1
|
Characterisation of the N'1 isoform of the cyclic AMP-dependent protein kinase (PK-A) catalytic subunit in the nematode, Caenorhabditis elegans. Arch Biochem Biophys 2012; 519:38-45. [PMID: 22286028 DOI: 10.1016/j.abb.2012.01.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Revised: 01/06/2012] [Accepted: 01/10/2012] [Indexed: 01/23/2023]
Abstract
Multiple isoforms of the cyclic AMP-dependent protein kinase (PK-A) catalytic (C) subunit, arise as a consequence of the use of alternative splicing strategies during transcription of the kin-1 gene in the nematode, Caenorhabditis elegans. N-myristoylation is a common co-translational modification of mammalian PK-A C-subunits; however, the major isoform (N'3), originally characterised in C. elegans, is not N-myristoylated. Here, we show that N'1 isoforms are targets for N-myristoylation in C. elegans. We have demonstrated the in vivo incorporation of radioactivity into N'1 C-subunit isoforms, following incubation of nematodes with [(3)H]-myristic acid. HPLC and MALDI-TOF MS analysis of proteolytic digests of immunoprecipitates confirmed the presence of myristoyl-glycine in the C-subunit. In order to better understand the impact of the N'1 N-terminal sequence, and its myristoylation, on C-subunit activity, a chimerical C-subunit, consisting of the N'1 N-terminus from C. elegans and a murine core and C-terminal sequence was expressed. Myristoylation had no appreciable effect on the catalytic properties of the chimeric protein. However, the myristoylated chimeric protein did exhibit enhanced apolar targeting compared to the myristoylated wild-type murine polypeptide. This behaviour may reflect the inability of the N'1-encoded N-terminus sequence to correctly dock with a hydrophobic domain on the surface of the C-subunit.
Collapse
|
2
|
Selvakumar P, Lakshmikuttyamma A, Shrivastav A, Das SB, Dimmock JR, Sharma RK. Potential role of N-myristoyltransferase in cancer. Prog Lipid Res 2007; 46:1-36. [PMID: 16846646 DOI: 10.1016/j.plipres.2006.05.002] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Colorectal cancer is the second leading cause of malignant death, and better preventive strategies are needed. The treatment of colonic cancer remains difficult because of the lack of effective chemotherapeutic agents; therefore it is important to continue to search for cellular functions that can be disrupted by chemotherapeutic drugs resulting in the inhibition of the development and progression of cancer. The current knowledge of the modification of proteins by myristoylation involving myristoyl-CoA: protein N-myristoyltransferase (NMT) is in its infancy. This process is involved in the pathogenesis of cancer. We have reported for the first time that NMT activity and protein expression were higher in human colorectal cancer, gallbladder carcinoma and brain tumors. In addition, an increase in NMT activity appeared at an early stage in colonic carcinogenesis. It is conceivable therefore that NMT can be used as a potential marker for the early detection of cancer. These observations lead to the possibility of developing NMT specific inhibitors, which may be therapeutically useful. We proposed that HSC70 and/or enolase could be used as an anticancer therapeutic target. This review summarized the status of NMT in cancer which has been carried in our laboratory.
Collapse
Affiliation(s)
- Ponniah Selvakumar
- Department of Pathology and Laboratory Medicine, College of Medicine, and Health Research Division, Saskatchewan Cancer Agency, University of Saskatchewan, 20 Campus Drive, Saskatoon, Sask., Canada S7N 4H4
| | | | | | | | | | | |
Collapse
|
3
|
Rudnick DA, McWherter CA, Gokel GW, Gordon JI. MyristoylCoA:protein N-myristoyltransferase. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2006; 67:375-430. [PMID: 8322618 DOI: 10.1002/9780470123133.ch5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- D A Rudnick
- Department of Molecular Biology and Pharmacology, Washington University School of Medicine, St. Louis, MO
| | | | | | | |
Collapse
|
4
|
Sharma RK. Potential role of N-myristoyltransferase in pathogenic conditions. Can J Physiol Pharmacol 2005; 82:849-59. [PMID: 15573145 DOI: 10.1139/y04-099] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
N-Myristoyltransferase (NMT) is the enzyme that catalyzes the covalent transfer of myristic acid to the N-terminal glycine residue of a protein substrate. In this review article, I summarize that NMT may have a potential role in cardiac muscle in the experimentally induced ischemia-reperfusion rat model and also in the streptozotoein-induced diabetic rat. Both the expression and activity of NMT were increased by ischemia-reperfusion. Immunohistochemical studies showed cytosolic localization of NMT in normal rat heart and predominant nuclear localization after ischemia followed by reperfusion. However, the localization of NMT is reversed by treatment with a calpain inhibitor (ALLM N-Ac-Leu-Leu-methioninal). During ischemia-reperfusion, the degradation of c-Src, which is a substrate of NMT, was observed. These findings suggested that the Src signaling may be impaired in ischemia-reperfusion owing to the altered localization of NMT from cytoplasm to nucleus. Streptozotocin-induced diabetes (an animal model for insulin-dependent diabetes mellitus) resulted in a 2.0-fold increase in rat liver NMT activity as compared with control animals. In obese (fa/fa) Zucker rats (an animal model for non-insulin-dependent diabetes mellitus), there was an approximately 4.7-fold lower liver particulate NMT activity as compared with control lean rat livers. Administration of sodium orthovanadate to the diabetic rats normalized liver NMT activity. These results would indicate that rat liver particulate NMT activity appears to be inversely proportional to the level of plasma insulin, implicating insulin in the control of N-myristoylation. These are the first studies demonstrating the role of NMT in the pathogenesis of ischemia-reperfusion and diabetes mellitus. These conditions remain an important area of investigation.
