1
|
Dashkova AS, Kovalev VI, Chaplygina AV, Zhdanova DY, Bobkova NV. Unique Properties of Synaptosomes and Prospects for Their Use for the Treatment of Alzheimer's Disease. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:1031-1044. [PMID: 38981699 DOI: 10.1134/s0006297924060051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 03/21/2024] [Accepted: 03/23/2024] [Indexed: 07/11/2024]
Abstract
Alzheimer's disease (AD) is a severe neurodegenerative condition affecting millions worldwide. Prevalence of AD correlates with increased life expectancy and aging population in the developed countries. Considering that AD is a multifactorial disease involving various pathological processes such as synaptic dysfunction, neuroinflammation, oxidative stress, and improper protein folding, a comprehensive approach targeting multiple pathways may prove effective in slowing the disease progression. Cellular therapy and its further development in the form of cell vesicle and particularly mitochondrial transplantation represent promising approaches for treating neurodegeneration. The use of synaptosomes, due to uniqueness of their contents, could mark a new stage in the development of comprehensive therapies for neurodegenerative diseases, particularly AD. Synaptosomes contain unique memory mitochondria, which differ not only in size but also in functionality compared to the mitochondria in the neuronal soma. These synaptosomal mitochondria actively participate in cellular communication and signal transmission within synapses. Synaptosomes also contain other elements such as their own protein synthesis machinery, synaptic vesicles with neurotransmitters, synaptic adhesion molecules, and microRNAs - all crucial for synaptic transmission and, consequently, cognitive processes. Complex molecular ensemble ensures maintenance of the synaptic autonomy of mitochondria. Additionally, synaptosomes, with their affinity for neurons, can serve as an optimal platform for targeted drug delivery to nerve cells. This review discusses unique composition of synaptosomes, their capabilities and advantages, as well as limitations of their suggested use as therapeutic agents for treating neurodegenerative pathologies, particularly AD.
Collapse
Affiliation(s)
- Alla S Dashkova
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Vladimir I Kovalev
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| | - Alina V Chaplygina
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Daria Yu Zhdanova
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Natalia V Bobkova
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| |
Collapse
|
2
|
Mallajosyula JK, Kaur D, Chinta SJ, Rajagopalan S, Rane A, Nicholls DG, Di Monte DA, Macarthur H, Andersen JK. MAO-B elevation in mouse brain astrocytes results in Parkinson's pathology. PLoS One 2008; 3:e1616. [PMID: 18286173 PMCID: PMC2229649 DOI: 10.1371/journal.pone.0001616] [Citation(s) in RCA: 201] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2007] [Accepted: 01/28/2008] [Indexed: 12/21/2022] Open
Abstract
Age-related increases in monoamine oxidase B (MAO-B) may contribute to neurodegeneration associated with Parkinson's disease (PD). The MAO-B inhibitor deprenyl, a long-standing antiparkinsonian therapy, is currently used clinically in concert with the dopamine precursor L-DOPA. Clinical studies suggesting that deprenyl treatment alone is not protective against PD associated mortality were targeted to symptomatic patients. However, dopamine loss is at least 60% by the time PD is symptomatically detectable, therefore lack of effect of MAO-B inhibition in these patients does not negate a role for MAO-B in pre-symptomatic dopaminergic loss. In order to directly evaluate the role of age-related elevations in astroglial MAO-B in the early initiation or progression of PD, we created genetically engineered transgenic mice in which MAO-B levels could be specifically induced within astroglia in adult animals. Elevated astrocytic MAO-B mimicking age related increase resulted in specific, selective and progressive loss of dopaminergic neurons in the substantia nigra (SN), the same subset of neurons primarily impacted in the human condition. This was accompanied by other PD-related alterations including selective decreases in mitochondrial complex I activity and increased mitochondrial oxidative stress. Along with a global astrogliosis, we observed local microglial activation within the SN. These pathologies correlated with decreased locomotor activity. Importantly, these events occurred even in the absence of the PD-inducing neurotoxin MPTP. Our data demonstrates that elevation of murine astrocytic MAO-B by itself can induce several phenotypes of PD, signifying that MAO-B could be directly involved in multiple aspects of disease neuropathology. Mechanistically this may involve increases in membrane permeant H(2)O(2) which can oxidize dopamine within dopaminergic neurons to dopaminochrome which, via interaction with mitochondrial complex I, can result in increased mitochondrial superoxide. Our inducible astrocytic MAO-B transgenic provides a novel model for exploring pathways involved in initiation and progression of several key features associated with PD pathology and for therapeutic drug testing.
