1
|
Tahamtan M, Aghaei I, Shabani M, Nazari A, Pooladvand V, Razavinasab M. Peroxisome proliferator-activated receptor-γ doesn't modify altered electrophysiological properties of the CA1 pyramidal neurons in a rat model of hepatic cirrhosis. Metab Brain Dis 2022; 37:2687-2697. [PMID: 35943675 DOI: 10.1007/s11011-022-01057-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 07/22/2022] [Indexed: 10/15/2022]
Abstract
Regarding the low quality of life due to the cognitive complications in the patients with hepatic cirrhosis (HC), the goal of this study was to examine the possible neuroprotective effect of pioglitazone (PIO) on the electrophysiological alterations of hippocampus, a major area of cognition, in the experimental model of bile duct ligation (BDL). We used adult male Wistar rats in the present study to perform BDL or sham surgery. Pioglitazone was administered in BDL rats two weeks after the surgery for the next continuous four weeks. The effects of pioglitazone on BDL-induced electrophysiological alterations of the CA1 pyramidal neurons in the hippocampus were evaluated by whole-cell patch clamp recordings. Our findings demonstrated that chronic administration of PIO could not reverse the electrophysiological changes in the CA1 pyramidal neurons of the hippocampus in BDL rats but could improve the hepatic dysfunction.Together, the results of this study suggest that PIO administration cannot counteract altered intrinsic properties of the hippocampal neurons which has been shown recently as an involved mechanism of the cognitive impairments in hepatic encephalopathy (HE).
Collapse
Affiliation(s)
- Mahshid Tahamtan
- Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Iraj Aghaei
- Neuroscience Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Mohammad Shabani
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, 76198-13159, Kerman, Iran.
| | - Abbas Nazari
- Department of Biology, Shiraz Branch, Islamic Azad University, Shiraz, Iran
| | - Vahid Pooladvand
- Biochemical Department, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Moazamehosadat Razavinasab
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, 76198-13159, Kerman, Iran.
| |
Collapse
|
2
|
Saito S, Arihara N, Sawaya R, Morimoto-Ishikawa D, Ueda J. Metabolites Alterations and Liver Injury in Hepatic Encephalopathy Models Evaluated by Use of 7T-MRI. Metabolites 2022; 12:metabo12050396. [PMID: 35629900 PMCID: PMC9147964 DOI: 10.3390/metabo12050396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/22/2022] [Accepted: 04/26/2022] [Indexed: 11/16/2022] Open
Abstract
This study is to observe a thioacetamide (TAA) administered Hepatic encephalopathy (HE) model rats at three and ten days after TAA administration using liver MRI and brain MR Spectroscopy (MRS) by use of 7T-MRI. Forty-two Wistar rats (control group, n = 14) were intraperitoneally administered at 300 mg/kg (low-dose group, n = 14) or 400 mg/kg (high-dose group, n = 14) doses of TAA for induced of HE. At three days after TAA administration, glutamine (Gln) measured by MRS in high-dose and low-dose TAA groups showed significant increases in comparison to those of the control group (p < 0.05). Other metabolites measured by MRS showed no significant changes. Liver T1ρ and T2 relaxation times significantly increased three days after TAA injection compared to pre-injection. There was a correlation between Gln levels in the brain and the relaxation time of the liver. Furthermore, Gln levels and relaxation time changed depending on the TAA dose. The Gln concentration in the brain increased with the deterioration of liver function, as inferred from the prolonged relaxation time of the liver. The prolonged relaxation time of the liver corresponded with the level of Gln in the brain. Gln concentration for the alterations of brain metabolites and T1ρ relaxation time for the assessment of liver damage are useful markers for inter-organ association analysis in the HE model.
Collapse
Affiliation(s)
- Shigeyoshi Saito
- Department of Medical Physics and Engineering, Area of Medical Imaging Technology and Science, Division of Health Sciences, Osaka University Graduate School of Medicine, Suita 565-0871, Japan; (N.A.); (R.S.); (J.U.)