Collapse
Affiliation(s)
- Rajendra K Sharma
- Department of Pathology, Cancer Research Unit, Saskatchewan Cancer Agency, College of Medicine, University of Saskatchewan, Canada.
| |
Collapse
|
5
|
Qi Q, Rajala RV, Anderson W, Jiang C, Rozwadowski K, Selvaraj G, Sharma R, Datla R. Molecular cloning, genomic organization, and biochemical characterization of myristoyl-CoA:protein N-myristoyltransferase from Arabidopsis thaliana. J Biol Chem 2000; 275:9673-83. [PMID: 10734119 DOI: 10.1074/jbc.275.13.9673] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Myristoyl-CoA:protein N-myristoyltransferase (NMT, EC 2.3.1.97) catalyzes the co-translational addition of myristic acid to the amino-terminal glycine residue of a number of important proteins of diverse functions. We have isolated a full-length Arabidopsis thaliana cDNA encoding NMT (AtNMT1), the first described from a higher plant. This AtNMT1 cDNA clone has an open reading frame of 434 amino acids and a predicted molecular mass of 48,706 Da. The primary structure is 50% identical to the mammalian NMTs. Analyses of Southern blots, genomic clones, and database sequences suggested that the A. thaliana genome contains two copies of NMT gene, which are present on different chromosomes and have distinct genomic organizations. The recombinant AtNMT1 expressed in Escherichia coli exhibited a high catalytic efficiency for the peptides derived from putative plant myristoylated proteins AtCDPK6 and Fen kinase. The AtNMT was similar to the mammalian NMTs with respect to a relative specificity for myristoyl CoA among the acyl CoA donors and also inhibition by the bovine brain NMT inhibitor NIP(71). The AtNMT1 expression profile indicated ubiquity in roots, stem, leaves, flowers, and siliques (approximately 1.7 kb transcript and approximately 50 kDa immunoreactive polypeptide) but a greater level in the younger tissue, which are developmentally very active. NMT activity was also evident in all these tissues. Subcellular distribution studies indicated that, in leaf extracts, approximately 60% of AtNMT activity was associated with the ribosomal fractions, whereas approximately 30% of the activity was observed in the cytosolic fractions. The NMT is biologically important to plants, as noted from the stunted development when the AtNMT1 was down-regulated in transgenic Arabidopsis under the control of an enhanced CaMV 35S promoter. The results presented in this study provide the first direct molecular evidence for plant protein N-myristoylation and a mechanistic basis for understanding the role of this protein modification in plants.
Collapse
Affiliation(s)
- Q Qi
- National Research Council of Canada, Plant Biotechnology Institute, Saskatoon S7N 0W9, Canada
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Abstract
Myristoylation refers to the co-translational addition of a myristoyl group to an amino-terminal glycine residue of a protein by an ubiquitously distributed enzyme myristoyl-CoA:protein N-myristoyltransferase (NMT, EC 2.3.1.97). This review describes the basic enzymology, molecular cloning and regulation of NMT activity in various pathophysiological processes such as colon cancer and diabetes.
