1
|
Shuto S. [Medicinal Chemical Studies Based on the Theoretical Design of Bioactive Compounds]. YAKUGAKU ZASSHI 2020; 140:329-344. [PMID: 32115550 DOI: 10.1248/yakushi.19-00208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
I have engaged in medicinal chemical studies based on the theoretical design of bioactive compounds. First, I present a three-dimensional structural diversity-oriented conformational restriction strategy for developing bioactive compounds based on the characteristic steric and stereoelectronic features of cyclopropane. Using this strategy, various biologically active small molecule compounds, such as receptor agonists/antagonists and enzyme inhibitors, were effectively developed. The strategy was also applied to develop versatile peptidomimetics and membrane-permeable cyclic peptides. Next, studies on Ca2+-mobilizing second messengers, cyclic ADP-ribose (cADPR) and myo-inositol trisphosphates (IP3), are described. In these studies, stable equivalents of cADPR were developed, since biological studies of cADPR have been limited due to its instability. Various potent IP3 receptor ligands, which were designed using the d-glucose structure as a bioisostere of the myo-inositol moiety of IP3, have been identified. Organic chemistry studies have also been extensively performed, because excellent organic chemistry is essential for promoting high-level medicinal chemical studies. For examples, new methods for the synthesis of chiral cyclopropanes, new radical reactions with silicon tethers, and kinetic anomeric effect-dependent stereoselective glycosidations have been developed.
Collapse
Affiliation(s)
- Satoshi Shuto
- Faculty of Pharmaceutical Sciences, Hokkaido University
| |
Collapse
|
2
|
Shuto S. Cyclic ADP-Carbocyclic-Ribose and -4-Thioribose, as Stable Mimics of Cyclic ADP-Ribose, a Ca 2+-Mobilizing Second Messenger. Chem Pharm Bull (Tokyo) 2018; 66:155-161. [PMID: 29386466 DOI: 10.1248/cpb.c17-00668] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cyclic ADP-ribose (cADPR), a general mediator involved in Ca2+ signaling, has the characteristic 18-membered ring consisting of an adenine, two riboses and a pyrophosphate, in which the two primary hydroxy groups of the riboses are linked by a pyrophosphate unit. This review focuses on chemical synthetic studies of cADPR analogues of biological importance. Although cADPR analogues can be synthesized by enzymatic and chemo-enzymatic methods using ADP-ribosyl cyclase, the analogues obtained by these methods are limited due to the substrate-specificity of the enzymes. Consequently, chemical synthetic methods providing a greater variety of cADPR analogues are required. Although early chemical synthetic studies demonstrated that construction of the large 18-membered ring structure is difficult, the construction was achieved using the phenylthiophosphate-type substrates by treating with AgNO3 or I2. This is now a general method for synthesizing these types of biologically important cyclic nucleotides. Using this method as the key step, the chemically and biologically stable cADPR mimic, cADP-carbocyclic-ribose (cADPcR) and -4-thioribose (cADPtR), were synthesized.
Collapse
Affiliation(s)
- Satoshi Shuto
- Faculty of Pharmaceutical Sciences, Hokkaido University
| |
Collapse
|
3
|
Takano S, Tsuzuki T, Murayama T, Kameda T, Kumaki Y, Sakurai T, Fukuda H, Watanabe M, Arisawa M, Shuto S. Synthesis of 8-Substituted Analogues of Cyclic ADP-4-Thioribose and Their Unexpected Identification as Ca 2+-Mobilizing Full Agonists. J Med Chem 2017. [PMID: 28636353 DOI: 10.1021/acs.jmedchem.7b00540] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A series of 8-substituted analogues of cyclic ADP-4-thioribose (cADPtR, 3), which is a stable equivalent of Ca2+-mobilizing second messenger cyclic ADP-ribose (cADPR, 1), were designed as potential pharmacological tools for studies on cADPR-modulated Ca2+ signaling pathways. These 8-amino analogue (8-NH2-cADPtR, 4), 8-azido analogue (8-N3-cADPtR, 5), and 8-chloro analogue (8-Cl-cADPtR, 6) were efficiently synthesized, where the stereoselective N1-β-thioribosyladenine ring closure reaction via an α/β-equilibrium of the 1-aminothioribose derivative and construction of the characteristic 18-membered pyrophosphate ring by Ag+-promoted activation of a phenyl phosphorothioate type substrate were the two key steps. Although 8-NH2-cADPR (2) is a well-known potent antagonist against cADPR-inducing Ca2+-release, the 4-thioribose congener 8-NH2-cADPtR turned out unexpectedly to be a full agonist in sea urchin egg homogenate evaluation system. This important finding suggested that the ring-oxygen in the N1-ribose of cADPR analogues is essential for the antagonistic activity in the Ca2+-signaling pathway, which can contribute to clarify the structure-agonist/antagonist activity relationship.