- Department of Advanced Medical Technologies, National Cerebral and Cardiovascular Center Research Institute, Suita 565-0871, Japan
- Correspondence: ; Tel.: +81-6-6879-2619
| | - Narumi Arihara
- Department of Medical Physics and Engineering, Area of Medical Imaging Technology and Science, Division of Health Sciences, Osaka University Graduate School of Medicine, Suita 565-0871, Japan; (N.A.); (R.S.); (J.U.)
| | - Reika Sawaya
- Department of Medical Physics and Engineering, Area of Medical Imaging Technology and Science, Division of Health Sciences, Osaka University Graduate School of Medicine, Suita 565-0871, Japan; (N.A.); (R.S.); (J.U.)
| | | | - Junpei Ueda
- Department of Medical Physics and Engineering, Area of Medical Imaging Technology and Science, Division of Health Sciences, Osaka University Graduate School of Medicine, Suita 565-0871, Japan; (N.A.); (R.S.); (J.U.)
| |
Collapse
|
3
|
Hajipour S, Farbood Y, Dianat M, Rashno M, Khorsandi LS, Sarkaki A. Thymoquinone improves cognitive and hippocampal long-term potentiation deficits due to hepatic encephalopathy in rats. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2021; 24:881-891. [PMID: 34712417 PMCID: PMC8528250 DOI: 10.22038/ijbms.2021.52824.11913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 06/22/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVES Hepatic encephalopathy (HE) is a neuropsychiatric syndrome that causes brain disturbances. Thymoquinone (TQ) has a wide spectrum of activities such as antioxidant, anti-inflammatory, and anticancer. This study aimed to evaluate the effects of TQ on spatial memory and hippocampal long-term potentiation (LTP) in rats with thioacetamide (TAA)-induced liver injury and hepatic encephalopathy. MATERIALS AND METHODS Adult male Wistar rats were divided into six groups randomly: 1) Control; 2) HE, received TAA (200 mg/kg); 3-5) Treated groups (HE+TQ5, HE+TQ10, and HE+TQ20). TQ (5, 10, and 20 mg/kg) was injected intraperitoneally (IP) for 12 consecutive days from day 18 to 29. Subsequently, spatial memory performance was evaluated by the Morris water maze paradigm and hippocampal LTP was recorded from the dentate gyrus (DG) region. Activity levels of Malondialdehyde (MDA) and superoxide dismutase (SOD) were measured in the hippocampal tissue. RESULTS Data showed that the hippocampal content of MDA was increased while SOD activities were decreased in TAA-induced HE. TQ treatment significantly improved spatial memory and LTP. Moreover, TQ restored the levels of MDA and SOD activities in the hippocampal tissue in HE rats. CONCLUSION Our data confirm that TQ could attenuate cognitive impairment and improve LTP deficit by modulating the oxidative stress parameters in this model of HE, which leads to impairment of spatial cognition and LTP deficit. Thus, these results suggest that TQ may be a promising agent with positive therapeutic effects against liver failure and HE defects.
Collapse
Affiliation(s)
- Somayeh Hajipour
- Persian Gulf Physiology Research Center. Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Yaghoob Farbood
- Persian Gulf Physiology Research Center. Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Physiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mahin Dianat
- Persian Gulf Physiology Research Center. Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Physiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Rashno
- Department of Immunology, Cellular & Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of
| | | | - Alireza Sarkaki
- Persian Gulf Physiology Research Center. Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Physiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Anatomical Sciences, Cellular & Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University
| |
Collapse
|
4
|
Limón ID, Angulo-Cruz I, Sánchez-Abdon L, Patricio-Martínez A. Disturbance of the Glutamate-Glutamine Cycle, Secondary to Hepatic Damage, Compromises Memory Function. Front Neurosci 2021; 15:578922. [PMID: 33584185 PMCID: PMC7873464 DOI: 10.3389/fnins.2021.578922] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 01/06/2021] [Indexed: 12/13/2022] Open
Abstract
Glutamate fulfils many vital functions both at a peripheral level and in the central nervous system (CNS). However, hyperammonemia and hepatic failure induce alterations in glutamatergic neurotransmission, which may be the main cause of hepatic encephalopathy (HE), an imbalance which may explain damage to both learning and memory. Cognitive and motor alterations in hyperammonemia may be caused by a deregulation of the glutamate-glutamine cycle, particularly in astrocytes, due to the blocking of the glutamate excitatory amino-acid transporters 1 and 2 (EAAT1, EAAT2). Excess extracellular glutamate triggers mechanisms involving astrocyte-mediated inflammation, including the release of Ca2+-dependent glutamate from astrocytes, the appearance of excitotoxicity, the formation of reactive oxygen species (ROS), and cell damage. Glutamate re-uptake not only prevents excitotoxicity, but also acts as a vital component in synaptic plasticity and function. The present review outlines the evidence of the relationship between hepatic damage, such as that occurring in HE and hyperammonemia, and changes in glutamine synthetase function, which increase glutamate concentrations in the CNS. These conditions produce dysfunction in neuronal communication. The present review also includes data indicating that hyperammonemia is related to the release of a high level of pro-inflammatory factors, such as interleukin-6, by astrocytes. This neuroinflammatory condition alters the function of the membrane receptors, such as N-methyl-D-aspartate (NMDA), (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) AMPA, and γ-aminobutyric acid (GABA), thus affecting learning and spatial memory. Data indicates that learning and spatial memory, as well as discriminatory or other information acquisition processes in the CNS, are damaged by the appearance of hyperammonemia and, moreover, are associated with a reduction in the production of cyclic guanosine monophosphate (cGMP). Therefore, increased levels of pharmacologically controlled cGMP may be used as a therapeutic tool for improving learning and memory in patients with HE, hyperammonemia, cerebral oedema, or reduced intellectual capacity.