Collapse
Affiliation(s)
- R V Rajala
- Department of Pathology and Saskatoon Cancer Centre, College of Medicine, Royal University Hospital, University of Saskatchewan, Canada
| | | | | | | | | | | |
Collapse
|
7
|
Clegg RA, Gordge PC, Miller WR. Expression of enzymes of covalent protein modification during regulated and dysregulated proliferation of mammary epithelial cells: PKA, PKC and NMT. ADVANCES IN ENZYME REGULATION 1999; 39:175-203. [PMID: 10470373 DOI: 10.1016/s0065-2571(98)00011-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Three proteins are functionally interlinked in the targeting of protein phosphorylation catalyzed by the C-subunit of PKA: PKA itself, AKAPs and NMT. Furthermore, in a variety of biological contexts, mechanisms exist whereby PKA and PKC are able to modulate the activity of one another. We have investigated the expression and subcellular distribution of these proteins in two models of mammary cell proliferation and differentiation--the normal rat mammary gland during pregnancy and lactation and human breast tissue before and after malignant transformation. Modulation of PKA does not acutely affect activity or sub-cellular distribution of PKC in mammary acini, nor does modulation of PKC acutely affect PKA activity or subcellular distribution. Therefore, the co-ordinate expression of these two protein kinases in normal and cancerous mammary epithelial cells and the greater basal activation level of them both accompanying increased mitogenic activity, which we have reported, does not result from short-term cross-talk between them. Although basal and total levels of PKA diminish in rodent mammary epithelial cells during the transition from proliferative to secretory functional mode, the level of expression of AKAPs increases. The expression of two apparently mammary-specific and mostly membrane-associated AKAPs is tightly linked to the onset and maintenance of differentiated function in rat mammary tissue. Paradoxically, the probable analogues of these two AKAPs in human mammary tissue are hyperexpressed when normal epithelial cells transform to a cancer phenotype--conventionally regarded as a process involving a degree of dedifferentiation. Mammary AKAP hyperexpression in breast cancers is accompanied by increases in the levels of total and basal PKA. One mechanism whereby NMT is targeted to membranes, via interaction with ribosomal proteins, has recently been elucidated. Our data support the contention that the localization of NMT is an important variable in the regulation of cellular proliferation, but they do not characterize the mechanisms whereby the differential targeting of NMT is achieved. As yet we lack a full tool-kit with which to examine NMT either to draw firm conclusions regarding the identity of particular isoforms found in particular sub-cellular locations or to define the relationships between these different molecular variants. However, it is technically possible to transfect cells with inducible NMT expression constructs engineered in such a way that the recombinant, catalytically competent, NMT that they encode is targeted either to membranes or to cytosol: an exploration of the effects of such transfections on cellular proliferation would afford a critical test of the mechanistic involvement of NMT in the control of mitogenesis.
Collapse
Affiliation(s)
- R A Clegg
- Department of Oncology, University of Edinburgh, Western General Hospital, Scotland, UK.
| | | | | |
Collapse
|
8
|
Raju RV, Kakkar R, Datla RS, Radhi J, Sharma RK. Myristoyl-coA:protein N-myristoyltransferase from bovine cardiac muscle: molecular cloning, kinetic analysis, and in vitro proteolytic cleavage by m-calpain. Exp Cell Res 1998; 241:23-35. [PMID: 9633510 DOI: 10.1006/excr.1998.4021] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Myristoyl-CoA:protein N-myristoyltransferase (NMT) catalyzes the attachment of myristate onto the amino terminal glycine residue of select polypeptides. Cardiac tissue expresses high levels of cAMP-dependent protein kinase whose catalytic subunit is myristoylated; however, cardiac muscle extracts were found to contain low NMT activities. Northern blot analysis of bovine heart poly(A)+ RNA probed with bovine spleen NMT cDNA revealed a 1.7-kb mRNA. Western blot analysis of cardiac muscle extracts with human NMT antibody indicated a prominent immunoreactive band with a molecular mass of 50 kDa. The expression of mRNA and protein levels in cardiac muscle is not correlated with NMT activities, suggesting the presence of regulators of the enzyme activity. We have isolated the cDNA encoding bovine cardiac muscle NMT (cNMT) by reverse transcription polymerase chain reaction. The single long open reading frame of 1248 bp of bovine cNMT specifies a protein of 416 amino acids with a predicted mass of 46,686 Da. The cDNA clone expressed in Escherichia coli resulted in the production of functionally active 50-kDa NMT. Ultrastructural and immunolocalization of NMT utilizing the immunogold labeling technique demonstrated cytoplasmic distribution with occasional mitochondrial and myofilaments localization of the NMT antibody. Cardiac muscle NMT has a higher affinity for myristoyl-CoA than toward palmitoyl-CoA. Substrate specificity indicated that cNMT has a higher affinity toward pp60src and M2 gene segment of reovirus type 3-derived peptide substrates than toward cAMP-dependent protein kinase-derived peptide. Primary translational product of cNMT sequence contained several regions rich in proline, glutamic acid, serine, and threonine, which are known as "PEST" regions. PEST-FIND analysis of the amino acid sequences indicated eight PEST regions were present in the cNMT. These PEST regions are suggested to be recognized by specific proteases, particularly Ca(2+)-dependent neutral proteases, calpains, which are responsible for the degradation of PEST-containing proteins. We have demonstrated the abolishment of NMT activity and NMT protein degradation in vitro by m-calpain. The proteolysis of cNMT by m-calpain and the abolishment of NMT activity was prevented by the calpain inhibitor, calpastatin. These observations indicate that calpains may regulate NMT activity.