Collapse
Affiliation(s)
| | - Deepinder Kaur
- Buck Institute for Age Research, Novato, California, United States of America
| | - Shankar J. Chinta
- Buck Institute for Age Research, Novato, California, United States of America
| | | | - Anand Rane
- Buck Institute for Age Research, Novato, California, United States of America
| | - David G. Nicholls
- Buck Institute for Age Research, Novato, California, United States of America
| | - Donato A. Di Monte
- Basic Science Research, Parkinson's Institute, Sunnyvale, California, United States of America
| | - Heather Macarthur
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, St. Louis, Missouri, United States of America
| | - Julie K. Andersen
- Buck Institute for Age Research, Novato, California, United States of America
- *E-mail:
| |
Collapse
|
3
|
Chinta SJ, Kumar MJ, Hsu M, Rajagopalan S, Kaur D, Rane A, Nicholls DG, Choi J, Andersen JK. Inducible alterations of glutathione levels in adult dopaminergic midbrain neurons result in nigrostriatal degeneration. J Neurosci 2007; 27:13997-4006. [PMID: 18094238 PMCID: PMC6673525 DOI: 10.1523/jneurosci.3885-07.2007] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2007] [Revised: 10/24/2007] [Accepted: 10/25/2007] [Indexed: 11/21/2022] Open
Abstract
Parkinson's disease is a neurodegenerative disorder characterized by the preferential loss of midbrain dopaminergic neurons in the substantia nigra (SN). One of the earliest detectable biochemical alterations that occurs in the Parkinsonian brain is a marked reduction in SN levels of total glutathione (glutathione plus glutathione disulfide), occurring before losses in mitochondrial complex I (CI) activity, striatal dopamine levels, or midbrain dopaminergic neurodegeneration associated with the disease. Previous in vitro data from our laboratory has suggested that prolonged depletion of dopaminergic glutathione results in selective impairment of mitochondrial complex I activity through a reversible thiol oxidation event. To address the effects of depletion in dopaminergic glutathione levels in vivo on the nigrostriatal system, we created genetically engineered transgenic mouse lines in which expression of gamma-glutamyl cysteine ligase, the rate-limiting enzyme in de novo glutathione synthesis, can be inducibly downregulated in catecholaminergic neurons, including those of the SN. A novel method for isolation of purified dopaminergic striatal synaptosomes was used to study the impact of dopaminergic glutathione depletion on mitochondrial events demonstrated previously to occur in vitro as a consequence of this alteration. Dopaminergic glutathione depletion was found to result in a selective reversible thiol-oxidation-dependent mitochondrial complex I inhibition, followed by an age-related nigrostriatal neurodegeneration. This suggests that depletion in glutathione within dopaminergic SN neurons has a direct impact on mitochondrial complex I activity via increased nitric oxide-related thiol oxidation and age-related dopaminergic SN cell loss.
Collapse
Affiliation(s)
| | - M. J. Kumar
- Buck Institute for Age Research, Novato, California 94945, and
| | - Michael Hsu
- Buck Institute for Age Research, Novato, California 94945, and
| | | | - Deepinder Kaur
- Buck Institute for Age Research, Novato, California 94945, and
| | - Anand Rane
- Buck Institute for Age Research, Novato, California 94945, and
| | | | - Jinah Choi
- School of Natural Sciences, University of California at Merced, Merced, California 95344
| | | |
Collapse
|
4
|
Raiteri L, Raiteri M, Bonanno G. Coexistence and function of different neurotransmitter transporters in the plasma membrane of CNS neurons. Prog Neurobiol 2002; 68:287-309. [PMID: 12498989 DOI: 10.1016/s0301-0082(02)00059-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Transporters able to recapture released neurotransmitters into neurons can no longer be considered as cell-specific neuronal markers. In fact, colocalization on one nerve terminal of transporters able to selectively recapture the released endogenously synthesized transmitter (homotransporters) and of transporters that can selectively take up transmitters/modulators originating from neighboring structures (heterotransporters) has been demonstrated to occur on several families of nerve terminals. Activation of heterotransporters often increases the release of the transmitter stored in the terminals on which the heterotransporters are localized. The release caused by heterotransporter activation takes place through multiple mechanisms including exocytosis, either dependent on external Ca(2+) or on Ca(2+) mobilized from intraterminal stores, and homotransporter reversal. Homocarrier-mediated release elicited by heterocarrier activation represents a clear case of transporter-transporter interaction. Although the functional significance of transporter coexpression on one nerve terminal remains to be established, it may in some instances reflect cotransmission. In other cases, heterotransporters may mediate modulation of basal transmitter release in addition to the modulation of the evoked release brought about by presynaptic heteroreceptors. Heterotransporters are also increasingly reported to exist on neuronal soma/dendrites. With the exception of EAAT4, the glutamate transporter/chloride channel situated on GABAergic Purkinje cells in the cerebellum, the functions of somatodendritic heterocarriers is not understood.