Collapse
Affiliation(s)
| | - Isael Angulo-Cruz
- Laboratorio de Neurofarmacología, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Lesli Sánchez-Abdon
- Laboratorio de Neurofarmacología, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Aleidy Patricio-Martínez
- Laboratorio de Neurofarmacología, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
- Facultad de Ciencias Biológicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| |
Collapse
|
5
|
Cheon SY, Song J. The Association between Hepatic Encephalopathy and Diabetic Encephalopathy: The Brain-Liver Axis. Int J Mol Sci 2021; 22:ijms22010463. [PMID: 33466498 PMCID: PMC7796499 DOI: 10.3390/ijms22010463] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/02/2021] [Accepted: 01/03/2021] [Indexed: 12/13/2022] Open
Abstract
Hepatic encephalopathy (HE) is one of the main consequences of liver disease and is observed in severe liver failure and cirrhosis. Recent studies have provided significant evidence that HE shows several neurological symptoms including depressive mood, cognitive dysfunction, impaired circadian rhythm, and attention deficits as well as motor disturbance. Liver disease is also a risk factor for the development of diabetes mellitus. Diabetic encephalopathy (DE) is characterized by cognitive dysfunction and motor impairment. Recent research investigated the relationship between metabolic changes and the pathogenesis of neurological disease, indicating the importance between metabolic organs and the brain. Given that a diverse number of metabolites and changes in the brain contribute to neurologic dysfunction, HE and DE are emerging types of neurologic disease. Here, we review significant evidence of the association between HE and DE, and summarise the common risk factors. This review may provide promising therapeutic information and help to design a future metabolic organ-related study in relation to HE and DE.
Collapse
Affiliation(s)
- So Yeong Cheon
- Department of Biotechnology, College of Biomedical & Health Science, Konkuk University, Chungju 27478, Korea;
| | - Juhyun Song
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Jeollanam-do, Korea
- Correspondence: ; Tel.: +82-61-379-2706; Fax: +82-61-375-5834
| |
Collapse
|
6
|
Taoro-González L, Cabrera-Pastor A, Sancho-Alonso M, Arenas YM, Meseguer-Estornell F, Balzano T, ElMlili N, Felipo V. Differential role of interleukin-1β in neuroinflammation-induced impairment of spatial and nonspatial memory in hyperammonemic rats. FASEB J 2019; 33:9913-9928. [PMID: 31162953 DOI: 10.1096/fj.201900230rr] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Activated microglia and increased brain IL-1β play a main role in cognitive impairment in much pathology. We studied the role of IL-1β in neuroinflammation-induced impairment of the following different types of learning and memory: novel object recognition (NOR), novel object location (NOL), spatial learning, reference memory (RM), and working memory (WM). All these processes are impaired in hyperammonemic rats. We assessed which of these types of learning and memory are restored by blocking the IL-1 receptor in vivo in hyperammonemic rats and the possible mechanisms involved. Blocking the IL-1 receptor reversed microglial activation in the hippocampus, perirhinal cortex, and prefrontal cortex but not in the postrhinal cortex. This was associated with the restoration of NOR and WM but not of tasks involving a spatial component (NOL and RM). This suggests that IL-1β would be involved in neuroinflammation-induced nonspatial memory impairment, whereas spatial memory impairment would be IL-1β-independent and would be mediated by other proinflammatory factors.-Taoro-González, L., Cabrera-Pastor, A., Sancho-Alonso, M., Arenas, Y. M., Meseguer-Estornell, F., Balzano, T., ElMlili, N., Felipo, V. Differential role of interleukin-1β in neuroinflammation-induced impairment of spatial and nonspatial memory in hyperammonemic rats.