Collapse
Affiliation(s)
- R V Raju
- Department of Pathology, College of Medicine, Royal University Hospital, University of Saskatchewan, Saskatoon, Canada
| | | | | | | | | |
Collapse
|
9
|
Raju RV, Anderson JW, Datla RS, Sharma RK. Molecular cloning and biochemical characterization of bovine spleen myristoyl CoA:protein N-myristoyltransferase. Arch Biochem Biophys 1997; 348:134-42. [PMID: 9390183 DOI: 10.1006/abbi.1997.0333] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Myristoyl-CoA:protein N-myristoyltransferase (NMT) is an essential eukaryotic enzyme that catalyzes the cotranslational transfer of myristate to the NH2-terminal glycine residue of a number of important proteins of diverse function. We have isolated full-length cDNA encoding bovine spleen NMT (sNMT). The single long open reading frame of 1248 bp of sNMT specifies a protein of 416 amino acids with a predicted mass of 46,686 Da. The protein coding sequence was expressed in Escherichia coli resulting in the production of functionally active 50-kDa NMT. Deletion mutagenesis showed that the C-terminus is essential for activity whereas up to 52 amino acids can be deleted from the N-terminus without affecting the function. One of the N-terminal deletions resulted in threefold higher NMT activity. Genomic Southern analysis indicated the presence of two strong hybridizing bands with three different restriction enzyme digests suggesting the possibility of two copies of the NMT gene in the bovine genome. RNA blot hybridization analysis of total cellular RNA prepared from bovine brain, heart, spleen, lung, liver, kidney, and skeletal muscle probed with bovine sNMT cDNA revealed a single 1.7-kb mRNA. Western blot analysis of various bovine tissues with human NMT peptide antibody indicated a common prominent immunoreactive band with an apparent molecular mass of 48.5-50 kDa in all tissues. Additional immunoreactive bands were observed in brain (84 and 50 kDa), lung (58 kDa), and skeletal muscle (58 kDa). Activity measurements demonstrated that brain contained the highest NMT activity followed by spleen, lung, kidney, heart, skeletal muscle, pancreas, and liver. It appears therefore that mRNA and protein expression do not correlate with NMT activity, suggesting the presence of regulators of the enzyme activity.
Collapse
Affiliation(s)
- R V Raju
- Department of Pathology, College of Medicine, Royal University Hospital, University of Saskatchewan, Saskatoon, Canada
| | | | | | | |
Collapse
|
10
|
Kantor DB, Lanzrein M, Stary SJ, Sandoval GM, Smith WB, Sullivan BM, Davidson N, Schuman EM. A role for endothelial NO synthase in LTP revealed by adenovirus-mediated inhibition and rescue. Science 1996; 274:1744-8. [PMID: 8939872 DOI: 10.1126/science.274.5293.1744] [Citation(s) in RCA: 166] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Pharmacological studies support the idea that nitric oxide (NO) serves as a retrograde messenger during long-term potentiation (LTP) in area CA1 of the hippocampus. Mice with a defective form of the gene for neuronal NO synthase (nNOS), however, exhibit normal LTP. The myristoyl protein endothelial NOS (eNOS) is present in the dendrites of CA1 neurons. Recombinant adenovirus vectors containing either a truncated eNOS (a putative dominant negative) or an eNOS fused to a transmembrane protein were used to demonstrate that membrane-targeted eNOS is required for LTP. The membrane localization of eNOS may optimally position the enzyme both to respond to Ca2+ influx and to release NO into the extracellular space during LTP induction.
Collapse
Affiliation(s)
- D B Kantor
- Division of Biology 216-76, California Institute of Technology, Pasadena, CA 91125, USA.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Magnuson BA, Raju RV, Sharma RK. Distribution of myristoyl-CoA:protein N-myristoyl transferase activity in rabbit intestine. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1300:119-24. [PMID: 8652637 DOI: 10.1016/0005-2760(95)00240-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Myristoyl-CoA:protein N-myristoyl transferase (NMT) attaches the fatty acid, myristate, to the amino-terminal glycine residue of various proteins involved in cellular regulation and/or signal transduction. We report differences in the activity and properties of NMT in New Zealand rabbit small intestine, ascending colon and descending colon. The mucosa of the small intestine, ascending colon and descending colon was assayed for NMT activity using peptides of known myristoylated proteins (pp60src and catalytic subunit of cAMP dependent protein kinase). Total NMT activity per gram tissue was 5-fold higher in the small intestine and 1.5-fold higher in the ascending colon than in the descending colon. Smooth muscle from the colon also contained low levels of NMT activity. NMT activity was 2- to 3-fold higher in the particulate fraction than in the cytosolic fraction of the mucosa in the descending colon. The apparent molecular mass of NMT in the intestine mucosa was 78 kDa.