Collapse
Affiliation(s)
| | | | - Takashi Murayama
- Department of Pharmacology, Juntendo University School of Medicine , Bunkyo-ku, Tokyo 113-8421, Japan
| | - Tomoshi Kameda
- Computational Biology Research Center, National Institute of Advanced Industrial Science and Technology (AIST) , Aomi, Koutou-ku, Tokyo 135-0064, Japan
| | - Yasuhiro Kumaki
- Faculty of Sciences, Hokkaido University , Kita-11, Nishi-8, Kita-ku, Sapporo 060-0812, Japan
| | - Takashi Sakurai
- Department of Pharmacology, Juntendo University School of Medicine , Bunkyo-ku, Tokyo 113-8421, Japan
| | | | | | | | | |
Collapse
|
4
|
Takano S, Tsuzuki T, Murayama T, Sakurai T, Fukuda H, Arisawa M, Shuto S. Synthesis of 7-Deaza-cyclic Adenosine-5'-diphosphate-carbocyclic-ribose and Its 7-Bromo Derivative as Intracellular Ca(2+)-Mobilizing Agents. J Org Chem 2015; 80:6619-27. [PMID: 26075947 DOI: 10.1021/acs.joc.5b00723] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Cyclic ADP-carbocyclic-ribose (cADPcR, 3) is a biologically and chemically stable equivalent of cyclic ADP-ribose (cADPR, 1), a Ca(2+)-mobilizing second messenger. We became interested in the biological activity of the 7-deaza analogues of cADPcR, i.e., 7-deaza-cADPcR (7) and its 7-bromo derivative, i.e., 7-deaza-7-Br-cADPcR (8), because 7-deazaadenosine is an efficient bioisostere of adenosine. The synthesis of 7 and 8 required us to construct the key N1-carbocyclic-ribosyl-7-deazaadenosine structure. Therefore, we developed a general method for preparing N1-substituted 7-deazaadenosines by condensing a 2,3-disubstituted pyrrole nucleoside with amines. Using this method, we prepared the N1-carbocyclic ribosyl 7-deazaadenosine derivative 10a, from which we then synthesized the target 7-deaza-cADPcR (7) via an Ag(+)-promoted intramolecular condensation to construct the 18-membered pyrophosphate ring structure. The corresponding 7-bromo derivative 8, which was the first analogue of cADPR with a substitution at the 7-position, was similarly synthesized. Biological evaluation for Ca(2+)-mobilizing activity in the sea urchin egg homogenate system indicated that 7-deaza-cADPcR (7) and 7-deaza-7-Br-cADPcR (8) acted as a full agonist and a partial agonist, respectively.
Collapse
Affiliation(s)
| | | | - Takashi Murayama
- §Department of Pharmacology, Juntendo University School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Takashi Sakurai
- §Department of Pharmacology, Juntendo University School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | | | | | | |
Collapse
|
5
|
Tsuzuki T, Takano S, Sakaguchi N, Kudoh T, Murayama T, Sakurai T, Hashii M, Higashida H, Weber K, Guse AH, Kameda T, Hirokawa T, Kumaki Y, Arisawa M, Potter BVL, Shuto S. Design, Synthesis, and Chemical and Biological Properties of Cyclic ADP-4-Thioribose as a Stable Equivalent of Cyclic ADP-Ribose. MESSENGER (LOS ANGELES, CALIF. : PRINT) 2014; 3:35-51. [PMID: 27200225 PMCID: PMC4869844 DOI: 10.1166/msr.2014.1035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Here we describe the successful synthesis of cyclic ADP-4-thioribose (cADPtR, 3), designed as a stable mimic of cyclic ADP-ribose (cADPR, 1), a Ca2+-mobilizing second messenger, in which the key N1-β-thioribosyladenosine structure was stereoselectively constructed by condensation between the imidazole nucleoside derivative 8 and the 4-thioribosylamine 7 via equilibrium in 7 between the α-anomer (7α) and the β-anomer (7β) during the reaction course. cADPtR is, unlike cADPR, chemically and biologically stable, while it effectively mobilizes intracellular Ca2+ like cADPR in various biological systems, such as sea urchin homogenate, NG108-15 neuronal cells, and Jurkat T-lymphocytes. Thus, cADPtR is a stable equivalent of cADPR, which can be useful as a biological tool for investigating cADPR-mediated Ca2+-mobilizing pathways.