Collapse
Affiliation(s)
- Lucas Taoro-González
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Andrea Cabrera-Pastor
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, Valencia, Spain.,Fundación Investigación Hospital Clínico, Instituto de Investigación Sanitaria (INCLIVA), Valencia, Spain
| | - María Sancho-Alonso
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Yaiza M Arenas
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | | | - Tiziano Balzano
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Nisrin ElMlili
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Vicente Felipo
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, Valencia, Spain
| |
Collapse
|
7
|
Mohammadian F, Firouzjaei MA, Haghani M, Shabani M, Shid Moosavi SM, Mohammadi F. Inhibition of inflammation is not enough for recovery of cognitive impairment in hepatic encephalopathy: Effects of minocycline and ibuprofen. Brain Res Bull 2019; 149:96-105. [PMID: 31005662 DOI: 10.1016/j.brainresbull.2019.04.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/14/2019] [Accepted: 04/16/2019] [Indexed: 12/12/2022]
Abstract
There is evidence that hyperammonia and inflammation play crucial roles in hepatic encephalopathy. This study intends to determine neuroprotective effects of minocycline (MINO) and ibuprofen (IBU), and also set out to assess whether inhibition of inflammation is enough to achieve optimal improvement of hepatic encephalopathy symptoms. The hepatic encephalopathy was induced by bile-duct ligation (BDL), and the animals received first dose of MINO and/or IBU 15 days later and then every day until the 28 day. The rats were divided into the 6 groups of control, sham, BDL + V and BDL + IBU, BDL + MINO and BDL + MINO + IBU, which each group had 3 sub-groups for evaluations of blood-brain barrier (BBB), memory performance, synaptic-plasticity and apoptosis. The long-term potentiation (LTP) and short-term potentiation were evaluated by field potential recording. The memory performance, apoptosis and BBB integrity were assessed via passive avoidance, Western-blotting of caspase-3 and Evans-blue dye extravasation, respectively. The MINO, IBU or their co-treatment in the BDL rats did not improve liver dysfunction. The BDL increased hippocampal apoptosis and BBB disruption, which were fully recovered by all three pharmacological interventions. The MINO treatment alone or combined with IBU had similar neuroprotective effects on the BDL-induced disturbances of hippocampal basal synaptic transmission, LTP and memory performance, whereas they were not ameliorated by the single IBU therapy. Therefore, it seems likely that inhibition of inflammation is not able to improve functionally impaired memory and LTP in the hepatic encephalopathy, and they may be recovered by the direct neuroprotective effects of the MINO.
Collapse
Affiliation(s)
- Fatemeh Mohammadian
- Department of Physiology, Shiraz University of Medical Sciences, Shiraz, Iran.
| | | | - Masoud Haghani
- Department of Physiology, Shiraz University of Medical Sciences, Shiraz, Iran; Clinical Neurology Research Centre, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Mohammad Shabani
- Neuroscience Research Centre, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran.
| | | | - Fatemeh Mohammadi
- Neuroscience Research Centre, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
8
|
Taoro-Gonzalez L, Arenas YM, Cabrera-Pastor A, Felipo V. Hyperammonemia alters membrane expression of GluA1 and GluA2 subunits of AMPA receptors in hippocampus by enhancing activation of the IL-1 receptor: underlying mechanisms. J Neuroinflammation 2018; 15:36. [PMID: 29422059 PMCID: PMC5806265 DOI: 10.1186/s12974-018-1082-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Accepted: 01/29/2018] [Indexed: 11/13/2022] Open
Abstract
Background Hyperammonemic rats reproduce the cognitive alterations of patients with hepatic encephalopathy, including altered spatial memory, attributed to altered membrane expression of AMPA receptor subunits in hippocampus. Neuroinflammation mediates these cognitive alterations. We hypothesized that hyperammonemia-induced increase in IL-1β in hippocampus would be responsible for the altered GluA1 and GluA2 membrane expression. The aims of this work were to (1) assess if increased IL-1β levels and activation of its receptor are responsible for the changes in GluA1 and/or GluA2 membrane expression in hyperammonemia and (2) identify the mechanisms by which activation of IL-1 receptor leads to altered membrane expression of GluA1 and