of the membrane vesicles with veratridine and the effect of veratridine was reversed by tetrodotoxin. The calcium taken up by the calcium pump was released by 0.005% saponin, but was not affected by oxalate. The calcium taken up by the calcium pump was released by exchanging with the external sodium, which suggests that the two calcium transport systems are located on the same population of membrane vesicles. The above evidence indicates that both calcium transport activities are located on the plasma membrane and not on contaminating organelle membranes. The significance of the two calcium transport systems in regulation of cytosolic calcium concentration of chromaffin cells is discussed.
Collapse
Affiliation(s)
- L S Kao
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan, Republic of China
| | | |
Collapse
|
23
|
Stauderman KA, Pruss RM. Different patterns of agonist-stimulated increases of 3H-inositol phosphate isomers and cytosolic Ca2+ in bovine adrenal chromaffin cells: comparison of the effects of histamine and angiotensin II. J Neurochem 1990; 54:946-53. [PMID: 2303821 DOI: 10.1111/j.1471-4159.1990.tb02342.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Bovine adrenal chromaffin cells (BCC) were used to compare histamine- and angiotensin II-induced changes of inositol mono-, bis-, and trisphosphate (InsP1, InsP2, and InsP3, respectively) isomers, intracellular free Ca2+ ([Ca2+]i), and the pathways of inositol phosphate metabolism. Both agonists elevated [Ca2+]i by 200 nM 3-4 s after addition, but afterwards the histamine response was much more prolonged. Histamine and angiotensin II also produced similar four- to fivefold increases of Ins(1,4,5)P3 that peaked within 5 s. Over the first minute of stimulation, however, Ins(1,4,5)P3 formation was monophasic after angiotensin II, but biphasic after histamine, evidence supporting differential regulation of angiotensin II- and histamine-stimulated signal transduction. The metabolism of Ins(1,4,5)P3 by BCC homogenates was found to proceed via (a) sequential dephosphorylation to Ins(1,4)P2 and Ins(4)P, and (b) phosphorylation to inositol 1,3,4,5-tetrakisphosphate, followed by dephosphorylation to Ins(1,3,4)P3, Ins(1,3)P2, and Ins(3,4)P2, and finally to Ins(1 or 3)P. In whole cells, Ins(1 or 3)P only increased after histamine treatment. Additionally, Ins(1,3)P2 was the only other InsP2 besides Ins(1,4)P2 to accumulate within 1 min of agonist treatment [Ins(3,4)P2 did not increase]. These results support a correlation between the time course of Ins(1,4,5)P3 formation and the time course of [Ca2+]i transients and illustrate that Ca2(+)-mobilizing agonists can produce distinguishable patterns of inositol phosphate formation and [Ca2+]i changes in BCC. Different patterns of second-messenger formation are likely to be important in signal recognition and may encode agonist-specific information.
Collapse
|
24
|
Sanborn BB, Schneider AS. Muscarinic receptor-mediated inositol tetrakisphosphate response in bovine adrenal chromaffin cells. Life Sci 1990; 47:1447-52. [PMID: 2174485 DOI: 10.1016/0024-3205(90)90523-t] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Inositol trisphosphate (IP3), a product of the phosphoinositide cycle, mobilizes intracellular Ca2+ in many cell types. New evidence suggests that inositol tetrakisphosphate (IP4), an IP3 derivative, may act as another second messenger to further alter calcium homeostasis. However, the function and mechanism of action of IP4 are presently unresolved. We now report evidence of muscarinic receptor-mediated accumulation of IP4 in bovine adrenal chromaffin cells, a classic neurosecretory system in which calcium movements have been well studied. Muscarine (0.4 mM) stimulated an increase in [3H]IP4 and [3H]IP3 accumulation in chromaffin cells and this effect was completely blocked by atropine (0.5 mM). [3H]IP4 accumulation was detectable within 15 sec, increased to a maximum by 30 sec and thereafter declined. 2,3-diphosphoglycerate, an inhibitor of IP3 and IP4 hydrolysis, enhanced accumulation of these inositol polyphosphates. The results provide the first evidence of a rapid inositol tetrakisphosphate response in adrenal chromaffin cells, which should facilitate the future resolution of the relationship between IP4 and calcium homeostasis.
Collapse
Affiliation(s)
- B B Sanborn
- Department of Pharmacology and Toxicology, Albany Medical College, NY 12208
| | | |
Collapse
|
25
|
Stauderman KA, Pruss RM. Dissociation of Ca2+ entry and Ca2+ mobilization responses to angiotensin II in bovine adrenal chromaffin cells. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(18)51470-8] [Citation(s) in RCA: 61] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
26
|
A reassessment of Guanine Nucleotide Effects on Catecholamine Secretion from Permeabilized Adrenal Chromaffin cells. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(19)84724-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
27
|
Föhr KJ, Scott J, Ahnert-Hilger G, Gratzl M. Characterization of the inositol 1,4,5-trisphosphate-induced calcium release from permeabilized endocrine cells and its inhibition by decavanadate and p-hydroxymercuribenzoate. Biochem J 1989; 262:83-9. [PMID: 2818578 PMCID: PMC1133232 DOI: 10.1042/bj2620083] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The inositol 1,4,5-trisphosphate (IP3)-sensitive Ca2+ compartment of endocrine cells was studied with alpha-toxin- and digitonin-permeabilized rat insulinoma (RINA2) and rat pheochromocytoma (PC12) cells. The Ca2+ uptake was ATP-dependent, and submicromolar concentrations of IP3 specifically released the stored Ca2+. Half-maximal Ca2+ release was observed with 0.25-0.5 mumol of IP3/l, and the amount of Ca2+ released due to IP3 could be enhanced by additional loading of the Ca2+ compartment. Consecutive additions of the same concentration of IP3 for 1-2 h always released the same amount of Ca2+ without desensitization, providing an ideal basis to further characterize the IP3-induced Ca2+ release. Here we describe for the first time a reversible inhibitory effect of decavanadate on the IP3-induced Ca2+ release. Among the vanadium species tested (decavanadate, oligovanadate and monovanadate), only decavanadate was inhibitory, with a half-maximal effect at 5 mumol/l in both cell types. The effect of decavanadate could be overcome by increasing the amount of sequestered Ca2+ or added IP3. Decavanadate did not affect the ATP-driven Ca2+ uptake but oligovanadate was inhibitory on Ca2+ uptake. p-Hydroxymercuribenzoate (pHMB) at concentrations between 10 and 30 mumol/l also inhibited the Ca2+ release due to IP3. Thiol compounds such as dithiothreitol (DTT; 1 mmol/l) added before pHMB removed all its inhibitory effect on the IP3-induced Ca2+ release, whereas the inhibition caused by decavanadate was unaffected by DTT. Thus, the decavanadate-dependent inhibition functions by a distinctly different mechanism than pHMB and could serve as a specific tool to analyse various aspects of the IP3-induced Ca2+ release within endocrine cells.
Collapse
Affiliation(s)
- K J Föhr
- Abteilung Anatomie und Zellbiologie der Universität Ulm, Oberer Eselsberg, Federal Republic of Germany
| | | | | | | |
Collapse
|