Collapse
Affiliation(s)
- B A Magnuson
- Department of Pathology, College of Medicine, University of Saskatchewan, Saskatoon, Canada
| | | | | |
Collapse
|
12
|
King MJ, Pugazhenthi S, Khandelwal RL, Sharma RK. In vivo modulation of N-myristoyltransferase activity by orthovanadate. Mol Cell Biochem 1995; 153:151-5. [PMID: 8927031 DOI: 10.1007/bf01075931] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
N-Myristoyltransferase (NMT) catalyses the transfer of myristate from myristoyl-CoA to the NH2-terminal glycine residue of several proteins and are important in signal transduction. STZ-induced diabetes (an animal model for insulin-dependent diabetes mellitus, IDDM) resulted in a 2-fold increase in rat liver NMT activity as compared with control animals. In obese Zucker (fa/fa) rats (an animal model for non-insulin dependent diabetes mellitus, NIDDM) there was a approximately 4.7-fold lower liver particulate NMT activity as compared with the control lean rat livers. Administration of sodium orthovanadate to the diabetic rats normalised liver NMT activity. These results would indicate that the rat liver particulate N-myristoyltransferase activity appears to be inversely proportional to the level of plasma insulin, implicating insulin in the control of N-myristoylation.
Collapse
|
13
|
Raju RV, Magnuson BA, Sharma RK. Mammalian myristoyl CoA: protein N-myristoyltransferase. Mol Cell Biochem 1995; 149-150:191-202. [PMID: 8569729 DOI: 10.1007/bf01076577] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Myristoyl CoA:Protein N-myristoyltransferase (NMT) is the enzyme which catalyses the covalent transfer of myristate from myristoyl CoA to the amino-terminal glycine residue of protein substrates. Although NMT is ubiquitous in eukaryotic cells, the enzyme levels and cellular distribution vary among tissues. In this article, we describe the properties of mammalian NMT(s) with reference to subcellular distribution, molecular weights, substrate specificity and the possible involvement of NMT in pathological processes. The cytosolic fraction of bovine brain contains majority of NMT activity. In contrast, rabbit colon and rat liver NMT activity was predominantly particulate. Regional differences in NMT activity have been observed in both rabbit intestine and bovine brain. Results from our laboratory along with the existing knowledge, provide evidence for the existence of tissue specific isozymes of NMT.
Collapse
Affiliation(s)
- R V Raju
- Department of Pathology, College of Medicine, Royal University Hospital, University of Saskatchewan, Saskatoon, Canada
| | | | | |
Collapse
|
14
|
Abstract
N-Myristoyl-CoA:protein N-myristoyltransferase (NMT) is the enzyme that catalyses the transfer of myristate from myristoyl-CoA to the N-terminal glycine of protein substrates. NMT was highly purified from bovine brain by procedures involving sequential column chromatography on DEAE-Sepharose CL-6B, phosphocellulose, hydroxylapatite, and mono S and mono Q f.p.l.c.. The highly purified NMT (termed NMT.II) possessed high specific activity with peptide substrates derived from the N-terminal sequences of the cAMP-dependent protein kinase and pp60src (29,800 and 47,600 pmol N-myristoylpeptide formed/min/mg, respectively), intermediate activity with a peptide based on the N-terminal sequence of a viral structural protein (microliter) (M2; 17,300 pmol N-myristoylpeptide formed/min/mg) and very low activity with a peptide derived from the N-terminal sequence of myristoylated alanine-rich C-kinase substrate (MARCKS; 1500 pmol myristoylpeptide formed/min/mg). An NMT protein inhibitor (NIP71) isolated from the particulate fraction of bovine brain (King MJ and Sharma RK: Biochem J 291:635-639, 1993) potently inhibited highly purified NMT activity (IC50 23.7 nM). A minor NMT activity (NMT.PU; 30% total NMT activity), which failed to bind to phosphocellulose, was insensitive to NIP71 inhibition. Inhibition of NMT was observed to be via mixed inhibition with respect to both the myristoyl-CoA and peptide substrates with NIP71 having an apparent higher affinity for NMT than the NMT.myristoyl.CoA complex. Inhibition by NIP71 at subsaturating concentrations of myristoyl-CoA and peptide resulted in a sigmoidal pattern of inhibition indicating that bovine brain possesses a potent and delicate on/off switch to control NMT activity.