GluA2. Methods We analyzed in hippocampal slices from control and hyperammonemic rat membrane expression of AMPA receptors using the BS3 cross-linker and phosphorylation of the GluA1 and GluA2 subunits using phosphor-specific antibodies. The IL-1 receptor was blocked with IL-Ra, and the signal transduction pathways involved in modulation of membrane expression of GluA1 and GluA2 were analyzed using inhibitors of key steps. Results Hyperammonemia reduces GluA1 and increases GluA2 membrane expression and reduces phosphorylation of GluA1 at Ser831 and of GluA2 at Ser880. Hyperammonemia increases IL-1β, enhancing activation of IL-1 receptor. This leads to activation of Src. The changes in membrane expression of GluA1 and GluA2 are reversed by blocking the IL-1 receptor with IL-1Ra or by inhibiting Src with PP2. After Src activation, the pathways for GluA2 and GluA1 diverge. Src increases phosphorylation of GluN2B at Tyr14721 and membrane expression of GluN2B in hyperammonemic rats, leading to activation of MAP kinase p38, which binds to and reduces phosphorylation at Thr560 and activity of PKCζ, resulting in reduced phosphorylation at Ser880 and enhanced membrane expression of GluA2. Increased Src activity in hyperammonemic rats also activates PKCδ which enhances phosphorylation of GluN2B at Ser1303, reducing membrane expression of CaMKII and phosphorylation at Ser831 and membrane expression of GluA1. Conclusions This work identifies two pathways by which neuroinflammation alters glutamatergic neurotransmission in hippocampus. The steps of the pathways identified could be targets to normalize neurotransmission in hyperammonemia and other pathologies associated with increased IL-1β by acting, for example, on p38 or PKCδ. Graphical abstract IL-1β alters membrane expression of GluA1 and GluA2 AMPA receptor subunits by two difrerent mechanisms in the hippocampus of hyperammonemic rats.
Collapse
Affiliation(s)
- Lucas Taoro-Gonzalez
- Laboratory of Neurobiology, Centro de Investigacion Príncipe Felipe, Eduardo Primo Yufera 3, 46012, Valencia, Spain.
| | - Yaiza M Arenas
- Laboratory of Neurobiology, Centro de Investigacion Príncipe Felipe, Eduardo Primo Yufera 3, 46012, Valencia, Spain
| | - Andrea Cabrera-Pastor
- Laboratory of Neurobiology, Centro de Investigacion Príncipe Felipe, Eduardo Primo Yufera 3, 46012, Valencia, Spain
| | - Vicente Felipo
- Laboratory of Neurobiology, Centro de Investigacion Príncipe Felipe, Eduardo Primo Yufera 3, 46012, Valencia, Spain
| |
Collapse
|
9
|
Tahamtan M, Aghaei I, Pooladvand V, Sheibani V, Khaksari M, Shabani M. Characterization of the CA1 pyramidal neurons in rat model of hepatic cirrhosis: insights into their electrophysiological properties. Metab Brain Dis 2017; 32:881-889. [PMID: 28265840 DOI: 10.1007/s11011-017-9966-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 01/31/2017] [Indexed: 12/23/2022]
Abstract
Although the key contributors of altering neurological function in hepatic encephalopathy are relatively well known, the electrophysiological mechanism of CA1 damage, a key vulnerable area during hyperammonemia, have not yet been defined. Therefore, here we focus on the electrophysiological mechanisms of cognitive impairments following bile duct ligation (BDL). We performed patch-clamp recordings from the CA1 pyramidal neurons in hippocampus of male Wistar rats, which underwent sham or BDL surgery. A striking electrophysiological change of hippocampal neurons in experimental model of BDL was observed in the present study. Spontaneous firing frequency and rate of action potential (AP) rebound was decreased and afterhyperpolarization amplitude (AHP) was increased significantly in hippocampal cells of BDL animals compared to sham group. Together, the results suggest that altered intrinsic properties of the hippocampal neurons may contribute to the cognitive abnormalities during hepatic encephalopathy (HE), highlighting the electrophysiological mechanisms for providing new treatments against HE.
Collapse
Affiliation(s)
- Mahshid Tahamtan
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, 76198-13159, Iran
| | - Iraj Aghaei
- Social Determinants of Health Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Vahid Pooladvand
- Biochemical Department, Jiroft University of Medical Sciences, Kerman, Iran
| | - Vahid Sheibani
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, 76198-13159, Iran
| | - Mohammad Khaksari
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Shabani
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, 76198-13159, Iran.