Collapse
Affiliation(s)
- Luca Raiteri
- Department of Experimental Medicine, Pharmacology and Toxicology Section, University of Genoa, Genoa, Italy
| | | | | |
Collapse
|
5
|
Cash CD. Why tryptophan hydroxylase is difficult to purify: a reactive oxygen-derived species-mediated phenomenon that may be implicated in human pathology. GENERAL PHARMACOLOGY 1998; 30:569-74. [PMID: 9522177 DOI: 10.1016/s0306-3623(97)00308-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
1. Attempts and apparently successful procedures to obtain reasonable quantities of electrophoretically homogenous mammalian brain-derived tryptophan hydroxylase, (TPH), have been described, starting in the early 1970s. This work has been carried out with the primary objective to obtain specific antisera to this enzyme to map out serotonergic pathways in the nervous system. 2. By using a multitude of techniques, antisera have indeed been fabricated and employed. However, it is doubtful if pure, native TPH has ever been produced. Indeed, there is strong evidence that more than one isoform of TPH exists in the rat brain. Thus, these antisera are probably directed against TPH-derived polypeptides and not the holoenzyme(s). 3. The difficulty in the purification of TPH lies not only in its subjectivity to proteolysis, but more importantly in its probable capacity to produce superoxide leading to hydrogen perioxide formation. This, in turn, may undergo Fenton chemistry with iron at the active site of the protein to produce hydroxyl radicals that directly attack and destroy the enzyme molecule. Evidence for such a mechanism is presented together with possible protocols that might be used to produce pure stable holo TPH(s). 4. It is hypothesized that similar oxidative events may take place in vivo under certain conditions leading to pathological results. Strategies to block these events are suggested.
Collapse
Affiliation(s)
- C D Cash
- Centre de Neurochimie, Strasbourg, France
| |
Collapse
|
6
|
Abstract
Detached synapses (synaptosomes), first isolated by the author in 1958 and identified as such in 1960, are sealed presynaptic nerve terminals often with a portion of the target cell--sometimes amounting to a complete dendritic spine--adhering to their external surface. They can be prepared in high yield from brain tissue and also in decreasing yield from spinal cord, retina, sympathetic ganglia, myenteric plexus and electric organs. They are sealed structures which, under metabolizing conditions, respire, take up oxygen and glucose, extrude Na+, accumulate K+, maintain a normal membrane potential and, on depolarization, release transmitter in a Ca(2+)-dependent manner. They thus provide an excellent preparation with which to investigate synaptic function without the complications encountered with synapses in situ. They also serve as the parent fraction for preparations of synaptic vesicles and other synaptic components.
Collapse
Affiliation(s)
- V P Whittaker
- Arbeitsgruppe Neurochemie, Johannes Gutenberg-Universität, Mainz, Germany
| |
Collapse
|
7
|
Hughes PD, Foley P, Bradford HF, Ghatei M, Khandanian N, Bloom SR, Wu JY. The differential release of amino acids and neuropeptides from purified subpopulations of mammalian GABAergic and cholinergic cerebrocortical synaptosomes. Neurochem Res 1993; 18:393-400. [PMID: 8097290 DOI: 10.1007/bf00967242] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
GABAergic and cholinergic synaptosome populations were isolated by immunomagnetophoresis. Analysis of 8 amino acids showed that the GABAergic population was enriched in GABA (3 fold). The cholinergic population was enriched in citrulline (5 fold). CCK was found in both populations, but was enriched in the GABAergic. No monoamines were found in either subpopulation. Stimulated release (veratridine 50 microns), measured using a superfusion system, showed that glutamate was only released from the cholinergic subpopulation, as was VIP. In the GABAergic population, stimulated SRIF release was slow and prolonged, and the CCK release was delayed and rapid. GABA release was rapid, only occurring during application of the stimulus and only from the GABAergic synaptosomes. The GABAergic release could be modified by GABAA and GABAB targeted drugs. The cholinergic subpopulation exhibited late release of both VIP and CCK, each showing the same time pattern of release. All release was calcium and tetrodotoxin dependent.
Collapse
Affiliation(s)
- P D Hughes
- Department of Biochemistry, Imperial College of Science, Technology and Medicine, South Kensington, London, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
8
|
Foley P, Hughes PD, Bradford HF, Ghatei MA, Khandanian N, Bloom SR. The presence of neuropeptides in GABAergic and cholinergic rat cerebrocortical synaptosome sub-populations. Neuropeptides 1992; 23:67-72. [PMID: 1454155 DOI: 10.1016/0143-4179(92)90080-g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
GABAergic and cholinergic synaptosomes from rat cerebral cortex were isolated by a magnetic immunoaffinity technique, i.e. immunomagnetophoresis. These subpopulations were extracted and subjected to radioimmunoassay for four neuropeptides: Neuropeptide Y (NPY); vasoactive intestinal peptide (VIP); substance P (SP); and somatostatin (SRIF). In each of the sub-populations three of the four peptides were enriched in the sorted fraction compared with the mother fraction with respect to the cytosolic marker lactate dehydrogenase (LDH). In the GABAergic sub-population the order was SP > SRIF > NPY > or = VIP whilst in the cholinergic sub-population they were enriched in the order VIP > or = NPY > SP > SRIF. The presence of NPY has not previously been reported in cortical cholinergic neurons.
Collapse
Affiliation(s)
- P Foley
- Department of Biochemistry, Imperial College of Science, Technology & Medicine, South Kensington, London, UK
| | | | | | | | | | | |
Collapse
|