Collapse
Affiliation(s)
- M J King
- Department of Pathology, Royal University Hospital, University of Saskatchewan, Saskatoon, Canada
| | | |
Collapse
|
15
|
McIlhinney RA, Patel PB, McGlone K. Characterization of a polyhistidine-tagged form of human myristoyl-CoA: protein N-myristoyltransferase produced in Escherichia coli. EUROPEAN JOURNAL OF BIOCHEMISTRY 1994; 222:137-46. [PMID: 8200338 DOI: 10.1111/j.1432-1033.1994.tb18851.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The enzyme myristoyl-CoA:protein N-myristoyltransferase is responsible for the attachment of a myristoyl group to the N-terminal glycine of a number of cell, viral and fungal proteins. In order to overcome the difficulties of purification of this enzyme from tissue sources, we have produced an N-terminally polyhistidine-tagged version of the enzyme and expressed this in Escherichia coli. The resulting enzyme has a molecular mass of 53 kDa and is fully active showing the expected specificity for myristic acid and causing the N-terminal myristoylation of both synthetic peptide and protein substrates in vitro. The enzyme exhibits a broad pH optimum peaking at a pH of 8.0 and has a Km for myristoyl-CoA of 7.6 microM. The two synthetic peptide substrates based on the N-terminal sequence of the catalytic subunit of protein kinase A (GNAAAARR) and of p60src (GSSKSKPKDPSQRRRY) have different kinetic parameters with Km values of 115.2 microM and 44.2 microM and Vmax values of 95 and 120 nmol.min-1.mg-1, respectively. The expressed enzyme is partially inhibited (50%) by iodoacetamide at 5 mM and fully inhibited by diethylpyrocarbonate at 10 mM. This latter inhibition can be prevented by including histidine in the incubation of the enzyme and inhibitor. Antisera raised to synthetic peptides based on sequences derived from the N- and C- terminus of the human enzyme reacted with the expressed protein on Western blots, but only the N-terminal sequence reacted with the native protein suggesting that the C-terminus may be not be accessible. The enzyme can catalyse the removal of a myristoyl group from myristoylated peptides but does so only in the presence of added coenzyme A.
Collapse
Affiliation(s)
- R A McIlhinney
- Medical Research Council Anatomical Neuropharmacology Unit, Oxford, England
| | | | | |
Collapse
|
16
|
Purification and properties of bovine spleen N-myristoyl-CoA protein:N-myristoyltransferase. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)32683-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
17
|
Boutin JA, Ferry G, Ernould AP, Maes P, Remond G, Vincent M. Myristoyl-CoA:protein N-myristoyltransferase activity in cancer cells. Purification and characterization of a cytosolic isoform from the murine leukemia cell line L1210. EUROPEAN JOURNAL OF BIOCHEMISTRY 1993; 214:853-67. [PMID: 8391437 DOI: 10.1111/j.1432-1033.1993.tb17989.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Myristoylation is a co-translational maturation process of proteins. It is extremely specific for the cosubstrate (myristoyl-CoA) and for the substrate protein that should bear a glycine at the N-terminus of the protein to be myristoylated. This acylation is catalyzed by the myristoyl-CoA:protein N-myristoyltransferase. Most of the molecular biochemistry and biology concerning this enzyme has been done on Saccharomyces cerevisiae. Because of the major importance of this pathway in several types of pathology, it is essential to study intensively the enzyme(s) isolated from mammalian tissue(s) to confirm that the enormous amount of work done on the yeast enzyme can be transposed to mammalian tissues. In earlier studies, we demonstrated the existence of a microsomal N-myristoyltransferase from the murine leukemia cell line L1210 [Boutin, J. A., Clarenc, J.-P., Ferry, G., Ernould, A. P., Remond, G., Vincent, M. & Atassi, G. (1991) Eur. J. Biochem. 201, 257-263], a feature which is not shared by yeast, and examined the N-myristoyltransferase activities associated with L1210 cytosol. In the present work, we purified to homogeneity one of the isoforms (A) of the transferase from L1210 cytosol. The purified enzyme showed on SDS/PAGE an apparent molecular mass of 67.5 kDa, distinct from the 53-kDa yeast cytosolic enzyme. The purified enzyme from L1210 cytosol could be labeled with [14C]myristoyl-CoA. Rabbit antibodies were raised against the A isoform and used to immunoprecipitate the enzyme and immunoinhibit the activity from the same source. A survey of the specificity of the partially and completely purified isoforms was performed using peptides derived from the NH2-terminus of 42 proteins which are potential substrates for myristoylation, including oncogene products and virus structural proteins. We synthesized a series of compounds capable of inhibiting the cytosol activities of the enzyme. For example, a myristoyltetrahydroquinolein derivative showed an IC50 of about 0.1 microM. Based on both biophysical and biochemical evidence, the N-myristoyltransferases extracted from mammalian cell cytosols seem to be different from the extensively studied yeast enzyme.
Collapse
Affiliation(s)
- J A Boutin
- Département de Cancérologie Expérimentale, Institut de Recherches Servier, Suresnes, France
| | | | | | | | | | | |
Collapse
|
18
|
King MJ, Sharma RK. Identification, purification and characterization of a membrane-associated N-myristoyltransferase inhibitor protein from bovine brain. Biochem J 1993; 291 ( Pt 2):635-9. [PMID: 8484742 PMCID: PMC1132571 DOI: 10.1042/bj2910635] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
N-Myristoyl-CoA: protein N-myristoyltransferase (NMT) is the enzyme that catalyses the covalent transfer of myristic acid from myristoyl-CoA to the N-terminal glycine residue of a protein substrate. Subcellular fractionation of bovine brain indicates that NMT activity was located in both the cytosolic and the particulate fraction of the cell. Removal of the particulate fraction resulted in a 2-fold enhancement of NMT activity. Reconstitution of the particulate fraction and cytosolic fraction resulted in inhibition of the elevated cytosolic NMT activity. These results indicated the existence of putative inhibitor(s) activity of NMT located in the particulate fraction of bovine brain. The inhibitor was stable to heat and was identified as a protein, on the basis of its susceptibility to the proteases trypsin and chymotrypsin. Protease degradation first required the delipidation of the particulate fraction. The inhibitor was purified to near-homogeneity by heat treatment, solvent extraction and Sephacryl S-300 gelfiltration column chromatography. The inhibitor was purified 630-fold from the particulate fraction with a 20% yield. The protein inhibitor had an apparent molecular mass of 92 kDa by gel filtration and 71 kDa by SDS/PAGE, indicating the protein is monomeric. The inhibitor did not interact directly with myristoyl-CoA and possessed no protease, thioesterase or demyristoylase activity. Purified inhibitor protein inhibited the formation of 1167 pmol of myristoyl-peptide/min per mg of protein.