| |
Collapse
|
10
|
Impaired novelty acquisition and synaptic plasticity in congenital hyperammonemia caused by hepatic glutamine synthetase deficiency. Sci Rep 2017; 7:40190. [PMID: 28067279 PMCID: PMC5220341 DOI: 10.1038/srep40190] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 12/01/2016] [Indexed: 12/18/2022] Open
Abstract
Genetic defects in ammonia metabolism can produce irreversible damage of the developing CNS causing an impairment of cognitive and motor functions. We investigated alterations in behavior, synaptic plasticity and gene expression in the hippocampus and dorsal striatum of transgenic mice with systemic hyperammonemia resulting from conditional knockout of hepatic glutamine synthetase (LGS-ko). These mice showed reduced exploratory activity and delayed habituation to a novel environment. Field potential recordings from LGS-ko brain slices revealed significantly reduced magnitude of electrically-induced long-term potentiation (LTP) in both CA3-CA1 hippocampal and corticostriatal synaptic transmission. Corticostriatal but not hippocampal slices from LGS-ko brains demonstrated also significant alterations in long-lasting effects evoked by pharmacological activation of glutamate receptors. Real-time RT-PCR revealed distinct patterns of dysregulated gene expression in the hippocampus and striatum of LGS-ko mice: LGS-ko hippocampus showed significantly modified expression of mRNAs for mGluR1, GluN2B subunit of NMDAR, and A1 adenosine receptors while altered expression of mRNAs for D1 dopamine receptors, the M1 cholinoreceptor and the acetylcholine-synthetizing enzyme choline-acetyltransferase was observed in LGS-ko striatum. Thus, inborn systemic hyperammonemia resulted in significant deficits in novelty acquisition and disturbed synaptic plasticity in corticostriatal and hippocampal pathways involved in learning and goal-directed behavior.
Collapse
|
11
|
Cabrera-Pastor A, Hernandez-Rabaza V, Taoro-Gonzalez L, Balzano T, Llansola M, Felipo V. In vivo administration of extracellular cGMP normalizes TNF-α and membrane expression of AMPA receptors in hippocampus and spatial reference memory but not IL-1β, NMDA receptors in membrane and working memory in hyperammonemic rats. Brain Behav Immun 2016; 57:360-370. [PMID: 27189036 DOI: 10.1016/j.bbi.2016.05.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 05/13/2016] [Accepted: 05/13/2016] [Indexed: 12/20/2022] Open
Abstract
Patients with hepatic encephalopathy (HE) show working memory and visuo-spatial orientation deficits. Hyperammonemia is a main contributor to cognitive impairment in HE. Hyperammonemic rats show impaired spatial learning and learning ability in the Y maze. Intracerebral administration of extracellular cGMP restores learning in the Y-maze. The underlying mechanisms remain unknown. It also remains unknown whether extracellular cGMP improves neuroinflammation or restores spatial learning in hyperammonemic rats and if it affects differently reference and working memory. The aims of this work were: Spatial working and reference memory were assessed using the radial and Morris water mazes and neuroinflammation by immunohistochemistry and Western blot. Membrane expression of NMDA and AMPA receptor subunits was analyzed using the BS3 crosslinker. Extracellular cGMP was administered intracerebrally using osmotic minipumps. Chronic hyperammonemia induces neuroinflammation in hippocampus, with astrocytes activation and increased IL-1β, which are associated with increased NMDA receptors membrane expression and impaired working memory. This process is not affected by extracellular cGMP. Hyperammonemia also activates microglia and increases TNF-α, alters membrane expression of AMPA receptor subunits (increased GluA1 and reduced GluA2) and impairs reference memory. All these changes are reversed by extracellular cGMP. These results show that extracellular cGMP modulates spatial reference memory but not working memory. This would be mediated by modulation of TNF-α levels and of membrane expression of GluA1 and GluA2 subunits of AMPA receptors.
Collapse
Affiliation(s)
- Andrea Cabrera-Pastor
- Laboratorio de Neurobiología, Centro Investigación Príncipe Felipe de Valencia, Spain
| | | | - Lucas Taoro-Gonzalez
- Laboratorio de Neurobiología, Centro Investigación Príncipe Felipe de Valencia, Spain
| | - Tiziano Balzano
- Laboratorio de Neurobiología, Centro Investigación Príncipe Felipe de Valencia, Spain
| | - Marta Llansola
- Laboratorio de Neurobiología, Centro Investigación Príncipe Felipe de Valencia, Spain
| | - Vicente Felipo
- Laboratorio de Neurobiología, Centro Investigación Príncipe Felipe de Valencia, Spain.