Collapse
Affiliation(s)
- Takayoshi Tsuzuki
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Satoshi Takano
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Natsumi Sakaguchi
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Takashi Kudoh
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Takashi Murayama
- Department of Pharmacology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Takashi Sakurai
- Department of Pharmacology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Minako Hashii
- Department of Biophysical Genetics, Takaramachi, Kanazawa University Graduate School of Medicine, Kanazawa 920-8640, Japan
| | - Haruhiro Higashida
- Department of Biophysical Genetics, Takaramachi, Kanazawa University Graduate School of Medicine, Kanazawa 920-8640, Japan
| | - Karin Weber
- The Calcium Signalling Group, University Medical Center Hamburg-Eppendorf, Center of Experimental Medicine, Department of Biochemistry and Signal Transduction, Martinistr. 52, 20246 Hamburg, Germany
| | - Andreas H. Guse
- The Calcium Signalling Group, University Medical Center Hamburg-Eppendorf, Center of Experimental Medicine, Department of Biochemistry and Signal Transduction, Martinistr. 52, 20246 Hamburg, Germany
| | - Tomoshi Kameda
- Computational Biology Research Center, National Institute of Advanced Industrial Science and Technology, Aomi, Koutou-ku, Tokyo 135-0064, Japan
| | - Takatsugu Hirokawa
- Computational Biology Research Center, National Institute of Advanced Industrial Science and Technology, Aomi, Koutou-ku, Tokyo 135-0064, Japan
| | - Yasuhiro Kumaki
- Faculty of Sciences, Hokkaido University, Kita-11, Nishi-8, Kita-ku, Sapporo 060-0812, Japan
| | - Mitsuhiro Arisawa
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Barry V. L. Potter
- Wolfson Laboratory of Medicinal Chemistry, Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Satoshi Shuto
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
- Center for Research and Education on Drug Discovery, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| |
Collapse
|
8
|
Sakaguchi N, Kudoh T, Tsuzuki T, Murayama T, Sakurai T, Matsuda A, Arisawa M, Shuto S. Synthesis of 5''-branched derivatives of cyclic ADP-carbocyclic-ribose, a potent Ca2+-mobilizing agent: The first antagonists modified at the N1-ribose moiety. Bioorg Med Chem Lett 2008; 18:3814-8. [PMID: 18534848 DOI: 10.1016/j.bmcl.2008.04.083] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2008] [Revised: 04/22/2008] [Accepted: 04/23/2008] [Indexed: 11/16/2022]
Abstract
The 5''-branched cyclic ADP-carbocyclic-ribose derivatives were designed and synthesized. These target compounds were identified as the first antagonists of cADPR without a substituent at the adenine 8-position, and were shown to be stable due to the N1-carbocyclic-ribosyl structure.
Collapse
Affiliation(s)
- Natsumi Sakaguchi
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Kudoh T, Murayama T, Matsuda A, Shuto S. Substitution at the 8-position of 3''-deoxy-cyclic ADP-carbocyclic-ribose, a highly potent Ca2+-mobilizing agent, provides partial agonists. Bioorg Med Chem 2007; 15:3032-40. [PMID: 17317189 DOI: 10.1016/j.bmc.2007.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2007] [Revised: 02/01/2007] [Accepted: 02/02/2007] [Indexed: 11/23/2022]
Abstract
We previously showed that 3''-deoxy-cyclic ADP-carbocyclic-ribose (3''-deoxy-cADPcR, 4) is a stable and highly potent analogue of cyclic ADP-ribose (cADPR, 1), a Ca(2+)-mobilizing second messenger. From these results, we designed and synthesized other 3''-modified analogues of cADPcR having a substituent at the 8-position and found that this modification at the 8-position made them partial agonists. Among these compounds, 8-NH(2)-3''-deoxy-cADPcR (10) was identified as a potent partial agonist with an EC(50) value of 17 nM.
Collapse
Affiliation(s)
- Takashi Kudoh
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | | | | | | |
Collapse
|