Collapse
Affiliation(s)
- M J King
- Department of Pathology, University of Saskatchewan, Royal University Hospital and Saskatoon Cancer Centre, Canada
| | | |
Collapse
|
19
|
McIlhinney RA, McGlone K, Willis AC. Purification and partial sequencing of myristoyl-CoA:protein N-myristoyltransferase from bovine brain. Biochem J 1993; 290 ( Pt 2):405-10. [PMID: 8452528 PMCID: PMC1132288 DOI: 10.1042/bj2900405] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The enzyme myristoyl-CoA:protein N-myristoyltransferase (NMT; EC 2.3.1.97) catalyses the transfer of myristic acid to the N-terminal glycine residue of cell and viral proteins. In this report the purification and partial sequencing of this enzyme from bovine brain is described. Using a combination of ammonium sulphate precipitation, chromatography on DEAE-Sepharose and affinity chromatography on CoA-agarose the enzyme was purified some 40-fold. Size-exclusion chromatography of this material in the presence of myristoyl-CoA yielded two peaks of enzyme activity with apparent molecular masses of 66 kDa and 43 kDa. Chromatography of the CoA-affinity-purified material on MONO-S followed by size-exclusion chromatography in the presence of myristoyl-CoA resulted in the isolation of the large form of the enzyme purified 3000-fold. Analysis by SDS/PAGE of this material showed a major 60 kDa silver-stained band. Similar analysis of the 43 kDa enzyme fraction from the same separation showed that this fraction contained several proteins including a major component with an apparent molecular mass of 49 kDa. Attempts at N-terminal sequencing of the 66 kDa form of the enzyme were unsuccessful and therefore this material was digested with trypsin and the resulting peptides separated by reverse-phase h.p.l.c. N-terminal protein sequencing of these peptides yielded sequences which show sequence similarity to those of yeast N-myristoyl-transferase.
Collapse
|
20
|
King MJ, Pugazhenthi S, Khandelwal RL, Sharma RK. Elevated N-myristoyl transferase activity is reversed by sodium orthovanadate in streptozotocin-induced diabetic rat. BIOCHIMICA ET BIOPHYSICA ACTA 1993; 1165:259-62. [PMID: 8418883 DOI: 10.1016/0005-2760(93)90134-u] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
N-Myristoyl transferase (NMT) is the enzyme that covalently modifies several proteins important in signal transduction. Streptozotocin-induced diabetes resulted in a 2-fold increase in NMT activity from rat liver as compared to control animals. Administration of sodium orthovanadate to the diabetic rats reduced the activity of the NMT to 75-120% of the control values. Elevated NMT activity was observed with both cAMP-dependent protein kinase-derived and pp60src-derived peptide substrates. No significant change in the apparent Km was observed with the cAMP-dependent protein kinase-derived peptide substrate. Unlike in rat brain, in all conditions highest NMT activity was observed in the particulate fraction of rat liver.
Collapse
Affiliation(s)
- M J King
- Department of Pathology, University of Saskatchewan, Saskatoon, Canada
| | | | | | | |
Collapse
|
21
|
King MJ, Sharma RK. Demonstration of multiple forms of bovine brain myristoyl CoA:protein N-myristoyl transferase. Mol Cell Biochem 1992; 113:77-81. [PMID: 1640939 DOI: 10.1007/bf00230888] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Four distinct N-myristoyl transferase (NMT) activity peaks, designated I, II, III, and IV, were separated from the cytosolic fraction of bovine brain by DEAE-Sepharose column chromatography. Peaks I, II, III and IV were characterised biochemically with respect to substrate specificity: with cAMP-dependent protein kinase and pp60src derived peptides, and by their apparent molecular mass. The apparent molecular mass of peaks I, II, III and IV were 190 kDa, 224 kDa, 390 kDa and 76 kDa, respectively. These results indicate that bovine brain contains multiple forms of NMT.