| |
Collapse
|
12
|
Montoliu C, Rodrigo R, Monfort P, Llansola M, Cauli O, Boix J, Elmlili N, Agusti A, Felipo V. Cyclic GMP pathways in hepatic encephalopathy. Neurological and therapeutic implications. Metab Brain Dis 2010; 25:39-48. [PMID: 20195723 DOI: 10.1007/s11011-010-9184-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Accepted: 08/20/2009] [Indexed: 01/16/2023]
Abstract
Cyclic GMP (cGMP) modulates important cerebral processes including some forms of learning and memory. cGMP pathways are strongly altered in hyperammonemia and hepatic encephalopathy (HE). Patients with liver cirrhosis show reduced intracellular cGMP in lymphocytes, increased cGMP in plasma and increased activation of soluble guanylate cyclase by nitric oxide (NO) in lymphocytes, which correlates with minimal HE assessed by psychometric tests. Activation of soluble guanylate cyclase by NO is also increased in cerebral cortex, but reduced in cerebellum, from patients who died with HE. This opposite alteration is reproduced in vivo in rats with chronic hyperammonemia or HE. A main pathway modulating cGMP levels in brain is the glutamate-NO-cGMP pathway. The function of this pathway is impaired both in cerebellum and cortex of rats with hyperammonemia or HE. Impairment of this pathway is responsible for reduced ability to learn some types of tasks. Restoring the pathway and cGMP levels in brain restores learning ability. This may be achieved by administering phosphodiesterase inhibitors (zaprinast, sildenafil), cGMP, anti-inflammatories (ibuprofen) or antagonists of GABAA receptors (bicuculline). These data support that increasing cGMP by safe pharmacological means may be a new therapeutic approach to improve cognitive function in patients with minimal or clinical HE.
Collapse
Affiliation(s)
- Carmina Montoliu
- Fundación Investigación Hospital Clínico de Valencia, Valencia, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Wilkinson DJ, Smeeton NJ, Watt PW. Ammonia metabolism, the brain and fatigue; revisiting the link. Prog Neurobiol 2010; 91:200-19. [PMID: 20138956 DOI: 10.1016/j.pneurobio.2010.01.012] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Revised: 01/27/2010] [Accepted: 01/29/2010] [Indexed: 12/15/2022]
Abstract
This review addresses the ammonia fatigue theory in light of new evidence from exercise and disease studies and aims to provide a view of the role of ammonia during exercise. Hyperammonemia is a condition common to pathological liver disorders and intense or exhausting exercise. In pathology, hyperammonemia is linked to impairment of normal brain function and the onset of the neurological condition, hepatic encephalopathy. Elevated blood ammonia concentrations arise due to a diminished capacity for removal via the liver and lead to increased exposure of organs, such as the brain, to the toxic effects of ammonia. High levels of brain ammonia can lead to deleterious alterations in astrocyte morphology, cerebral energy metabolism and neurotransmission, which may in turn impact on the functioning of important signalling pathways within the neuron. Such changes are believed to contribute to the disturbances in neuropsychological function, in particular the learning, memory, and motor control deficits observed in animal models of liver disease and also patients with cirrhosis. Hyperammonemia in exercise occurs as a result of an increased production by contracting muscle, through adenosine monophosphate (AMP) deamination (the purine nucleotide cycle) and branched chain amino acid (BCAA) deamination prior to oxidation. Plasma concentrations of ammonia during exercise often achieve or exceed those measured in liver disease patients, resulting in increased cerebral uptake. In this article we propose that exercise-induced hyperammonemia may lead to concomitant disturbances in brain function, potentially through similar mechanisms underpinning pathology, which may impact on performance as fatigue or reduced function, especially during extreme exercise.
Collapse
Affiliation(s)
- Daniel J Wilkinson
- Department of Sport and Exercise Science, Chelsea School, University of Brighton, 30 Carlisle Road, Eastbourne, UK.
| | | | | |
Collapse
|
14
|
Monfort P, Cauli O, Montoliu C, Rodrigo R, Llansola M, Piedrafita B, El Mlili N, Boix J, Agustí A, Felipo V. Mechanisms of cognitive alterations in hyperammonemia and hepatic encephalopathy: therapeutical implications. Neurochem Int 2009; 55:106-12. [PMID: 19428813 DOI: 10.1016/j.neuint.2009.01.021] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Revised: 01/14/2009] [Accepted: 01/19/2009] [Indexed: 01/06/2023]
Abstract
Patients with liver diseases (e.g. cirrhosis) may present hepatic encephalopathy (HE), an alteration in cerebral function which is a consequence of previous failure of liver function. Patients with minimal or clinical HE present different levels of cognitive impairment. Hyperammonemia is considered a main contributor to the neurological alterations in HE. Animal models of chronic HE (e.g. rats with portacaval shunts) or of "pure" hyperammonemia also show impaired cognitive function. The studies summarized here show that the impairment of some types of cognitive function in chronic HE is due to the impaired function of the glutamate-nitric oxide-cGMP pathway in brain. Both hyperammonemia and neuroinflammation contribute to the impairment of the pathway and of cognitive function. Treatment of rats with chronic HE or hyperammonemia with inhibitors of phosphodiesterase 5 restores the function of the glutamate-nitric oxide-cGMP pathway and cGMP levels in brain as well as the ability to learn a Y maze conditional discrimination task. The same beneficial effects may be obtained by treating the rats chronically with an anti-inflammatory, ibuprofen. As the function of this pathway is also altered in brain of patients died in HE, this alteration would also contribute to cognitive impairment in patients with HE. Increasing cGMP by using inhibitors of phosphodiesterase 5 (PDE-5) or anti-inflammatories (under safe conditions) would be therefore a new therapeutic approach to improve learning and memory performance in individuals with minimal or clinical HE.
Collapse
Affiliation(s)
- Pilar Monfort
- Laboratory of Neurobiology, Centro de Investigacion Principe Felipe, Valencia, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
Metabolic encephalopathy is an acute disturbance in cellular metabolism in the brain evoked by conditions of hypoxia, hypoglycaemia, oxidative stress and/or inflammation. It usually develops acutely or subacutely and is reversible if the systemic disorder is treated. If left untreated, however, metabolic encephalopathy may result in secondary structural damage to the brain. Most encephalopathies are present with neuropsychiatric symptoms, one in particular being depression. However, mood disorders are often co-morbid with cardiovascular, liver, kidney and endocrine disorders, while increasing evidence concurs that depression involves inflammatory and neurodegenerative processes. This would suggest that metabolic disturbances resembling encephalopathy may underscore the basic neuropathology of depression at a far deeper level than currently realized. Viewing depression as a form of encephalopathy, and exploiting knowledge gleaned from our understanding of the neurochemistry and treatment of metabolic encephalopathy, may assist in our understanding of the neurobiology of depression, but also in realizing new ideas in the pharmacotherapy of mood disorders.
Collapse
Affiliation(s)
- Brian H Harvey
- Unit for Drug Research and Development, Division of Pharmacology, School of Pharmacy, North-West University, Potchefstroom, South Africa.
| |
Collapse
|
16
|
Monfort P, Erceg S, Piedrafita B, Llansola M, Felipo V. Chronic liver failure in rats impairs glutamatergic synaptic transmission and long-term potentiation in hippocampus and learning ability. Eur J Neurosci 2007; 25:2103-11. [PMID: 17439494 DOI: 10.1111/j.1460-9568.2007.05444.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cognitive function is impaired in patients with liver disease by unknown mechanisms. Long-term potentiation (LTP) in the hippocampus is considered the basis of some forms of learning and memory. The aims of this work were to assess (i) whether chronic liver failure impairs hippocampal LTP; (ii) if this impairment may be due to alterations in glutamatergic neurotransmission, and (iii) if impairment of LTP is associated with reduced learning ability. It is shown that liver failure in Wistar rats induces the following alterations in the hippocampus; (i) alters the phosphorylation of NMDA and AMPA receptors; (ii) reduces the expression of NMDA and AMPA receptors in membranes, (iii) reduces the magnitude of excitatory postsynaptic potentials (EPSPs) induced by activation of NMDA or AMPA receptors, and (iv) impairs NMDA receptor-dependent LTP. Liver failure also impairs learning of the Morris water maze task. Impairment of glutamatergic synaptic transmission and NMDA receptor-mediated responses may be involved in the alterations of cognitive function in patients with liver disease.
Collapse
Affiliation(s)
- Pilar Monfort
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, Avda, Autopista del Saler, 16, 46013, Valencia, Spain
| | | | | | | | | |
Collapse
|
17
|
Albrecht J. Cyclic GMP in blood and minimal hepatic encephalopathy: fine-tuning of the diagnosis. J Mol Med (Berl) 2007; 85:203-5. [PMID: 17273819 DOI: 10.1007/s00109-007-0160-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2007] [Accepted: 01/09/2007] [Indexed: 01/28/2023]
Affiliation(s)
- Jan Albrecht
- Department of Neurotoxicology, Medical Research Center, Polish Academy of Sciences, Pawińskiego 5, 02-106, Warsaw, Poland.
| |
Collapse
|