Collapse
Affiliation(s)
- M J King
- Department of Pathology, College of Medicine, University of Saskatchewan, Saskatoon, Canada
| | | |
Collapse
|
22
|
Abstract
N-myristoyl-CoA:protein N-myristoyl transferase is the enzyme that catalyzes the covalent transfer of myristic acid to the NH2-terminal glycine residue of a protein, or peptide, substrate. We have established a new, rapid, reliable, and inexpensive myristoyl-CoA:protein N-myristoyl transferase assay. This N-myristoyl transferase assay is based on the binding of the [3H]myristoylated peptide to a P81 phosphocellulose paper matrix and is more convenient for assaying multiple samples than existing procedures. Two peptides, derived from the N-terminal sequences of the type II catalytic subunit of cAMP-dependent protein kinase and pp60src, were used as substrates. A survey of rat and bovine tissue extracts demonstrated that in both cases brain contained the highest NMT activity (i.e., brain greater than spleen greater than heart greater than liver). Under the assay conditions used, the rate of myristoylation was linear for 10 min and with up to 4.0 mg/ml of brain extract.
Collapse
Affiliation(s)
- M J King
- Department of Medical Biochemistry, University of Calgary, Alberta, Canada
| | | |
Collapse
|
23
|
Boutin JA, Clarenc JP, Ferry G, Ernould AP, Remond G, Vincent M, Atassi G. N-myristoyl-transferase activity in cancer cells. Solubilization, specificity and enzymatic inhibition of a N-myristoyl transferase from L1210 microsomes. EUROPEAN JOURNAL OF BIOCHEMISTRY 1991; 201:257-63. [PMID: 1915371 DOI: 10.1111/j.1432-1033.1991.tb16282.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The activity catalyzed by N-myristoyl transferase (NMT) is described for the first time in microsome-rich fractions from the murine leukemia cell line L1210, rat brain and mouse liver as biological sources. The enzyme from each source can accommodate various types of proteins (protein kinase A, virus structural gag protein or pp60src) as modelized by the use of their N-terminal derived peptides (GNAAAARR, GQTVTTPL and GSSKSKPKDP, respectively). As for some other types of membrane-bound enzymes, NMT activity can be enhanced by pretreatment with various types of detergents, amongst which Triton 770 and deoxycholate were the most potent. Further experiments on the L1210 microsome-rich fractions demonstrate that these two detergents were able to solubilize the microsomal enzyme, without modifying its substrate specificity. Finally, three compounds described in the literature to be inhibitors of NMT activity from other sources were tested for L1210 microsome-associated activity. None of them show any significant potency in inhibiting this activity. A new compound, myristoylphenylalanine, shows a slightly better inhibitory effect on the L1210 microsomal activity than the reference compounds with a median inhibitory concentration (IC50) of 0.2 mM.
Collapse
Affiliation(s)
- J A Boutin
- Departement de Cancerologie Experimentale, Institut de Recherches SERVIER, Suresnes, France
| | | | | | | | | | | | | |
Collapse
|
24
|
McIlhinney RA, McGlone K. Evidence for a non-myristoylated pool of the 80 kDa protein kinase C substrate of rat brain. Biochem J 1990; 271:681-5. [PMID: 2244873 PMCID: PMC1149616 DOI: 10.1042/bj2710681] [Citation(s) in RCA: 33] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A protein of 80 kDa apparent molecular mass was found to be specifically myristolylated in rat brain cytosols derived from either whole brain or synaptosomes. The attachment of the fatty acid took place in the absence of protein synthesis, since the cytosols did not incorporate [14C]lysine into protein, nor did cycloheximide affect the incorporation of the myristic acid into the protein. The fatty acid was incorporated into the protein via an acid-labile/alkali-resistant band, and Pronase digestion of the labelled protein showed that the lipid was covalently linked to a glycine residue. Together, these data suggested that the myristic acid was amide-linked to the N-terminal residue of the protein. The protein was identified as one of the major protein kinase C substrates, the MARCKS (myristoylated alanine-rich C kinase substrate) protein, by showing that Ca2+ stimulated its phosphorylation, by its heat stability and by immune precipitation (using an antiserum to the MARCKS protein). Incorporation of myristic acid into intact protein continued for up to 12 h, despite the fact that over this period some degradation of the protein could be demonstrated. In pulse-chase experiments, the pattern of loss of the incorporated fatty acid was similar to that of the protein itself, and therefore the loss of radioactivity probably reflects protein degradation rather than specific de-acylation of the protein. Together, these results suggest that there is a pool of unacylated MARCKS protein in the rat brain.
Collapse
|
25
|
Abstract
Interest in the study of the direct attachment of fatty acids to cellular proteins, termed protein acylation, has been greatly stimulated by recent experimentation that has increased our understanding of the function of the attached lipid. These developments are described, and the possibility that inhibitors of protein acylation might provide new drugs is discussed.
Collapse
Affiliation(s)
- R A McIlhinney
- MRC Anatomical Neuropharmacology Unit, Department of Pharmacology, Oxford, UK
| |
Collapse
|